Visible to the public Biblio

Filters: Keyword is Segmentation  [Clear All Filters]
Tuba, Eva, Jovanovic, Raka, Zivkovic, Dejan, Beko, Marko, Tuba, Milan.  2019.  Clustering Algorithm Optimized by Brain Storm Optimization for Digital Image Segmentation. 2019 7th International Symposium on Digital Forensics and Security (ISDFS). :1–6.
In the last several decades digital images were extend their usage in numerous areas. Due to various digital image processing methods they became part areas such as astronomy, agriculture and more. One of the main task in image processing application is segmentation. Since segmentation represents rather important problem, various methods were proposed in the past. One of the methods is to use clustering algorithms which is explored in this paper. We propose k-means algorithm for digital image segmentation. K-means algorithm's well known drawback is the high possibility of getting trapped into local optima. In this paper we proposed brain storm optimization algorithm for optimizing k-means algorithm used for digital image segmentation. Our proposed algorithm is tested on several benchmark images and the results are compared with other stat-of-the-art algorithms. The proposed method outperformed the existing methods.
Rathour, N., Kaur, K., Bansal, S., Bhargava, C..  2018.  A Cross Correlation Approach for Breaking of Text CAPTCHA. 2018 International Conference on Intelligent Circuits and Systems (ICICS). :6–10.
Online web service providers generally protect themselves through CAPTCHA. A CAPTCHA is a type of challenge-response test used in computing as an attempt to ensure that the response is generated by a person. CAPTCHAS are mainly instigated as distorted text which the handler must correctly transcribe. Numerous schemes have been proposed till date in order to prevent attacks by Bots. This paper also presents a cross correlation based approach in breaking of famous service provider's text CAPTCHA i.e. and the other one is of India's most visited website The procedure can be fragmented down into 3 firmly tied tasks: pre-processing, segmentation, and classification. The pre-processing of the image is performed to remove all the background noise of the image. The noise in the CAPTCHA are unwanted on pixels in the background. The segmentation is performed by scanning the image for on pixels. The organization is performed by using the association values of the inputs and templates. Two types of templates have been used for classification purpose. One is the standard templates which give 30% success rate and other is the noisy templates made from the captcha images and success rate achieved with these is 100%.
Wang, Y., Huang, Y., Zheng, W., Zhou, Z., Liu, D., Lu, M..  2017.  Combining convolutional neural network and self-adaptive algorithm to defeat synthetic multi-digit text-based CAPTCHA. 2017 IEEE International Conference on Industrial Technology (ICIT). :980–985.
We always use CAPTCHA(Completely Automated Public Turing test to Tell Computers and Humans Apart) to prevent automated bot for data entry. Although there are various kinds of CAPTCHAs, text-based scheme is still applied most widely, because it is one of the most convenient and user-friendly way for daily user [1]. The fact is that segmentations of different types of CAPTCHAs are not always the same, which means one of CAPTCHA's bottleneck is the segmentation. Once we could accurately split the character, the problem could be solved much easier. Unfortunately, the best way to divide them is still case by case, which is to say there is no universal way to achieve it. In this paper, we present a novel algorithm to achieve state-of-the-art performance, what was more, we also constructed a new convolutional neural network as an add-on recognition part to stabilize our state-of-the-art performance of the whole CAPTCHA system. The CAPTCHA datasets we are using is from the State Administration for Industry& Commerce of the People's Republic of China. In this datasets, there are totally 33 entrances of CAPTCHAs. In this experiments, we assume that each of the entrance is known. Results are provided showing how our algorithms work well towards these CAPTCHAs.
Wang, Zhao, Xi, Yuan.  2016.  A Kind of De-noising and Segmentation Method for Hollow CAPTCHAs with Noise Arcs. Proceedings of the Fifth International Conference on Network, Communication and Computing. :68–72.
While many text-based CAPTCHA schemes have been broken, hollow CAPTCHAs as a new technology have been used by many websites. The generation method of currently used hollow CAPTCHAs is investigated, we found there is color difference between the boundary of characters contour lines and noise arcs. An algorithm of noise arcs removal to deal with this vulnerability is proposed. Furthermore, a de-noising and segmentation scheme for hollow CAPTCHAs with noise arcs is presented. The scheme is verified by the real CAPTCHA data from the website Sina Weibo. The success segmentation rate is 77%. Finally, some advice is given to improve the design of hollow CAPTCHA.
Prinosil, J., Krupka, A., Riha, K., Dutta, M. K., Singh, A..  2015.  Automatic hair color de-identification. 2015 International Conference on Green Computing and Internet of Things (ICGCIoT). :732–736.

