Visible to the public Biblio

Filters: Keyword is fault diagnosis  [Clear All Filters]
Teo, Yu Xian, Chen, Jiaqi, Ash, Neil, Ruddle, Alastair R., Martin, Anthony J. M..  2021.  Forensic Analysis of Automotive Controller Area Network Emissions for Problem Resolution. 2021 IEEE International Joint EMC/SI/PI and EMC Europe Symposium. :619–623.
Electromagnetic emissions associated with the transmission of automotive controller area network (CAN) messages within a passenger car have been analysed and used to reconstruct the original CAN messages. Concurrent monitoring of the CAN traffic via a wired connection to the vehicle OBD-II port was used to validate the effectiveness of the reconstruction process. These results confirm the feasibility of reconstructing in-vehicle network data for forensic purposes, without the need for wired access, at distances of up to 1 m from the vehicle by using magnetic field measurements, and up to 3 m using electric field measurements. This capability has applications in the identification and resolution of EMI issues in vehicle data network, as well as possible implications for automotive cybersecurity.
Li, Hongman, Xu, Peng, Zhao, Qilin, Liu, Yihong.  2021.  Research on fault diagnosis in early stage of software development based on Object-oriented Bayesian Networks. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :161–168.
Continuous development of Internet of Things, big data and other emerging technologies has brought new challenges to the reliability of security-critical system products in various industries. Fault detection and evaluation in the early stage of software plays an important role in improving the reliability of software. However, fault prediction and evaluation, which are currently focused on the early stage of software, hardly provide high guidance for actual project development. In this study, a fault diagnosis method based on object-oriented Bayesian network (OOBN) is proposed. Starting from the time dimension and internal logic, a two-dimensional metric fault propagation model is established to calculate the failure rate of each early stage of software respectively, and the fault relationship of each stage is analyzed to find out the key fault units. In particular, it explores and validates the relationship between the failure rate of code phase and the failure caused by faults in requirement analysis stage and design stage in a train control system, to alert the developer strictly accordance with the industry development standards for software requirements analysis, design and coding, so as to reduce potential faults in the early stage. There is evidence that the study plays a crucial role to optimize the cost of software development and avoid catastrophic consequences.
Obert, James, Loffredo, Tim.  2021.  Efficient Binary Static Code Data Flow Analysis Using Unsupervised Learning. 2021 4th International Conference on Artificial Intelligence for Industries (AI4I). :89—90.
The ever increasing need to ensure that code is reliably, efficiently and safely constructed has fueled the evolution of popular static binary code analysis tools. In identifying potential coding flaws in binaries, tools such as IDA Pro are used to disassemble the binaries into an opcode/assembly language format in support of manual static code analysis. Because of the highly manual and resource intensive nature involved with analyzing large binaries, the probability of overlooking potential coding irregularities and inefficiencies is quite high. In this paper, a light-weight, unsupervised data flow methodology is described which uses highly-correlated data flow graph (CDFGs) to identify coding irregularities such that analysis time and required computing resources are minimized. Such analysis accuracy and efficiency gains are achieved by using a combination of graph analysis and unsupervised machine learning techniques which allows an analyst to focus on the most statistically significant flow patterns while performing binary static code analysis.
Ecik, Harun.  2021.  Comparison of Active Vulnerability Scanning vs. Passive Vulnerability Detection. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :87–92.
Vulnerability analysis is an integral part of an overall security program. Through identifying known security flaws and weaknesses, vulnerability identification tools help security practitioners to remediate the existing vulnerabilities on the networks. Thus, it is crucial that the results of such tools are complete, accurate, timely and they produce vulnerability results with minimum or no side-effects on the networks. To achieve these goals, Active Vulnerability Scanning (AVS) or Passive Vulnerability Detection (PVD) approaches can be used by network-based vulnerability scanners. In this work, we evaluate these two approaches with respect to efficiency and effectiveness. For the effectiveness analysis, we compare these two approaches empirically on a test environment and evaluate their outcomes. According to total amount of accuracy and precision, the PVD results are higher than AVS. As a result of our analysis, we conclude that PVD returns more complete and accurate results with considerably shorter scanning periods and with no side-effects on networks, compared to the AVS.
Narang, Anuraag, Venu, Balaji, Khursheed, Saqib, Harrod, Peter.  2021.  An Exploration of Microprocessor Self-Test Optimisation Based On Safe Faults. 2021 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). :1—6.
