Visible to the public Biblio

Filters: Keyword is honeypot  [Clear All Filters]
2021-09-21
Chamotra, Saurabh, Barbhuiya, Ferdous Ahmed.  2020.  Analysis and Modelling of Multi-Stage Attacks. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1268–1275.
Honeypots are the information system resources used for capturing and analysis of cyber attacks. Highinteraction Honeypots are capable of capturing attacks in their totality and hence are an ideal choice for capturing multi-stage cyber attacks. The term multi-stage attack is an abstraction that refers to a class of cyber attacks consisting of multiple attack stages. These attack stages are executed either by malicious codes, scripts or sometimes even inbuilt system tools. In the work presented in this paper we have proposed a framework for capturing, analysis and modelling of multi-stage cyber attacks. The objective of our work is to devise an effective mechanism for the classification of multi-stage cyber attacks. The proposed framework comprise of a network of high interaction honeypots augmented with an attack analysis engine. The analysis engine performs rule based labeling of captured honeypot data. The labeling engine labels the attack data as generic events. These events are further fused to generate attack graphs. The hence generated attack graphs are used to characterize and later classify the multi-stage cyber attacks.
2021-03-18
Banday, M. T., Sheikh, S. A..  2020.  Improving Security Control of Text-Based CAPTCHA Challenges using Honeypot and Timestamping. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :704—708.

The resistance to attacks aimed to break CAPTCHA challenges and the effectiveness, efficiency and satisfaction of human users in solving them called usability are the two major concerns while designing CAPTCHA schemes. User-friendliness, universality, and accessibility are related dimensions of usability, which must also be addressed adequately. With recent advances in segmentation and optical character recognition techniques, complex distortions, degradations and transformations are added to text-based CAPTCHA challenges resulting in their reduced usability. The extent of these deformations can be decreased if some additional security mechanism is incorporated in such challenges. This paper proposes an additional security mechanism that can add an extra layer of protection to any text-based CAPTCHA challenge, making it more challenging for bots and scripts that might be used to attack websites and web applications. It proposes the use of hidden text-boxes for user entry of CAPTCHA string which serves as honeypots for bots and automated scripts. The honeypot technique is used to trick bots and automated scripts into filling up input fields which legitimate human users cannot fill in. The paper reports implementation of honeypot technique and results of tests carried out over three months during which form submissions were logged for analysis. The results demonstrated great effectiveness of honeypots technique to improve security control and usability of text-based CAPTCHA challenges.

2021-03-15
Wang, B., Dou, Y., Sang, Y., Zhang, Y., Huang, J..  2020.  IoTCMal: Towards A Hybrid IoT Honeypot for Capturing and Analyzing Malware. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—7.

Nowadays, the emerging Internet-of-Things (IoT) emphasize the need for the security of network-connected devices. Additionally, there are two types of services in IoT devices that are easily exploited by attackers, weak authentication services (e.g., SSH/Telnet) and exploited services using command injection. Based on this observation, we propose IoTCMal, a hybrid IoT honeypot framework for capturing more comprehensive malicious samples aiming at IoT devices. The key novelty of IoTC-MAL is three-fold: (i) it provides a high-interactive component with common vulnerable service in real IoT device by utilizing traffic forwarding technique; (ii) it also contains a low-interactive component with Telnet/SSH service by running in virtual environment. (iii) Distinct from traditional low-interactive IoT honeypots[1], which only analyze family categories of malicious samples, IoTCMal primarily focuses on homology analysis of malicious samples. We deployed IoTCMal on 36 VPS1 instances distributed in 13 cities of 6 countries. By analyzing the malware binaries captured from IoTCMal, we discover 8 malware families controlled by at least 11 groups of attackers, which mainly launched DDoS attacks and digital currency mining. Among them, about 60% of the captured malicious samples ran in ARM or MIPs architectures, which are widely used in IoT devices.

2021-03-09
Lingenfelter, B., Vakilinia, I., Sengupta, S..  2020.  Analyzing Variation Among IoT Botnets Using Medium Interaction Honeypots. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). :0761—0767.

