Visible to the public Biblio

Filters: Keyword is time  [Clear All Filters]
Voronych, Artur, Nyckolaychuk, Lyubov, Vozna, Nataliia, Pastukh, Taras.  2019.  Methods and Special Processors of Entropy Signal Processing. 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM). :1–4.

The analysis of applied tasks and methods of entropy signal processing are carried out in this article. The theoretical comments about the specific schemes of special processors for the determination of probability and correlation activity are given. The perspective of the influence of probabilistic entropy of C. Shannon as cipher signal receivers is reviewed. Examples of entropy-manipulated signals and system characteristics of the proposed special processors are given.

Martiny, Karsten, Denker, Grit.  2018.  Expiring Decisions for Stream-based Data Access in a Declarative Privacy Policy Framework. Proceedings of the 2Nd International Workshop on Multimedia Privacy and Security. :71–80.
This paper describes how a privacy policy framework can be extended with timing information to not only decide if requests for data are allowed at a given point in time, but also to decide for how long such permission is granted. Augmenting policy decisions with expiration information eliminates the need to reason about access permissions prior to every individual data access operation. This facilitates the application of privacy policy frameworks to protect multimedia streaming data where repeated re-computations of policy decisions are not a viable option. We show how timing information can be integrated into an existing declarative privacy policy framework. In particular, we discuss how to obtain valid expiration information in the presence of complex sets of policies with potentially interacting policies and varying timing information.
Washha, Mahdi, Qaroush, Aziz, Sedes, Florence.  2016.  Leveraging Time for Spammers Detection on Twitter. Proceedings of the 8th International Conference on Management of Digital EcoSystems. :109–116.

Twitter is one of the most popular microblogging social systems, which provides a set of distinctive posting services operating in real time. The flexibility of these services has attracted unethical individuals, so-called "spammers", aiming at spreading malicious, phishing, and misleading information. Unfortunately, the existence of spam results non-ignorable problems related to search and user's privacy. In the battle of fighting spam, various detection methods have been designed, which work by automating the detection process using the "features" concept combined with machine learning methods. However, the existing features are not effective enough to adapt spammers' tactics due to the ease of manipulation in the features. Also, the graph features are not suitable for Twitter based applications, though the high performance obtainable when applying such features. In this paper, beyond the simple statistical features such as number of hashtags and number of URLs, we examine the time property through advancing the design of some features used in the literature, and proposing new time based features. The new design of features is divided between robust advanced statistical features incorporating explicitly the time attribute, and behavioral features identifying any posting behavior pattern. The experimental results show that the new form of features is able to classify correctly the majority of spammers with an accuracy higher than 93% when using Random Forest learning algorithm, applied on a collected and annotated data-set. The results obtained outperform the accuracy of the state of the art features by about 6%, proving the significance of leveraging time in detecting spam accounts.

Saravanan, S., Sabari, A., Geetha, M., priyanka, Q..  2015.  Code based community network for identifying low risk community. 2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO). :1–6.

The modern day approach in boulevard network centers on efficient factor in safe routing. The safe routing must follow up the low risk cities. The troubles in routing are a perennial one confronting people day in and day out. The common goal of everyone using a boulevard seems to be reaching the desired point through the fastest manner which involves the balancing conundrum of multiple expected and unexpected influencing factors such as time, distance, security and cost. It is universal knowledge that travelling is an almost inherent aspect in everyone's daily routine. With the gigantic and complex road network of a modern city or country, finding a low risk community for traversing the distance is not easy to achieve. This paper follows the code based community for detecting the boulevard network and fuzzy technique for identifying low risk community.