Microprocessor software test libraries (STLs) must provide maximum fault coverage with minimum overhead. Pruning safe faults, which cannot cause errors in the output of the processor, from the fault list can increase fault coverage without adding test overhead. Applying more application-specific constraints can lead to the identification of more safe faults, and some such constraints are yet to be explored. This work explores the use of signal combination-based constraints alongside well-known constant signal-based constraints for identifying safe faults. Also, for the first time, information on safe faults is utilised during test compaction in order to further minimise test overhead. Results for an OpenRISC processor design show up to 2.33% improvement in fault coverage with the use of the proposed constraints. In one test program, a code segment contributing only to the coverage of safe faults is identified, with its removal providing a 1.09 % code size reduction on top of existing compaction techniques. The results may vary for a larger and more complex commercial design with greater scope for redundant logic. This work explores the use of signal combination-based constraints alongside well-known constant signal-based constraints for identifying safe faults. Also, for the first time, information on safe faults is utilised during test compaction in order to further minimise test overhead. Results for an OpenRISC processor design show up to 2.33% improvement in fault coverage with the use of the proposed constraints. In one test program, a code segment contributing only to the coverage of safe faults is identified, with its removal providing a 1.09 % code size reduction on top of existing compaction techniques. The results may vary for a larger and more complex commercial design with greater scope for redundant logic.
Xiaoqian, Xiong.  2021.  A Sensor Fault Diagnosis Algorithm for UAV Based on Neural Network. 2021 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :260–265.
To improve the security and reliability of the system in case of sensor failure, a fault diagnosis algorithm based on neural network is proposed to locate the fault quickly and reconstruct the control system in this paper. Firstly, the typical airborne sensors are introduced and their common failure modes are analyzed. Then, a new method of complex feature extraction using wavelet packet is put forward to extract the fault characteristics of UAV sensors. Finally, the observer method based on BP neural network is adopted to train and acquire data offline, and to detect and process single or multiple sensor faults online. Matlab simulation results show that the algorithm has good diagnostic accuracy and strong generalization ability, which also has certain practicability in engineering.
Grzelak, Bartosz, Keim, Martin, Pogiel, Artur, Rajski, Janusz, Tyszer, Jerzy.  2021.  Convolutional Compaction-Based MRAM Fault Diagnosis. 2021 IEEE European Test Symposium (ETS). :1–6.
Spin-transfer torque magnetoresistive random-access memories (STT-MRAMs) are gradually superseding conventional SRAMs as last-level cache in System-on-Chip designs. Their manufacturing process includes trimming a reference resistance in STT-MRAM modules to reliably determine the logic values of 0 and 1 during read operations. Typically, an on-chip trimming routine consists of multiple runs of a test algorithm with different settings of a trimming port. It may inherently produce a large number of mismatches. Diagnosis of such a sizeable volume of errors by means of existing memory built-in self-test (MBIST) schemes is either infeasible or a time-consuming and expensive process. In this paper, we propose a new memory fault diagnosis scheme capable of handling STT-MRAM-specific error rates in an efficient manner. It relies on a convolutional reduction of memory outputs and continuous shifting of the resultant data to a tester through a few output channels that are typically available in designs using an on-chip test compression technology, such as the embedded deterministic test. It is shown that processing the STT-MRAM output by using a convolutional compactor is a preferable solution for this type of applications, as it provides a high diagnostic resolution while incurring a low hardware overhead over traditional MBIST logic.
Kim, Won-Jae, Kim, Sang-Hoon.  2021.  Multiple Open-Switch Fault Diagnosis Using ANNs for Three-Phase PWM Converters. 2021 24th International Conference on Electrical Machines and Systems (ICEMS). :2436–2439.
In this paper, a multiple switches open-fault diagnostic method using ANNs (Artificial Neural Networks) for three-phase PWM (Pulse Width Modulation) converters is proposed. When an open-fault occurs on switches in the converter, the stator currents can include dc and harmonic components. Since these abnormal currents cannot be easily cut off by protection circuits, secondary faults can occur in peripherals. Therefore, a method of diagnosing the open-fault is required. For open-faults for single switch and double switches, there are 21 types of fault modes depending on faulty switches. In this paper, these fault modes are localized by using the dc component and THD (Total Harmonics Distortion) in fault currents. For obtaining the dc component and THD in the currents, an ADALINE (Adaptive Linear Neuron) is used. For localizing fault modes, two ANNs are used in series; the 21 fault modes are categorized into six sectors by the first ANN of using the dc components, and then the second ANN localizes fault modes by using both the dc and THDs of the d-q axes current in each sector. Simulations and experiments confirm the validity of the proposed method.