Through analysis of sessions in which files were created and downloaded on three Cowrie SSH/Telnet honeypots, we find that IoT botnets are by far the most common source of malware on connected systems with weak credentials. We detail our honeypot configuration and describe a simple method for listing near-identical malicious login sessions using edit distance. A large number of IoT botnets attack our honeypots, but the malicious sessions which download botnet software to the honeypot are almost all nearly identical to one of two common attack patterns. It is apparent that the Mirai worm is still the dominant botnet software, but has been expanded and modified by other hackers. We also find that the same loader devices deploy several different botnet malware strains to the honeypot over the course of a 40 day period, suggesting multiple botnet deployments from the same source. We conclude that Mirai continues to be adapted but can be effectively tracked using medium interaction honeypots such as Cowrie.

2021-03-04
Jeong, J. H., Choi, S. G..  2020.  Hybrid System to Minimize Damage by Zero-Day Attack based on NIDPS and HoneyPot. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :1650—1652.

This paper presents hybrid system to minimize damage by zero-day attack. Proposed system consists of signature-based NIDPS, honeypot and temporary queue. When proposed system receives packet from external network, packet which is known for attack packet is dropped by signature-based NIDPS. Passed packets are redirected to honeypot, because proposed system assumes that all packets which pass NIDPS have possibility of zero-day attack. Redirected packet is stored in temporary queue and if the packet has possibility of zero-day attack, honeypot extracts signature of the packet. Proposed system creates rule that match rule format of NIDPS based on extracted signatures and updates the rule. After the rule update is completed, temporary queue sends stored packet to NIDPS then packet with risk of attack can be dropped. Proposed system can reduce time to create and apply rule which can respond to unknown attack packets. Also, it can drop packets that have risk of zero-day attack in real time.

2020-09-04
Nursetyo, Arif, Ignatius Moses Setiadi, De Rosal, Rachmawanto, Eko Hari, Sari, Christy Atika.  2019.  Website and Network Security Techniques against Brute Force Attacks using Honeypot. 2019 Fourth International Conference on Informatics and Computing (ICIC). :1—6.
The development of the internet and the web makes human activities more practical, comfortable, and inexpensive. So that the use of the internet and websites is increasing in various ways. Public networks make the security of websites vulnerable to attack. This research proposes a Honeypot for server security against attackers who want to steal data by carrying out a brute force attack. In this research, Honeypot is integrated on the server to protect the server by creating a shadow server. This server is responsible for tricking the attacker into not being able to enter the original server. Brute force attacks tested using Medusa tools. With the application of Honeypot on the server, it is proven that the server can be secured from the attacker. Even the log of activities carried out by the attacker in the shadow server is stored in the Kippo log activities.
2020-06-01
Luo, Xupeng, Yan, Qiao, Wang, Mingde, Huang, Wenyao.  2019.  Using MTD and SDN-based Honeypots to Defend DDoS Attacks in IoT. 2019 Computing, Communications and IoT Applications (ComComAp). :392–395.
With the rapid development of Internet of Things (IoT), distributed denial of service (DDoS) attacks become the important security threat of the IoT. Characteristics of IoT, such as large quantities and simple function, which have easily caused the IoT devices or servers to be attacked and be turned into botnets for launching DDoS attacks. In this paper, we use software-defined networking (SDN) to develop moving target defense (MTD) architecture that increases uncertainty because of ever changing attack surface. In addition, we deploy SDN-based honeypots to mimic IoT devices, luring attackers and malwares. Finally, experimental results show that combination of MTD and SDN-based honeypots can effectively hide network asset from scanner and defend against DDoS attacks in IoT.
Park, Byungju, Dang, Sa Pham, Noh, Sichul, Yi, Junmin, Park, Minho.  2019.  Dynamic Virtual Network Honeypot. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :375–377.
A honeypot system is used to trapping hackers, track and analyze new hacking methods. However, it does not only take time for construction and deployment but also costs for maintenance because these systems are always online even when there is no attack. Since the main purpose of honeypot systems is to collect more and more attack trafc if possible, the limitation of system capacity is also a major problem. In this paper, we propose Dynamic Virtual Network Honeypot (DVNH) which leverages emerging technologies, Network Function Virtualization and Software-Defined Networking. DVNH redirects the attack to the honeypot system thereby protects the targeted system. Our experiments show that DVNH enables efficient resource usage and dynamic provision of the Honeypot system.
Wang, He, Wu, Bin.  2019.  SDN-based hybrid honeypot for attack capture. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1602–1606.
Honeypots have become an important tool for capturing attacks. Hybrid honeypots, including the front end and the back end, are widely used in research because of the scalability of the front end and the high interactivity of the back end. However, traditional hybrid honeypots have some problems that the flow control is difficult and topology simulation is not realistic. This paper proposes a new architecture based on SDN applied to the hybrid honeypot system for network topology simulation and attack traffic migration. Our system uses the good expansibility and controllability of the SDN controller to simulate a large and realistic network to attract attackers and redirect high-level attacks to a high-interaction honeypot for attack capture and further analysis. It improves the deficiencies in the network spoofing technology and flow control technology in the traditional honeynet. Finally, we set up the experimental environment on the mininet and verified the mechanism. The test results show that the system is more intelligent and the traffic migration is more stealthy.
2020-03-09
Khan, Iqra, Durad, Hanif, Alam, Masoom.  2019.  Data Analytics Layer For high-interaction Honeypots. 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :681–686.

