Visible to the public Biblio

Found 179 results

Filters: Keyword is Deep Learning  [Clear All Filters]
2020-07-03
Kakadiya, Rutvik, Lemos, Reuel, Mangalan, Sebin, Pillai, Meghna, Nikam, Sneha.  2019.  AI Based Automatic Robbery/Theft Detection using Smart Surveillance in Banks. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :201—204.
Deep learning is the segment of artificial intelligence which is involved with imitating the learning approach that human beings utilize to get some different types of knowledge. Analyzing videos, a part of deep learning is one of the most basic problems of computer vision and multi-media content analysis for at least 20 years. The job is very challenging as the video contains a lot of information with large differences and difficulties. Human supervision is still required in all surveillance systems. New advancement in computer vision which are observed as an important trend in video surveillance leads to dramatic efficiency gains. We propose a CCTV based theft detection along with tracking of thieves. We use image processing to detect theft and motion of thieves in CCTV footage, without the use of sensors. This system concentrates on object detection. The security personnel can be notified about the suspicious individual committing burglary using Real-time analysis of the movement of any human from CCTV footage and thus gives a chance to avert the same.
Feng, Ri-Chen, Lin, Daw-Tung, Chen, Ken-Min, Lin, Yi-Yao, Liu, Chin-De.  2019.  Improving Deep Learning by Incorporating Semi-automatic Moving Object Annotation and Filtering for Vision-based Vehicle Detection*. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). :2484—2489.
Deep learning has undergone tremendous advancements in computer vision studies. The training of deep learning neural networks depends on a considerable amount of ground truth datasets. However, labeling ground truth data is a labor-intensive task, particularly for large-volume video analytics applications such as video surveillance and vehicles detection for autonomous driving. This paper presents a rapid and accurate method for associative searching in big image data obtained from security monitoring systems. We developed a semi-automatic moving object annotation method for improving deep learning models. The proposed method comprises three stages, namely automatic foreground object extraction, object annotation in subsequent video frames, and dataset construction using human-in-the-loop quick selection. Furthermore, the proposed method expedites dataset collection and ground truth annotation processes. In contrast to data augmentation and data generative models, the proposed method produces a large amount of real data, which may facilitate training results and avoid adverse effects engendered by artifactual data. We applied the constructed annotation dataset to train a deep learning you-only-look-once (YOLO) model to perform vehicle detection on street intersection surveillance videos. Experimental results demonstrated that the accurate detection performance was improved from a mean average precision (mAP) of 83.99 to 88.03.
Pan, Jonathan.  2019.  Physical Integrity Attack Detection of Surveillance Camera with Deep Learning based Video Frame Interpolation. 2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS). :79—85.
Surveillance cameras, which is a form of Cyber Physical System, are deployed extensively to provide visual surveillance monitoring of activities of interest or anomalies. However, these cameras are at risks of physical security attacks against their physical attributes or configuration like tampering of their recording coverage, camera positions or recording configurations like focus and zoom factors. Such adversarial alteration of physical configuration could also be invoked through cyber security attacks against the camera's software vulnerabilities to administratively change the camera's physical configuration settings. When such Cyber Physical attacks occur, they affect the integrity of the targeted cameras that would in turn render these cameras ineffective in fulfilling the intended security functions. There is a significant measure of research work in detection mechanisms of cyber-attacks against these Cyber Physical devices, however it is understudied area with such mechanisms against integrity attacks on physical configuration. This research proposes the use of the novel use of deep learning algorithms to detect such physical attacks originating from cyber or physical spaces. Additionally, we proposed the novel use of deep learning-based video frame interpolation for such detection that has comparatively better performance to other anomaly detectors in spatiotemporal environments.
Dinama, Dima Maharika, A’yun, Qurrota, Syahroni, Achmad Dahlan, Adji Sulistijono, Indra, Risnumawan, Anhar.  2019.  Human Detection and Tracking on Surveillance Video Footage Using Convolutional Neural Networks. 2019 International Electronics Symposium (IES). :534—538.
