Visible to the public Biblio

Filters: Keyword is social network  [Clear All Filters]
2021-04-08
Colbaugh, R., Glass, K., Bauer, T..  2013.  Dynamic information-theoretic measures for security informatics. 2013 IEEE International Conference on Intelligence and Security Informatics. :45–49.
Many important security informatics problems require consideration of dynamical phenomena for their solution; examples include predicting the behavior of individuals in social networks and distinguishing malicious and innocent computer network activities based on activity traces. While information theory offers powerful tools for analyzing dynamical processes, to date the application of information-theoretic methods in security domains has focused on static analyses (e.g., cryptography, natural language processing). This paper leverages information-theoretic concepts and measures to quantify the similarity of pairs of stochastic dynamical systems, and shows that this capability can be used to solve important problems which arise in security applications. We begin by presenting a concise review of the information theory required for our development, and then address two challenging tasks: 1.) characterizing the way influence propagates through social networks, and 2.) distinguishing malware from legitimate software based on the instruction sequences of the disassembled programs. In each application, case studies involving real-world datasets demonstrate that the proposed techniques outperform standard methods.
2021-02-15
Drakopoulos, G., Giotopoulos, K., Giannoukou, I., Sioutas, S..  2020.  Unsupervised Discovery Of Semantically Aware Communities With Tensor Kruskal Decomposition: A Case Study In Twitter. 2020 15th International Workshop on Semantic and Social Media Adaptation and Personalization (SMA. :1–8.
Substantial empirical evidence, including the success of synthetic graph generation models as well as of analytical methodologies, suggests that large, real graphs have a recursive community structure. The latter results, in part at least, in other important properties of these graphs such as low diameter, high clustering coefficient values, heavy degree distribution tail, and clustered graph spectrum. Notice that this structure need not be official or moderated like Facebook groups, but it can also take an ad hoc and unofficial form depending on the functionality of the social network under study as for instance the follow relationship on Twitter or the connections between news aggregators on Reddit. Community discovery is paramount in numerous applications such as political campaigns, digital marketing, crowdfunding, and fact checking. Here a tensor representation for Twitter subgraphs is proposed which takes into consideration both the followfollower relationships but also the coherency in hashtags. Community structure discovery then reduces to the computation of Tucker tensor decomposition, a higher order counterpart of the well-known unsupervised learning method of singular value decomposition (SVD). Tucker decomposition clearly outperforms the SVD in terms of finding a more compact community size distribution in experiments done in Julia on a Twitter subgraph. This can be attributed to the facts that the proposed methodology combines both structural and functional Twitter elements and that hashtags carry an increased semantic weight in comparison to ordinary tweets.
2020-12-02
Vaka, A., Manasa, G., Sameer, G., Das, B..  2019.  Generation And Analysis Of Trust Networks. 2019 1st International Conference on Advances in Information Technology (ICAIT). :443—448.

Trust is known to be a key component in human social relationships. It is trust that defines human behavior with others to a large extent. Generative models have been extensively used in social networks study to simulate different characteristics and phenomena in social graphs. In this work, an attempt is made to understand how trust in social graphs can be combined with generative modeling techniques to generate trust-based social graphs. These generated social graphs are then compared with the original social graphs to evaluate how trust helps in generative modeling. Two well-known social network data sets i.e. the soc-Bitcoin and the wiki administrator network data sets are used in this work. Social graphs are generated from these data sets and then compared with the original graphs along with other standard generative modeling techniques to see how trust is a good component in this. Other Generative modeling techniques have been available for a while but this investigation with the real social graph data sets validate that trust can be an important factor in generative modeling.

2020-10-12
Asadi, Nima, Rege, Aunshul, Obradovic, Zoran.  2018.  Analysis of Adversarial Movement Through Characteristics of Graph Topological Ordering. 2018 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–6.
Capturing the patterns in adversarial movement can provide valuable information regarding how the adversaries progress through cyberattacks. This information can be further employed for making comparisons and interpretations of decision making of the adversaries. In this study, we propose a framework based on concepts of social networks to characterize and compare the patterns, variations and shifts in the movements made by an adversarial team during a real-time cybersecurity exercise. We also explore the possibility of movement association with the skill sets using topological sort networks. This research provides preliminary insight on adversarial movement complexity and linearity and decision-making as cyberattacks unfold.
2020-09-28
Han, Xu, Liu, Yanheng, Wang, Jian.  2018.  Modeling and analyzing privacy-awareness social behavior network. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :7–12.
The increasingly networked human society requires that human beings have a clear understanding and control over the structure, nature and behavior of various social networks. There is a tendency towards privacy in the study of network evolutions because privacy disclosure behavior in the network has gradually developed into a serious concern. For this purpose, we extended information theory and proposed a brand-new concept about so-called “habitual privacy” to quantitatively analyze privacy exposure behavior and facilitate privacy computation. We emphasized that habitual privacy is an inherent property of the user and is correlated with their habitual behaviors. The widely approved driving force in recent modeling complex networks is originated from activity. Thus, we propose the privacy-driven model through synthetically considering the activity impact and habitual privacy underlying the decision process. Privacy-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the evolution of network driven by privacy.
2020-07-16
Pérez-Soler, Sara, Guerra, Esther, de Lara, Juan.  2019.  Flexible Modelling using Conversational Agents. 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). :478—482.