Security of VMs is now becoming a hot topic due to their outsourcing in cloud computing paradigm. All VMs present on the network are connected to each other, making exploited VMs danger to other VMs. and threats to organization. Rejuvenation of virtualization brought the emergence of hyper-visor based security services like VMI (Virtual machine introspection). As there is a greater chance for any intrusion detection system running on the same system, of being dis-abled by the malware or attacker. Monitoring of VMs using VMI, is one of the most researched and accepted technique, that is used to ensure computer systems security mostly in the paradigm of cloud computing. This thesis presents a work that is to integrate LibVMI with Volatility on a KVM, a Linux based hypervisor, to introspect memory of VMs. Both of these tools are used to monitor the state of live VMs. VMI capability of monitoring VMs is combined with the malware analysis and virtual honeypots to achieve the objective of this project. A testing environment is deployed, where a network of VMs is used to be introspected using Volatility plug-ins. Time execution of each plug-in executed on live VMs is calculated to observe the performance of Volatility plug-ins. All these VMs are deployed as Virtual Honeypots having honey-pots configured on them, which is used as a detection mechanism to trigger alerts when some malware attack the VMs. Using STIX (Structure Threat Information Expression), extracted IOCs are converted into the understandable, flexible, structured and shareable format.

2020-02-26
Matin, Iik Muhamad Malik, Rahardjo, Budi.  2019.  Malware Detection Using Honeypot and Machine Learning. 2019 7th International Conference on Cyber and IT Service Management (CITSM). 7:1–4.

Malware is one of the threats to information security that continues to increase. In 2014 nearly six million new malware was recorded. The highest number of malware is in Trojan Horse malware while in Adware malware is the most significantly increased malware. Security system devices such as antivirus, firewall, and IDS signature-based are considered to fail to detect malware. This happens because of the very fast spread of computer malware and the increasing number of signatures. Besides signature-based security systems it is difficult to identify new methods, viruses or worms used by attackers. One other alternative in detecting malware is to use honeypot with machine learning. Honeypot can be used as a trap for packages that are suspected while machine learning can detect malware by classifying classes. Decision Tree and Support Vector Machine (SVM) are used as classification algorithms. In this paper, we propose architectural design as a solution to detect malware. We presented the architectural proposal and explained the experimental method to be used.

2020-01-20
Musca, Constantin, Mirica, Emma, Deaconescu, Razvan.  2013.  Detecting and Analyzing Zero-Day Attacks Using Honeypots. 2013 19th International Conference on Control Systems and Computer Science. :543–548.
Computer networks are overwhelmed by self propagating malware (worms, viruses, trojans). Although the number of security vulnerabilities grows every day, not the same thing can be said about the number of defense methods. But the most delicate problem in the information security domain remains detecting unknown attacks known as zero-day attacks. This paper presents methods for isolating the malicious traffic by using a honeypot system and analyzing it in order to automatically generate attack signatures for the Snort intrusion detection/prevention system. The honeypot is deployed as a virtual machine and its job is to log as much information as it can about the attacks. Then, using a protected machine, the logs are collected remotely, through a safe connection, for analysis. The challenge is to mitigate the risk we are exposed to and at the same time search for unknown attacks.
2019-11-26
Scheitle, Quirin, Gasser, Oliver, Nolte, Theodor, Amann, Johanna, Brent, Lexi, Carle, Georg, Holz, Ralph, Schmidt, Thomas C., Wählisch, Matthias.  2018.  The Rise of Certificate Transparency and Its Implications on the Internet Ecosystem. Proceedings of the Internet Measurement Conference 2018. :343-349.