Safety is one of basic human needs so we need a security system that able to prevent crime happens. Commonly, we use surveillance video to watch environment and human behaviour in a location. However, the surveillance video can only used to record images or videos with no additional information. Therefore we need more advanced camera to get another additional information such as human position and movement. This research were able to extract those information from surveillance video footage by using human detection and tracking algorithm. The human detection framework is based on Deep Learning Convolutional Neural Networks which is a very popular branch of artificial intelligence. For tracking algorithms, channel and spatial correlation filter is used to track detected human. This system will generate and export tracked movement on footage as an additional information. This tracked movement can be analysed furthermore for another research on surveillance video problems.
Bashir, Muzammil, Rundensteiner, Elke A., Ahsan, Ramoza.  2019.  A deep learning approach to trespassing detection using video surveillance data. 2019 IEEE International Conference on Big Data (Big Data). :3535—3544.
Railroad trespassing is a dangerous activity with significant security and safety risks. However, regular patrolling of potential trespassing sites is infeasible due to exceedingly high resource demands and personnel costs. This raises the need to design automated trespass detection and early warning prediction techniques leveraging state-of-the-art machine learning. To meet this need, we propose a novel framework for Automated Railroad Trespassing detection System using video surveillance data called ARTS. As the core of our solution, we adopt a CNN-based deep learning architecture capable of video processing. However, these deep learning-based methods, while effective, are known to be computationally expensive and time consuming, especially when applied to a large volume of surveillance data. Leveraging the sparsity of railroad trespassing activity, ARTS corresponds to a dual-stage deep learning architecture composed of an inexpensive pre-filtering stage for activity detection, followed by a high fidelity trespass classification stage employing deep neural network. The resulting dual-stage ARTS architecture represents a flexible solution capable of trading-off accuracy with computational time. We demonstrate the efficacy of our approach on public domain surveillance data achieving 0.87 f1 score while keeping up with the enormous video volume, achieving a practical time and accuracy trade-off.
Adari, Suman Kalyan, Garcia, Washington, Butler, Kevin.  2019.  Adversarial Video Captioning. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :24—27.
In recent years, developments in the field of computer vision have allowed deep learning-based techniques to surpass human-level performance. However, these advances have also culminated in the advent of adversarial machine learning techniques, capable of launching targeted image captioning attacks that easily fool deep learning models. Although attacks in the image domain are well studied, little work has been done in the video domain. In this paper, we show it is possible to extend prior attacks in the image domain to the video captioning task, without heavily affecting the video's playback quality. We demonstrate our attack against a state-of-the-art video captioning model, by extending a prior image captioning attack known as Show and Fool. To the best of our knowledge, this is the first successful method for targeted attacks against a video captioning model, which is able to inject 'subliminal' perturbations into the video stream, and force the model to output a chosen caption with up to 0.981 cosine similarity, achieving near-perfect similarity to chosen target captions.
2020-06-22
Triastcyn, Aleksei, Faltings, Boi.  2019.  Federated Learning with Bayesian Differential Privacy. 2019 IEEE International Conference on Big Data (Big Data). :2587–2596.
We consider the problem of reinforcing federated learning with formal privacy guarantees. We propose to employ Bayesian differential privacy, a relaxation of differential privacy for similarly distributed data, to provide sharper privacy loss bounds. We adapt the Bayesian privacy accounting method to the federated setting and suggest multiple improvements for more efficient privacy budgeting at different levels. Our experiments show significant advantage over the state-of-the-art differential privacy bounds for federated learning on image classification tasks, including a medical application, bringing the privacy budget below ε = 1 at the client level, and below ε = 0.1 at the instance level. Lower amounts of noise also benefit the model accuracy and reduce the number of communication rounds.
2020-06-19
Chen, Yuedong, Wang, Jianfeng, Chen, Shikai, Shi, Zhongchao, Cai, Jianfei.  2019.  Facial Motion Prior Networks for Facial Expression Recognition. 2019 IEEE Visual Communications and Image Processing (VCIP). :1—4.