Bhuiyan, Erphan, Sarker, Yeahia, Fahim, Shahriar, Mannan, Mohammad Abdul, Sarker, Subrata, Das, Sajal.  2021.  A Reliable Open-Switch Fault Diagnosis Strategy for Grid-tied Photovoltaic Inverter Topology. 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI). :1–4.
In order to increase the availability and reliability of photovoltaic (PV) systems, fault diagnosis and condition monitoring of inverters are of crucial means to meet the goals. Numerous methods are implemented for fault diagnosis of PV inverters, providing robust features and handling massive amount of data. However, existing methods rely on simplistic frameworks that are incapable of inspecting a wide range of intrinsic and explicit features, as well as being time-consuming. In this paper, a novel method based on a multilayer deep belief network (DBN) is suggested for fault diagnosis, which allows the framework to discover the probabilistic reconstruction across its inputs. This approach equips a robust hierarchical generative model for exploiting features associated with faults, interprets functions that are highly variable, and needs lesser prior information. Moreover, the method instantaneously categorizes the fault conditions, which eventually strengthens the adaptability of applying it on a variety of diagnostic problems in an inverter domain. The proposed method is evaluated using multiple input signals at different sampling frequencies. To evaluate the efficacy of DBN, a test model based on a three-phase 2-level grid-tied PV inverter was used. The results show that the method is capable of achieving precise diagnosis operations.
Wang, Xinyi, Yang, Bo, Liu, Qi, Jin, Tiankai, Chen, Cailian.  2021.  Collaboratively Diagnosing IGBT Open-circuit Faults in Photovoltaic Inverters: A Decentralized Federated Learning-based Method. IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society. :1–6.
In photovoltaic (PV) systems, machine learning-based methods have been used for fault detection and diagnosis in the past years, which require large amounts of data. However, fault types in a single PV station are usually insufficient in practice. Due to insufficient and non-identically distributed data, packet loss and privacy concerns, it is difficult to train a model for diagnosing all fault types. To address these issues, in this paper, we propose a decentralized federated learning (FL)-based fault diagnosis method for insulated gate bipolar transistor (IGBT) open-circuits in PV inverters. All PV stations use the convolutional neural network (CNN) to train local diagnosis models. By aggregating neighboring model parameters, each PV station benefits from the fault diagnosis knowledge learned from neighbors and achieves diagnosing all fault types without sharing original data. Extensive experiments are conducted in terms of non-identical data distributions, various transmission channel conditions and whether to use the FL framework. The results are as follows: 1) Using data with non-identical distributions, the collaboratively trained model diagnoses faults accurately and robustly; 2) The continuous transmission and aggregation of model parameters in multiple rounds make it possible to obtain ideal training results even in the presence of packet loss; 3) The proposed method allows each PV station to diagnose all fault types without original data sharing, which protects data privacy.
Liu, Yuanle, Xu, Chengjie, Wang, Yanwei, Yang, Weidong, Zheng, Ying.  2021.  Multidimensional Reconstruction-Based Contribution for Multiple Faults Isolation with k-Nearest Neighbor Strategy. 2021 40th Chinese Control Conference (CCC). :4510–4515.
In the multivariable fault diagnosis of industrial process, due to the existence of correlation between variables, the result of fault diagnosis will inevitably appear "smearing" effect. Although the fault diagnosis method based on the contribution of multi-dimensional reconstruction is helpful when multiple faults occur. But in order to correctly isolate all the fault variables, this method will become very inefficient due to the combination of variables. In this paper, a fault diagnosis method based on kNN and MRBC is proposed to fundamentally avoid the corresponding influence of "smearing", and a fast variable selection strategy is designed to accelerate the process of fault isolation. Finally, simulation study on a benchmark process verifies the effectiveness of the method, in comparison with the traditional method represented by FDA-based method.
Wang, Shou-Peng, Dong, Si-Tong, Gao, Yang, Lv, Ke, Jiang, Yu, Zhang, Li-Bin.  2021.  Optimal Solution Discrimination of an Analytic Model for Power Grid Fault Diagnosis Employing Electrical Criterion. 2021 4th International Conference on Energy, Electrical and Power Engineering (CEEPE). :744–750.