In this paper, we analyze the evolution of Certificate Transparency (CT) over time and explore the implications of exposing certificate DNS names from the perspective of security and privacy. We find that certificates in CT logs have seen exponential growth. Website support for CT has also constantly increased, with now 33% of established connections supporting CT. With the increasing deployment of CT, there are also concerns of information leakage due to all certificates being visible in CT logs. To understand this threat, we introduce a CT honeypot and show that data from CT logs is being used to identify targets for scanning campaigns only minutes after certificate issuance. We present and evaluate a methodology to learn and validate new subdomains from the vast number of domains extracted from CT logged certificates.

2019-07-01
Carrasco, A., Ropero, J., Clavijo, P. Ruiz de, Benjumea, J., Luque, A..  2018.  A Proposal for a New Way of Classifying Network Security Metrics: Study of the Information Collected through a Honeypot. 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :633–634.

Nowadays, honeypots are a key tool to attract attackers and study their activity. They help us in the tasks of evaluating attacker's behaviour, discovering new types of attacks, and collecting information and statistics associated with them. However, the gathered data cannot be directly interpreted, but must be analyzed to obtain useful information. In this paper, we present a SSH honeypot-based system designed to simulate a vulnerable server. Thus, we propose an approach for the classification of metrics from the data collected by the honeypot along 19 months.

2019-02-08
Arifianto, R. M., Sukarno, P., Jadied, E. M..  2018.  An SSH Honeypot Architecture Using Port Knocking and Intrusion Detection System. 2018 6th International Conference on Information and Communication Technology (ICoICT). :409-415.

This paper proposes an architecture of Secure Shell (SSH) honeypot using port knocking and Intrusion Detection System (IDS) to learn the information about attacks on SSH service and determine proper security mechanisms to deal with the attacks. Rapid development of information technology is directly proportional to the number of attacks, destruction, and data theft of a system. SSH service has become one of the popular targets from the whole vulnerabilities which is existed. Attacks on SSH service have various characteristics. Therefore, it is required to learn these characteristics by typically utilizing honeypots so that proper mechanisms can be applied in the real servers. Various attempts to learn the attacks and mitigate them have been proposed, however, attacks on SSH service are kept occurring. This research proposes a different and effective strategy to deal with the SSH service attack. This is done by combining port knocking and IDS to make the server keeps the service on a closed port and open it under user demand by sending predefined port sequence as an authentication process to control the access to the server. In doing so, it is evident that port knocking is effective in protecting SSH service. The number of login attempts obtained by using our proposed method is zero.

Sekar, K. R., Gayathri, V., Anisha, G., Ravichandran, K. S., Manikandan, R..  2018.  Dynamic Honeypot Configuration for Intrusion Detection. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1397-1401.

The objective of the Honeypot security system is a mechanism to identify the unauthorized users and intruders in the network. The enterprise level security can be possible via high scalability. The whole theme behind this research is an Intrusion Detection System and Intrusion Prevention system factors accomplished through honeypot and honey trap methodology. Dynamic Configuration of honey pot is the milestone for this mechanism. Eight different methodologies were deployed to catch the Intruders who utilizing the unsecured network through the unused IP address. The method adapted here to identify and trap through honeypot mechanism activity. The result obtained is, intruders find difficulty in gaining information from the network, which helps a lot of the industries. Honeypot can utilize the real OS and partially through high interaction and low interaction respectively. The research work concludes the network activity and traffic can also be tracked through honeypot. This provides added security to the secured network. Detection, prevention and response are the categories available, and moreover, it detects and confuses the hackers.

Lihet, M., Dadarlat, P. D. V..  2018.  Honeypot in the Cloud Five Years of Data Analysis. 2018 17th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1-6.

The current paper is a continuation of a published article and is about the results of implementing a Honeypot in the Cloud. A five years period of raw data is analyzed and explained in the current Cyber Security state and landscape.

