Visible to the public Biblio

Filters: Keyword is SCADA Security  [Clear All Filters]
2017-12-12
Nazir, S., Patel, S., Patel, D..  2017.  Autonomic computing meets SCADA security. 2017 IEEE 16th International Conference on Cognitive Informatics Cognitive Computing (ICCI*CC). :498–502.

National assets such as transportation networks, large manufacturing, business and health facilities, power generation, and distribution networks are critical infrastructures. The cyber threats to these infrastructures have increasingly become more sophisticated, extensive and numerous. Cyber security conventional measures have proved useful in the past but increasing sophistication of attacks dictates the need for newer measures. The autonomic computing paradigm mimics the autonomic nervous system and is promising to meet the latest challenges in the cyber threat landscape. This paper provides a brief review of autonomic computing applications for SCADA systems and proposes architecture for cyber security.

2017-08-18
Nivethan, Jeyasingam, Papa, Mauricio.  2016.  A SCADA Intrusion Detection Framework That Incorporates Process Semantics. Proceedings of the 11th Annual Cyber and Information Security Research Conference. :6:1–6:5.

SCADA security is an increasingly important research area as these systems, used for process control and automation, are being exposed to the Internet due to their use of TCP/IP protocols as a transport mechanism for control messages. Most of the existing research work on SCADA systems has focused on addressing SCADA security by monitoring attacks or anomalies at the network level. The main issue affecting these systems today is that by focusing our attention on network-level monitoring needs, security practitioners may remain unaware of process level constraints. The proposed framework helps ensure that a mechanism is in place to help map process level constraints, as described by process engineers, to network level monitoring needs. Existing solutions have tried to address this problem but have not been able to fully bridge the gap between the process and the network. The goal of this research is to provide a solution that (i) leverages the knowledge process engineers have about the system (to help strengthen cyber security) and that has the ability to (ii) seamlessly monitors process constraints at the network level using standard network security tools. A prototype system for the Modbus TCP protocol and the Bro IDS has been built to validate the approach.

2017-02-27
Ismail, Z., Leneutre, J., Bateman, D., Chen, L..  2015.  A Game-Theoretical Model for Security Risk Management of Interdependent ICT and Electrical Infrastructures. 2015 IEEE 16th International Symposium on High Assurance Systems Engineering. :101–109.

The communication infrastructure is a key element for management and control of the power system in the smart grid. The communication infrastructure, which can include equipment using off-the-shelf vulnerable operating systems, has the potential to increase the attack surface of the power system. The interdependency between the communication and the power system renders the management of the overall security risk a challenging task. In this paper, we address this issue by presenting a mathematical model for identifying and hardening the most critical communication equipment used in the power system. Using non-cooperative game theory, we model interactions between an attacker and a defender. We derive the minimum defense resources required and the optimal strategy of the defender that minimizes the risk on the power system. Finally, we evaluate the correctness and the efficiency of our model via a case study.