Deep learning based facial expression recognition (FER) has received a lot of attention in the past few years. Most of the existing deep learning based FER methods do not consider domain knowledge well, which thereby fail to extract representative features. In this work, we propose a novel FER framework, named Facial Motion Prior Networks (FMPN). Particularly, we introduce an addition branch to generate a facial mask so as to focus on facial muscle moving regions. To guide the facial mask learning, we propose to incorporate prior domain knowledge by using the average differences between neutral faces and the corresponding expressive faces as the training guidance. Extensive experiments on three facial expression benchmark datasets demonstrate the effectiveness of the proposed method, compared with the state-of-the-art approaches.

Wang, Si, Liu, Wenye, Chang, Chip-Hong.  2019.  Detecting Adversarial Examples for Deep Neural Networks via Layer Directed Discriminative Noise Injection. 2019 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1—6.

Deep learning is a popular powerful machine learning solution to the computer vision tasks. The most criticized vulnerability of deep learning is its poor tolerance towards adversarial images obtained by deliberately adding imperceptibly small perturbations to the clean inputs. Such negatives can delude a classifier into wrong decision making. Previous defensive techniques mostly focused on refining the models or input transformation. They are either implemented only with small datasets or shown to have limited success. Furthermore, they are rarely scrutinized from the hardware perspective despite Artificial Intelligence (AI) on a chip is a roadmap for embedded intelligence everywhere. In this paper we propose a new discriminative noise injection strategy to adaptively select a few dominant layers and progressively discriminate adversarial from benign inputs. This is made possible by evaluating the differences in label change rate from both adversarial and natural images by injecting different amount of noise into the weights of individual layers in the model. The approach is evaluated on the ImageNet Dataset with 8-bit truncated models for the state-of-the-art DNN architectures. The results show a high detection rate of up to 88.00% with only approximately 5% of false positive rate for MobileNet. Both detection rate and false positive rate have been improved well above existing advanced defenses against the most practical noninvasive universal perturbation attack on deep learning based AI chip.

2020-06-12
Wang, Min, Li, Haoyang, Shuang, Ya, Li, Lianlin.  2019.  High-resolution Three-dimensional Microwave Imaging Using a Generative Adversarial Network. 2019 International Applied Computational Electromagnetics Society Symposium - China (ACES). 1:1—3.

To solve the high-resolution three-dimensional (3D) microwave imaging is a challenging topic due to its inherent unmanageable computation. Recently, deep learning techniques that can fully explore the prior of meaningful pattern embodied in data have begun to show its intriguing merits in various areas of inverse problem. Motivated by this observation, we here present a deep-learning-inspired approach to the high-resolution 3D microwave imaging in the context of Generative Adversarial Network (GAN), termed as GANMI in this work. Simulation and experimental results have been provided to demonstrate that the proposed GANMI can remarkably outperform conventional methods in terms of both the image quality and computational time.

Hughes, Ben, Bothe, Shruti, Farooq, Hasan, Imran, Ali.  2019.  Generative Adversarial Learning for Machine Learning empowered Self Organizing 5G Networks. 2019 International Conference on Computing, Networking and Communications (ICNC). :282—286.

In the wake of diversity of service requirements and increasing push for extreme efficiency, adaptability propelled by machine learning (ML) a.k.a self organizing networks (SON) is emerging as an inevitable design feature for future mobile 5G networks. The implementation of SON with ML as a foundation requires significant amounts of real labeled sample data for the networks to train on, with high correlation between the amount of sample data and the effectiveness of the SON algorithm. As generally real labeled data is scarce therefore it can become bottleneck for ML empowered SON for unleashing their true potential. In this work, we propose a method of expanding these sample data sets using Generative Adversarial Networks (GANs), which are based on two interconnected deep artificial neural networks. This method is an alternative to taking more data to expand the sample set, preferred in cases where taking more data is not simple, feasible, or efficient. We demonstrate how the method can generate large amounts of realistic synthetic data, utilizing the GAN's ability of generation and discrimination, able to be easily added to the sample set. This method is, as an example, implemented with Call Data Records (CDRs) containing the start hour of a call and the duration of the call, in minutes taken from a real mobile operator. Results show that the method can be used with a relatively small sample set and little information about the statistics of the true CDRs and still make accurate synthetic ones.

Liu, Yujie, Su, Yixin, Ye, Xiaozhou, Qi, Yue.  2019.  Research on Extending Person Re-identification Datasets Based on Generative Adversarial Network. 2019 Chinese Automation Congress (CAC). :3280—3284.