2019-01-16
Jia, Z., Cui, X., Liu, Q., Wang, X., Liu, C..  2018.  Micro-Honeypot: Using Browser Fingerprinting to Track Attackers. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :197–204.
Web attacks have proliferated across the whole Internet in recent years. To protect websites, security vendors and researchers collect attack information using web honeypots. However, web attackers can hide themselves by using stepping stones (e.g., VPN, encrypted proxy) or anonymous networks (e.g., Tor network). Conventional web honeypots lack an effective way to gather information about an attacker's identity, which raises a big obstacle for cybercrime traceability and forensics. Traditional forensics methods are based on traffic analysis; it requires that defenders gain access to the entire network. It is not suitable for honeypots. In this paper, we present the design, implementation, and deployment of the Micro-Honeypot, which aims to use the browser fingerprinting technique to track a web attacker. Traditional honeypot lure attackers and records attacker's activity. Micro-Honeypot is deployed in a honeypot. It will run and gather identity information when an attacker visits the honeypot. Our preliminary results show that Micro-Honeypot could collect more information and track attackers although they might have used proxies or anonymous networks to hide themselves.
2018-11-19
Sentanoe, Stewart, Taubmann, Benjamin, Reiser, Hans P..  2017.  Virtual Machine Introspection Based SSH Honeypot. Proceedings of the 4th Workshop on Security in Highly Connected IT Systems. :13–18.

A honeypot provides information about the new attack and exploitation methods and allows analyzing the adversary's activities during or after exploitation. One way of an adversary to communicate with a server is via secure shell (SSH). SSH provides secure login, file transfer, X11 forwarding, and TCP/IP connections over untrusted networks. SSH is a preferred target for attacks, as it is frequently used with password-based authentication, and weak passwords are easily exploited using brute-force attacks. In this paper, we introduce a Virtual Machine Introspection based SSH honeypot. We discuss the design of the system and how to extract valuable information such as the credential used by the attacker and the entered commands. Our experiments show that the system is able to detect the adversary's activities during and after exploitation, and it has advantages compared to currently used SSH honeypot approaches.

2018-09-12
Catakoglu, Onur, Balduzzi, Marco, Balzarotti, Davide.  2017.  Attacks Landscape in the Dark Side of the Web. Proceedings of the Symposium on Applied Computing. :1739–1746.

The Dark Web is known as the part of the Internet operated by decentralized and anonymous-preserving protocols like Tor. To date, the research community has focused on understanding the size and characteristics of the Dark Web and the services and goods that are offered in its underground markets. However, little is still known about the attacks landscape in the Dark Web. For the traditional Web, it is now well understood how websites are exploited, as well as the important role played by Google Dorks and automated attack bots to form some sort of "background attack noise" to which public websites are exposed. This paper tries to understand if these basic concepts and components have a parallel in the Dark Web. In particular, by deploying a high interaction honeypot in the Tor network for a period of seven months, we conducted a measurement study of the type of attacks and of the attackers behavior that affect this still relatively unknown corner of the Web.

2018-03-26
Liu, W., Chen, F., Hu, H., Cheng, G., Huo, S., Liang, H..  2017.  A Novel Framework for Zero-Day Attacks Detection and Response with Cyberspace Mimic Defense Architecture. 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :50–53.

In cyberspace, unknown zero-day attacks can bring safety hazards. Traditional defense methods based on signatures are ineffective. Based on the Cyberspace Mimic Defense (CMD) architecture, the paper proposes a framework to detect the attacks and respond to them. Inputs are assigned to all online redundant heterogeneous functionally equivalent modules. Their independent outputs are compared and the outputs in the majority will be the final response. The abnormal outputs can be detected and so can the attack. The damaged executive modules with abnormal outputs will be replaced with new ones from the diverse executive module pool. By analyzing the abnormal outputs, the correspondence between inputs and abnormal outputs can be built and inputs leading to recurrent abnormal outputs will be written into the zero-day attack related database and their reuses cannot work any longer, as the suspicious malicious inputs can be detected and processed. Further responses include IP blacklisting and patching, etc. The framework also uses honeypot like executive module to confuse the attacker. The proposed method can prevent the recurrent attack based on the same exploit.

2018-01-16
Martin, Vincentius, Cao, Qiang, Benson, Theophilus.  2017.  Fending off IoT-hunting Attacks at Home Networks. Proceedings of the 2Nd Workshop on Cloud-Assisted Networking. :67–72.