When a fault occurs in power grid, the analytic model for power grid fault diagnosis could generate multiple solutions under one or more protective relays (PRs) and/or circuit breakers (CBs) malfunctioning, and/or one or more their alarm information failing. Hence, this paper, calling the electrical quantities, presents an optimal solution discrimination method, which determines the optimal solution by constructing the electrical criteria of suspicious faulty components. Furthermore, combining the established electrical criteria with the existing analytic model, a hierarchical fault diagnosis mode is proposed. It uses the analytic model for the first level diagnosis based on the switching quantities. Thereafter, aiming at multiple solutions, it applies the electrical criteria for the second level diagnosis to determine the diagnostic result. Finally, the examples of fault diagnosis demonstrate the feasibility and effectiveness of the developed method.
Zhao, Bo, Zhang, Xianmin, Zhan, Zhenhui, Wu, Qiqiang.  2021.  A Novel Assessment Metric for Intelligent Fault Diagnosis of Rolling Bearings with Different Fault Severities and Orientations. 2021 7th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations (CMMNO). :225–228.
The output of rolling bearings, as one of the most widely used support elements, has a significant impact on the equipment's stability and protection. Automatic and effective mining of features representing performance condition plays an important role in ensuring its reliability. However, in the actual process, there are often differences in the quality of features extracted from feature engineering, and this difference cannot be evaluated by commonly used methods, such as correlation metric and monotonicity metric. In order to accurately and automatically evaluate and select effective features, a novel assessment metric is established based on the attributes of the feature itself. Firstly, the features are extracted from different domains, which contain differential information, and a feature set is constructed. Secondly, the performances of the features are evaluated and selected based on internal distance and external distance, which is a novel feature evaluation model for classification task. Finally, an adaptive boosting strategy that combines multiple weak learners is adopted to achieve the fault identification at different severities and orientations. One experimental bearing dataset is adopted to analyze, and effectiveness and accuracy of proposed metric index is verified.
Hmida, Mohamed Ali, Abid, Firas Ben, Braham, Ahmed.  2021.  Multi-band Analysis for Enhancing Multiple Combined Fault Diagnosis. 2021 18th International Multi-Conference on Systems, Signals Devices (SSD). :116–123.
In this work, a novel approach to detect and diagnose single and combined faults in the Induction Motor (IM) is proposed. In Condition Monitoring Systems (CMS) based on the Motor Current Signature Analysis (MCSA), the simultaneous occurrence of multiple faults is a major challenge. An innovative technique called Multiple Windowed Harmonic Wavelet Packet Transform (MWHWPT) is used in order to discriminate between the faulty components of the IM, even during compound faults. Thus, each motor component is monitored by a specific Fault Index (FI) which allows the fault diagnosis without the need for a classifier. The tests carried on Rotor and Bearing faults show high fault diagnosis rate even during compound faults and proves the competitive performance of the proposed approach with literature works.
Yuan, Fuxiang, Shang, Yu, Yang, Dingge, Gao, Jian, Han, Yanhua, Wu, Jingfeng.  2021.  Comparison on Multiple Signal Analysis Method in Transformer Core Looseness Fault. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :908–911.
The core looseness fault is an important part of transformer fault. The state of the core can be obtained by analyzing the vibration signal. Vibration analysis method has been used in transformer condition monitoring and fault diagnosis for many years, while different methods produce different results. In order to select the correct method in engineering application, five kinds of joint time-frequency analysis methods, such as short-time Fourier transform, Wigner-Ville distribution, S transform, wavelet transform and empirical mode decomposition are compared, and the advantages and disadvantages of these methods for dealing with the vibration signal of transformer core are analyzed in this paper. It indicates that wavelet transform and empirical mode decomposition have more advantages in the diagnosis of core looseness fault. The conclusions have referential significance for the diagnosis of transformer faults in engineering.
Zhang, Jing.  2021.  Application of multi-fault diagnosis based on discrete event system in industrial sensor network. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :1122–1126.
This paper presents a method to improve the diagnosability of power network under multiple faults. In this paper, the steps of fault diagnosis are as follows: first, constructing finite automata model of the diagnostic system; then, a fault diagnoser model is established through coupling operation and trajectory reasoning mechanism; finally, the diagnosis results are obtained through this model. In this paper, the judgment basis of diagnosability is defined. Then, based on the existing diagnosis results, the information available can be increased by adding sensor devices, to achieve the purpose of diagnosability in the case of multiple faults of the system.