Person re-identification(Person Re-ID) means that images of a pedestrian from cameras in a surveillance camera network can be automatically retrieved based on one of this pedestrian's image from another camera. The appearance change of pedestrians under different cameras poses a huge challenge to person re-identification. Person re-identification systems based on deep learning can effectively extract the appearance features of pedestrians. In this paper, the feature enhancement experiment is conducted, and the result showed that the current person reidentification datasets are relatively small and cannot fully meet the need of deep training. Therefore, this paper studied the method of using generative adversarial network to extend the person re-identification datasets and proposed a label smoothing regularization for outliers with weight (LSROW) algorithm to make full use of the generated data, effectively improved the accuracy of person re-identification.

Gu, Feng, Zhang, Hong, Wang, Chao, Wu, Fan.  2019.  SAR Image Super-Resolution Based on Noise-Free Generative Adversarial Network. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :2575—2578.

Deep learning has been successfully applied to the ordinary image super-resolution (SR). However, since the synthetic aperture radar (SAR) images are often disturbed by multiplicative noise known as speckle and more blurry than ordinary images, there are few deep learning methods for the SAR image SR. In this paper, a deep generative adversarial network (DGAN) is proposed to reconstruct the pseudo high-resolution (HR) SAR images. First, a generator network is constructed to remove the noise of low-resolution SAR image and generate HR SAR image. Second, a discriminator network is used to differentiate between the pseudo super-resolution images and the realistic HR images. The adversarial objective function is introduced to make the pseudo HR SAR images closer to real SAR images. The experimental results show that our method can maintain the SAR image content with high-level noise suppression. The performance evaluation based on peak signal-to-noise-ratio and structural similarity index shows the superiority of the proposed method to the conventional CNN baselines.

Cui, Yongcheng, Wang, Wenyong.  2019.  Colorless Video Rendering System via Generative Adversarial Networks. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :464—467.

In today's society, even though the technology is so developed, the coloring of computer images has remained at the manual stage. As a carrier of human culture and art, film has existed in our history for hundred years. With the development of science and technology, movies have developed from the simple black-and-white film era to the current digital age. There is a very complicated process for coloring old movies. Aside from the traditional hand-painting techniques, the most common method is to use post-processing software for coloring movie frames. This kind of operation requires extraordinary skills, patience and aesthetics, which is a great test for the operator. In recent years, the extensive use of machine learning and neural networks has made it possible for computers to intelligently process images. Since 2016, various types of generative adversarial networks models have been proposed to make deep learning shine in the fields of image style transfer, image coloring, and image style change. In this case, the experiment uses the generative adversarial networks principle to process pictures and videos to realize the automatic rendering of old documentary movies.

Ay, Betül, Aydın, Galip, Koyun, Zeynep, Demir, Mehmet.  2019.  A Visual Similarity Recommendation System using Generative Adversarial Networks. 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). :44—48.

The goal of content-based recommendation system is to retrieve and rank the list of items that are closest to the query item. Today, almost every e-commerce platform has a recommendation system strategy for products that customers can decide to buy. In this paper we describe our work on creating a Generative Adversarial Network based image retrieval system for e-commerce platforms to retrieve best similar images for a given product image specifically for shoes. We compare state-of-the-art solutions and provide results for the proposed deep learning network on a standard data set.

2020-06-03
Amato, Giuseppe, Falchi, Fabrizio, Gennaro, Claudio, Massoli, Fabio Valerio, Passalis, Nikolaos, Tefas, Anastasios, Trivilini, Alessandro, Vairo, Claudio.  2019.  Face Verification and Recognition for Digital Forensics and Information Security. 2019 7th International Symposium on Digital Forensics and Security (ISDFS). :1—6.

In this paper, we present an extensive evaluation of face recognition and verification approaches performed by the European COST Action MULTI-modal Imaging of FOREnsic SciEnce Evidence (MULTI-FORESEE). The aim of the study is to evaluate various face recognition and verification methods, ranging from methods based on facial landmarks to state-of-the-art off-the-shelf pre-trained Convolutional Neural Networks (CNN), as well as CNN models directly trained for the task at hand. To fulfill this objective, we carefully designed and implemented a realistic data acquisition process, that corresponds to a typical face verification setup, and collected a challenging dataset to evaluate the real world performance of the aforementioned methods. Apart from verifying the effectiveness of deep learning approaches in a specific scenario, several important limitations are identified and discussed through the paper, providing valuable insight for future research directions in the field.