A process of de-identification used for privacy protection in multimedia content should be applied not only for primary biometric traits (face, voice) but for soft biometric traits as well. This paper deals with a proposal of the automatic hair color de-identification method working with video records. The method involves image hair area segmentation, basic hair color recognition, and modification of hair color for real-looking de-identified images.

Lee, K., Kolsch, M..  2015.  Shot Boundary Detection with Graph Theory Using Keypoint Features and Color Histograms. 2015 IEEE Winter Conference on Applications of Computer Vision. :1177–1184.

The TRECVID report of 2010 [14] evaluated video shot boundary detectors as achieving "excellent performance on [hard] cuts and gradual transitions." Unfortunately, while re-evaluating the state of the art of the shot boundary detection, we found that they need to be improved because the characteristics of consumer-produced videos have changed significantly since the introduction of mobile gadgets, such as smartphones, tablets and outdoor activity purposed cameras, and video editing software has been evolving rapidly. In this paper, we evaluate the best-known approach on a contemporary, publicly accessible corpus, and present a method that achieves better performance, particularly on soft transitions. Our method combines color histograms with key point feature matching to extract comprehensive frame information. Two similarity metrics, one for individual frames and one for sets of frames, are defined based on graph cuts. These metrics are formed into temporal feature vectors on which a SVM is trained to perform the final segmentation. The evaluation on said "modern" corpus of relatively short videos yields a performance of 92% recall (at 89% precision) overall, compared to 69% (91%) of the best-known method.

Lokhande, S. S., Dawande, N. A..  2015.  A Survey on Document Image Binarization Techniques. 2015 International Conference on Computing Communication Control and Automation. :742–746.

Document image binarization is performed to segment foreground text from background text in badly degraded documents. In this paper, a comprehensive survey has been conducted on some state-of-the-art document image binarization techniques. After describing these document images binarization techniques, their performance have been compared with the help of various evaluation performance metrics which are widely used for document image analysis and recognition. On the basis of this comparison, it has been found out that the adaptive contrast method is the best performing method. Accordingly, the partial results that we have obtained for the adaptive contrast method have been stated and also the mathematical model and block diagram of the adaptive contrast method has been described in detail.

Cook, B., Graceffo, S..  2015.  Semi-automated land/water segmentation of multi-spectral imagery. OCEANS 2015 - MTS/IEEE Washington. :1–7.

Segmentation of land and water regions is necessary in many applications involving analysis of remote sensing imagery. Not only is manual segmentation of these regions prone to considerable subjective variability, but the large volume of imagery collected by modern platforms makes manual segmentation extremely tedious to perform, particularly in applications that require frequent re-measurement. This paper examines a robust, semi-automated approach that utilizes simple and efficient machine learning algorithms to perform supervised classification of multi-spectral image data into land and water regions. By combining the four wavelength bands widely available in imaging platforms such as IKONOS, QuickBird, and GeoEye-1 with basic texture metrics, high quality segmentation can be achieved. An efficient workflow was created by constructing a Graphical User Interface (GUI) to these machine learning algorithms.

A. Roy, S. P. Maity.  2015.  "On segmentation of CS reconstructed MR images". 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR). :1-6.

This paper addresses the issue of magnetic resonance (MR) Image reconstruction at compressive sampling (or compressed sensing) paradigm followed by its segmentation. To improve image reconstruction problem at low measurement space, weighted linear prediction and random noise injection at unobserved space are done first, followed by spatial domain de-noising through adaptive recursive filtering. Reconstructed image, however, suffers from imprecise and/or missing edges, boundaries, lines, curvatures etc. and residual noise. Curvelet transform is purposely used for removal of noise and edge enhancement through hard thresholding and suppression of approximate sub-bands, respectively. Finally Genetic algorithms (GAs) based clustering is done for segmentation of sharpen MR Image using weighted contribution of variance and entropy values. Extensive simulation results are shown to highlight performance improvement of both image reconstruction and segmentation problems.