Many attacks target vulnerabilities of home IoT devices, such as bugs in outdated software and weak passwords. The home network is at a vantage point for deploying security appliances to deal with such IoT attacks. We propose a comprehensive home network defense, Pot2DPI, and use it to raise an attacker's uncertainty about devices and enable the home network to monitor traffic, detect anomalies, and filter malicious packets. The security offered by Pot2DPI comes from a synthesis of practical techniques: honeypot, deep packet inspection (DPI), and a realization of moving target defense (MTD) in port forwarding. In particular, Pot2DPI has a chain of honeypot and DPI that collects suspicious packet traces, acquires attack signatures, and installs filtering rules at a home router timely. Meanwhile, Pot2DPI shuffles the mapping of ports between the router and the devices connected to it, making a targeted attack difficult and defense more effective. Pot2DPI is our first step towards securing a smart home.

2017-12-28
Manoja, I., Sk, N. S., Rani, D. R..  2017.  Prevention of DDoS attacks in cloud environment. 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC). :235–239.

Cloud computing emerges as an endowment technological data for the longer term and increasing on one of the standards of utility computing is most likely claimed to symbolize a wholly new paradigm for viewing and getting access to computational assets. As a result of protection problem many purchasers hesitate in relocating their touchy data on the clouds, regardless of gigantic curiosity in cloud-based computing. Security is a tremendous hassle, considering the fact that so much of firms present a alluring goal for intruders and the particular considerations will pursue to lower the advancement of distributed computing if not located. Hence, this recent scan and perception is suitable to honeypot. Distributed Denial of Service (DDoS) is an assault that threats the availability of the cloud services. It's fundamental investigate the most important features of DDoS Defence procedures. This paper provides exact techniques that been carried out to the DDoS attack. These approaches are outlined in these paper and use of applied sciences for special kind of malfunctioning within the cloud.

2017-12-20
Meng, X., Zhao, Z., Li, R., Zhang, H..  2017.  An intelligent honeynet architecture based on software defined security. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.
Honeynet is deployed to trap attackers and learn their behavior patterns and motivations. Conventional honeynet is implemented by dedicated hardware and software. It suffers from inflexibility, high CAPEX and OPEX. There have been several virtualized honeynet architectures to solve those problems. But they lack a standard operating environment and common architecture for dynamic scheduling and adaptive resource allocation. Software Defined Security (SDS) framework has a centralized control mechanism and intelligent decision making ability for different security functions. In this paper, we present a new intelligent honeynet architecture based on SDS framework. It implements security functions over Network Function Virtualization Infrastructure (NFVI). Under uniform and intelligent control, security functional modules can be dynamically deployed and collaborated to complete different tasks. It migrates resources according to the workloads of each honeypot and power off unused modules. Simulation results show that intelligent honeynet has a better performance in conserving resources and reducing energy consumption. The new architecture can fit the needs of future honeynet development and deployment.
2017-12-04
Farinholt, B., Rezaeirad, M., Pearce, P., Dharmdasani, H., Yin, H., Blond, S. L., McCoy, D., Levchenko, K..  2017.  To Catch a Ratter: Monitoring the Behavior of Amateur DarkComet RAT Operators in the Wild. 2017 IEEE Symposium on Security and Privacy (SP). :770–787.

Remote Access Trojans (RATs) give remote attackers interactive control over a compromised machine. Unlike large-scale malware such as botnets, a RAT is controlled individually by a human operator interacting with the compromised machine remotely. The versatility of RATs makes them attractive to actors of all levels of sophistication: they've been used for espionage, information theft, voyeurism and extortion. Despite their increasing use, there are still major gaps in our understanding of RATs and their operators, including motives, intentions, procedures, and weak points where defenses might be most effective. In this work we study the use of DarkComet, a popular commercial RAT. We collected 19,109 samples of DarkComet malware found in the wild, and in the course of two, several-week-long experiments, ran as many samples as possible in our honeypot environment. By monitoring a sample's behavior in our system, we are able to reconstruct the sequence of operator actions, giving us a unique view into operator behavior. We report on the results of 2,747 interactive sessions captured in the course of the experiment. During these sessions operators frequently attempted to interact with victims via remote desktop, to capture video, audio, and keystrokes, and to exfiltrate files and credentials. To our knowledge, we are the first large-scale systematic study of RAT use.