2020-05-22
Dubey, Abhimanyu, Maaten, Laurens van der, Yalniz, Zeki, Li, Yixuan, Mahajan, Dhruv.  2019.  Defense Against Adversarial Images Using Web-Scale Nearest-Neighbor Search. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :8759—8768.
A plethora of recent work has shown that convolutional networks are not robust to adversarial images: images that are created by perturbing a sample from the data distribution as to maximize the loss on the perturbed example. In this work, we hypothesize that adversarial perturbations move the image away from the image manifold in the sense that there exists no physical process that could have produced the adversarial image. This hypothesis suggests that a successful defense mechanism against adversarial images should aim to project the images back onto the image manifold. We study such defense mechanisms, which approximate the projection onto the unknown image manifold by a nearest-neighbor search against a web-scale image database containing tens of billions of images. Empirical evaluations of this defense strategy on ImageNet suggest that it very effective in attack settings in which the adversary does not have access to the image database. We also propose two novel attack methods to break nearest-neighbor defense settings and show conditions under which nearest-neighbor defense fails. We perform a series of ablation experiments, which suggest that there is a trade-off between robustness and accuracy between as we use features from deeper in the network, that a large index size (hundreds of millions) is crucial to get good performance, and that careful construction of database is crucial for robustness against nearest-neighbor attacks.
2020-05-18
Bakhtin, Vadim V., Isaeva, Ekaterina V..  2019.  New TSBuilder: Shifting towards Cognition. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :179–181.
The paper reviews a project on the automation of term system construction. TSBuilder (Term System Builder) was developed in 2014 as a multilayer Rosenblatt's perceptron for supervised machine learning, namely 1-3 word terms identification in natural language texts and their rigid categorization. The program is being modified to reduce the rigidity of categorization which will bring text mining more in line with human thinking.We are expanding the range of parameters (semantical, morphological, and syntactical) for categorization, removing the restriction of the term length of three words, using convolution on a continuous sequence of terms, and present the probabilities of a term falling into different categories. The neural network will not assign a single category to a term but give N answers (where N is the number of predefined classes), each of which O ∈ [0, 1] is the probability of the term to belong to a given class.
Zhu, Meng, Yang, Xudong.  2019.  Chinese Texts Classification System. 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT). :149–152.
In this article, we designed an automatic Chinese text classification system aiming to implement a system for classifying news texts. We propose two improved classification algorithms as two different choices for users to choose and then our system uses the chosen method for the obtaining of the classified result of the input text. There are two improved algorithms, one is k-Bayes using hierarchy conception based on NB method in machine learning field and another one adds attention layer to the convolutional neural network in deep learning field. Through experiments, our results showed that improved classification algorithms had better accuracy than based algorithms and our system is useful for making classifying news texts more reasonably and effectively.
Lee, Hyun-Young, Kang, Seung-Shik.  2019.  Word Embedding Method of SMS Messages for Spam Message Filtering. 2019 IEEE International Conference on Big Data and Smart Computing (BigComp). :1–4.
SVM has been one of the most popular machine learning method for the binary classification such as sentiment analysis and spam message filtering. We explored a word embedding method for the construction of a feature vector and the deep learning method for the binary classification. CBOW is used as a word embedding technique and feedforward neural network is applied to classify SMS messages into ham or spam. The accuracy of the two classification methods of SVM and neural network are compared for the binary classification. The experimental result shows that the accuracy of deep learning method is better than the conventional machine learning method of SVM-light in the binary classification.
Chen, Long.  2019.  Assertion Detection in Clinical Natural Language Processing: A Knowledge-Poor Machine Learning Approach. 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT). :37–40.
Natural language processing (NLP) have been recently used to extract clinical information from free text in Electronic Health Record (EHR). In clinical NLP one challenge is that the meaning of clinical entities is heavily affected by assertion modifiers such as negation, uncertain, hypothetical, experiencer and so on. Incorrect assertion assignment could cause inaccurate diagnosis of patients' condition or negatively influence following study like disease modeling. Thus, clinical NLP systems which can detect assertion status of given target medical findings (e.g. disease, symptom) in clinical context are highly demanded. Here in this work, we propose a deep-learning system based on word embedding, RNN and attention mechanism (more specifically: Attention-based Bidirectional Long Short-Term Memory networks) for assertion detection in clinical notes. Unlike previous state-of-art methods which require knowledge input or feature engineering, our system is a knowledge poor machine learning system and can be easily extended or transferred to other domains. The evaluation of our system on public benchmarking corpora demonstrates that a knowledge poor deep-learning system can also achieve high performance for detecting negation and assertions comparing to state-of-the-art systems.