Thirumavalavasethurayar, P, Ravi, T.  2021.  Implementation of Replay Attack in Controller Area Network Bus Using Universal Verification Methodology. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1142–1146.

Controller area network is the serial communication protocol, which broadcasts the message on the CAN bus. The transmitted message is read by all the nodes which shares the CAN bus. The message can be eavesdropped and can be re-used by some other node by changing the information or send it by duplicate times. The message reused after some delay is replay attack. In this paper, the CAN network with three CAN nodes is implemented using the universal verification components and the replay attack is demonstrated by creating the faulty node. Two types of replay attack are implemented in this paper, one is to replay the entire message and the other one is to replay only the part of the frame. The faulty node uses the first replay attack method where it behaves like the other node in the network by duplicating the identifier. CAN frame except the identifier is reused in the second method which is hard to detect the attack as the faulty node uses its own identifier and duplicates only the data in the CAN frame.

Pan, Zhicheng, Deng, Jun, Chu, Jinwei, Zhang, Zhanlong, Dong, Zijian.  2020.  Research on Correlation Analysis of Vibration Signals at Multiple Measuring Points and Black Box Model of Flexible-DC Transformer. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). :3238–3242.
The internal structure of the flexible-DC transformer is complicated and the lack of a reliable vibration calculation model limits the application of the vibration analysis method in the fault diagnosis of the flexible-DC transformer. In response to this problem, this paper analyzes the correlation between the vibration signals of multiple measuring points and establishes a ``black box'' model of transformer vibration detection. Using the correlation analysis of multiple measuring points and BP neural network, a ``black box'' model that simulates the internal vibration transmission relationship of the transformer is established. The vibration signal of the multiple measuring points can be used to calculate the vibration signal of the target measuring point under specific working conditions. This can provide effective information for fault diagnosis and judgment of the running status of the flexible-DC transformer.
Hou, Qilin, Wang, Jinglin, Shen, Yong.  2020.  Multiple Sensors Fault Diagnosis for Rolling Bearing Based on Variational Mode Decomposition and Convolutional Neural Networks. 2020 11th International Conference on Prognostics and System Health Management (PHM-2020 Jinan). :450–455.
The reliability of mechanical equipment is very important for the security operation of large-scale equipment. This paper presents a rolling bearing fault diagnosis method based on Variational Mode Decomposition (VMD) and Convolutional Neural Network (CNN). This proposed method includes using VMD and CNN to extend multi-sensor data, extracting detailed features and achieve more robust sensor fusion. Representative features can be extracted automatically from the raw signals. The proposed method can extract features directly from data without prior knowledge. The effectiveness of this method is verified on Case Western Reserve University (CWRU) dataset. Compared with one sensor and traditional approaches using manual feature extraction, the results show the superior diagnosis performance of the proposed method. Because of the end-to-end feature learning ability, this method can be extended to other kinds of sensor mechanical fault diagnosis.
Castro-Coronado, Habib, Antonino-Daviu, Jose, Quijano-López, Alfredo, Fuster-Roig, Vicente, Llovera-Segovia, Pedro.  2020.  Evaluation of the Detectability of Damper Cage Damages in Synchronous Motors through the Advanced Analysis of the Stray Flux. 2020 IEEE Energy Conversion Congress and Exposition (ECCE). :2058–2063.
The determination of the damper cage health is a matter of great importance in those industries that use large synchronous motors in their processes. In the past, unexpected damages of that element implied economic losses amounting up to several million \$. The problem is that, in the technical literature, there is a lack of non-invasive techniques enabling the reliable condition monitoring of this element. This explains the fact that, in industry, rudimentary methods are still employed to determine its condition. This paper proposes the analysis of the stray flux as a way to determine the condition of the damper cage. The paper shows that the analysis of the stray flux under starting yields characteristic time-frequency signatures of the fault components that can be used to reliably determine the condition of the damper. Moreover, the analysis of the stray flux at steady-state operation under asynchronous mode could give useful information to this end. The paper also analyses the influence of the remanent magnetism in the rotor of some synchronous motors, which can make the damper cage diagnosis more difficult; some solutions to this problem are also suggested in the paper.
Li, M., Wang, F., Gupta, S..  2020.  Data-driven fault model development for superconducting logic. 2020 IEEE International Test Conference (ITC). :1—5.

Superconducting technology is being seriously explored for certain applications. We propose a new clean-slate method to derive fault models from large numbers of simulation results. For this technology, our method identifies completely new fault models – overflow, pulse-escape, and pattern-sensitive – in addition to the well-known stuck-at faults.