Kadebu, Prudence, Thada, Vikas, Chiurunge, Panashe.  2018.  Natural Language Processing and Deep Learning Towards Security Requirements Classification. 2018 3rd International Conference on Contemporary Computing and Informatics (IC3I). :135–140.
Security Requirements classification is an important area to the Software Engineering community in order to build software that is secure, robust and able to withstand attacks. This classification facilitates proper analysis of security requirements so that adequate security mechanisms are incorporated in the development process. Machine Learning techniques have been used in Security Requirements classification to aid in the process that lead to ensuring that correct security mechanisms are designed corresponding to the Security Requirements classifications made to eliminate the risk of security being incorporated in the late stages of development. However, these Machine Learning techniques have been found to have problems including, handcrafting of features, overfitting and failure to perform well with high dimensional data. In this paper we explore Natural Language Processing and Deep Learning to determine if this can be applied to Security Requirements classification.
Fahad, S.K. Ahammad, Yahya, Abdulsamad Ebrahim.  2018.  Inflectional Review of Deep Learning on Natural Language Processing. 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE). :1–4.
In the age of knowledge, Natural Language Processing (NLP) express its demand by a huge range of utilization. Previously NLP was dealing with statically data. Contemporary time NLP is doing considerably with the corpus, lexicon database, pattern reorganization. Considering Deep Learning (DL) method recognize artificial Neural Network (NN) to nonlinear process, NLP tools become increasingly accurate and efficient that begin a debacle. Multi-Layer Neural Network obtaining the importance of the NLP for its capability including standard speed and resolute output. Hierarchical designs of data operate recurring processing layers to learn and with this arrangement of DL methods manage several practices. In this paper, this resumed striving to reach a review of the tools and the necessary methodology to present a clear understanding of the association of NLP and DL for truly understand in the training. Efficiency and execution both are improved in NLP by Part of speech tagging (POST), Morphological Analysis, Named Entity Recognition (NER), Semantic Role Labeling (SRL), Syntactic Parsing, and Coreference resolution. Artificial Neural Networks (ANN), Time Delay Neural Networks (TDNN), Recurrent Neural Network (RNN), Convolution Neural Networks (CNN), and Long-Short-Term-Memory (LSTM) dealings among Dense Vector (DV), Windows Approach (WA), and Multitask learning (MTL) as a characteristic of Deep Learning. After statically methods, when DL communicate the influence of NLP, the individual form of the NLP process and DL rule collaboration was started a fundamental connection.
Zong, Zhaorong, Hong, Changchun.  2018.  On Application of Natural Language Processing in Machine Translation. 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :506–510.
Natural language processing is the core of machine translation. In the history, its development process is almost the same as machine translation, and the two complement each other. This article compares the natural language processing of statistical corpora with neural machine translation and concludes the natural language processing: Neural machine translation has the advantage of deep learning, which is very suitable for dealing with the high dimension, label-free and big data of natural language, therefore, its application is more general and reflects the power of big data and big data thinking.
Lal Senanayaka, Jagath Sri, Van Khang, Huynh, Robbersmyr, Kjell G..  2018.  Multiple Fault Diagnosis of Electric Powertrains Under Variable Speeds Using Convolutional Neural Networks. 2018 XIII International Conference on Electrical Machines (ICEM). :1900–1905.
Electric powertrains are widely used in automotive and renewable energy industries. Reliable diagnosis for defects in the critical components such as bearings, gears and stator windings, is important to prevent failures and enhance the system reliability and power availability. Most of existing fault diagnosis methods are based on specific characteristic frequencies to single faults at constant speed operations. Once multiple faults occur in the system, such a method may not detect the faults effectively and may give false alarms. Furthermore, variable speed operations render a challenge of analysing nonstationary signals. In this work, a deep learning-based fault diagnosis method is proposed to detect common faults in the electric powertrains. The proposed method is based on pattern recognition using convolutional neural network to detect effectively not only single faults at constant speed but also multiple faults in variable speed operations. The effectiveness of the proposed method is validated via an in-house experimental setup.