Herrera, A. E. Hinojosa, Walshaw, C., Bailey, C..  2020.  Improving Black Box Classification Model Veracity for Electronics Anomaly Detection. 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). :1092–1097.
Data driven classification models are useful to assess quality of manufactured electronics. Because decisions are taken based on the models, their veracity is relevant, covering aspects such as accuracy, transparency and clarity. The proposed BB-Stepwise algorithm aims to improve the classification model transparency and accuracy of black box models. K-Nearest Neighbours (KNN) is a black box model which is easy to implement and has achieved good classification performance in different applications. In this paper KNN-Stepwise is illustrated for fault detection of electronics devices. The results achieved shows that the proposed algorithm was able to improve the accuracy, veracity and transparency of KNN models and achieve higher transparency and clarity, and at least similar accuracy than when using Decision Tree models.
Golagha, M., Pretschner, A., Briand, L. C..  2020.  Can We Predict the Quality of Spectrum-based Fault Localization? 2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST). :4–15.
Fault localization and repair are time-consuming and tedious. There is a significant and growing need for automated techniques to support such tasks. Despite significant progress in this area, existing fault localization techniques are not widely applied in practice yet and their effectiveness varies greatly from case to case. Existing work suggests new algorithms and ideas as well as adjustments to the test suites to improve the effectiveness of automated fault localization. However, important questions remain open: Why is the effectiveness of these techniques so unpredictable? What are the factors that influence the effectiveness of fault localization? Can we accurately predict fault localization effectiveness? In this paper, we try to answer these questions by collecting 70 static, dynamic, test suite, and fault-related metrics that we hypothesize are related to effectiveness. Our analysis shows that a combination of only a few static, dynamic, and test metrics enables the construction of a prediction model with excellent discrimination power between levels of effectiveness (eight metrics yielding an AUC of .86; fifteen metrics yielding an AUC of.88). The model hence yields a practically useful confidence factor that can be used to assess the potential effectiveness of fault localization. Given that the metrics are the most influential metrics explaining the effectiveness of fault localization, they can also be used as a guide for corrective actions on code and test suites leading to more effective fault localization.
Sunny, S. M. N. A., Liu, X., Shahriar, M. R..  2018.  Remote Monitoring and Online Testing of Machine Tools for Fault Diagnosis and Maintenance Using MTComm in a Cyber-Physical Manufacturing Cloud. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). :532—539.

Existing systems allow manufacturers to acquire factory floor data and perform analysis with cloud applications for machine health monitoring, product quality prediction, fault diagnosis and prognosis etc. However, they do not provide capabilities to perform testing of machine tools and associated components remotely, which is often crucial to identify causes of failure. This paper presents a fault diagnosis system in a cyber-physical manufacturing cloud (CPMC) that allows manufacturers to perform diagnosis and maintenance of manufacturing machine tools through remote monitoring and online testing using Machine Tool Communication (MTComm). MTComm is an Internet scale communication method that enables both monitoring and operation of heterogeneous machine tools through RESTful web services over the Internet. It allows manufacturers to perform testing operations from cloud applications at both machine and component level for regular maintenance and fault diagnosis. This paper describes different components of the system and their functionalities in CPMC and techniques used for anomaly detection and remote online testing using MTComm. It also presents the development of a prototype of the proposed system in a CPMC testbed. Experiments were conducted to evaluate its performance to diagnose faults and test machine tools remotely during various manufacturing scenarios. The results demonstrated excellent feasibility to detect anomaly during manufacturing operations and perform testing operations remotely from cloud applications using MTComm.

Zhang, Z., Xie, X..  2019.  On the Investigation of Essential Diversities for Deep Learning Testing Criteria. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS). :394–405.

Recent years, more and more testing criteria for deep learning systems has been proposed to ensure system robustness and reliability. These criteria were defined based on different perspectives of diversity. However, there lacks comprehensive investigation on what are the most essential diversities that should be considered by a testing criteria for deep learning systems. Therefore, in this paper, we conduct an empirical study to investigate the relation between test diversities and erroneous behaviors of deep learning models. We define five metrics to reflect diversities in neuron activities, and leverage metamorphic testing to detect erroneous behaviors. We investigate the correlation between metrics and erroneous behaviors. We also go further step to measure the quality of test suites under the guidance of defined metrics. Our results provided comprehensive insights on the essential diversities for testing criteria to exhibit good fault detection ability.