The advances in natural language processing and the wide use of social networks have boosted the proliferation of chatbots. These are software services typically embedded within a social network, and which can be addressed using conversation through natural language. Many chatbots exist with different purposes, e.g., to book all kind of services, to automate software engineering tasks, or for customer support. In previous work, we proposed the use of chatbots for domain-specific modelling within social networks. In this short paper, we report on the needs for flexible modelling required by modelling using conversation. In particular, we propose a process of meta-model relaxation to make modelling more flexible, followed by correction steps to make the model conforming to its meta-model. The paper shows how this process is integrated within our conversational modelling framework, and illustrates the approach with an example.

2020-07-13
Mahmood, Shah.  2019.  The Anti-Data-Mining (ADM) Framework - Better Privacy on Online Social Networks and Beyond. 2019 IEEE International Conference on Big Data (Big Data). :5780–5788.
The unprecedented and enormous growth of cloud computing, especially online social networks, has resulted in numerous incidents of the loss of users' privacy. In this paper, we provide a framework, based on our anti-data-mining (ADM) principle, to enhance users' privacy against adversaries including: online social networks; search engines; financial terminal providers; ad networks; eavesdropping governments; and other parties who can monitor users' content from the point where the content leaves users' computers to within the data centers of these information accumulators. To achieve this goal, our framework proactively uses the principles of suppression of sensitive data and disinformation. Moreover, we use social-bots in a novel way for enhanced privacy and provide users' with plausible deniability for their photos, audio, and video content uploaded online.
2020-05-08
Chaudhary, Anshika, Mittal, Himangi, Arora, Anuja.  2019.  Anomaly Detection using Graph Neural Networks. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :346—350.

Conventional methods for anomaly detection include techniques based on clustering, proximity or classification. With the rapidly growing social networks, outliers or anomalies find ingenious ways to obscure themselves in the network and making the conventional techniques inefficient. In this paper, we utilize the ability of Deep Learning over topological characteristics of a social network to detect anomalies in email network and twitter network. We present a model, Graph Neural Network, which is applied on social connection graphs to detect anomalies. The combinations of various social network statistical measures are taken into account to study the graph structure and functioning of the anomalous nodes by employing deep neural networks on it. The hidden layer of the neural network plays an important role in finding the impact of statistical measure combination in anomaly detection.

2020-04-20
Yuan, Jing, Ou, Yuyi, Gu, Guosheng.  2019.  An Improved Privacy Protection Method Based on k-degree Anonymity in Social Network. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :416–420.

To preserve the privacy of social networks, most existing methods are applied to satisfy different anonymity models, but there are some serious problems such as huge large information losses and great structural modifications of original social network. Therefore, an improved privacy protection method called k-subgraph is proposed, which is based on k-degree anonymous graph derived from k-anonymity to keep the network structure stable. The method firstly divides network nodes into several clusters by label propagation algorithm, and then reconstructs the sub-graph by means of moving edges to achieve k-degree anonymity. Experimental results show that our k-subgraph method can not only effectively improve the defense capability against malicious attacks based on node degrees, but also maintain stability of network structure. In addition, the cost of information losses due to anonymity is minimized ideally.

2020-03-18
Lin, Yongze, Zhang, Xinyuan, Xia, Liting, Ren, Yue, Li, Weimin.  2019.  A Hybrid Algorithm for Influence Maximization of Social Networks. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :427–431.
Influence Maximization is an important research content in the dissemination process of information and behavior in social networks. Because Hill Climbing and Greedy Algorithm have good dissemination effect on this topic, researchers have used it to solve this NP problem for a long time. These algorithms only consider the number of active nodes in each round, ignoring the characteristic that the influence will be accumulated, so its effect is still far from the optimal solution. Also, the time complexity of these algorithms is considerable. Aiming at the problem of Influence Maximization, this paper improves the traditional Hill Climbing and Greedy Algorithm. We propose a Hybrid Distribution Value Accumulation Algorithm for Influence Maximization, which has better activation effect than Hill Climbing and Greedy Algorithm. In the first stage of the algorithm, the region is numerically accumulating rapidly and is easy to activate through value-greed. Experiments are conducted on two data sets: the voting situation on Wikipedia and the transmission situation of Gnutella node-to-node file sharing network. Experimental results verify the efficiency of our methods.
2020-02-18
Fattahi, Saeideh, Yazdani, Reza, Vahidipour, Seyyed Mehdi.  2019.  Discovery of Society Structure in A Social Network Using Distributed Cache Memory. 2019 5th International Conference on Web Research (ICWR). :264–269.

Community structure detection in social networks has become a big challenge. Various methods in the literature have been presented to solve this challenge. Recently, several methods have also been proposed to solve this challenge based on a mapping-reduction model, in which data and algorithms are divided between different process nodes so that the complexity of time and memory of community detection in large social networks is reduced. In this paper, a mapping-reduction model is first proposed to detect the structure of communities. Then the proposed framework is rewritten according to a new mechanism called distributed cache memory; distributed cache memory can store different values associated with different keys and, if necessary, put them at different computational nodes. Finally, the proposed rewritten framework has been implemented using SPARK tools and its implementation results have been reported on several major social networks. The performed experiments show the effectiveness of the proposed framework by varying the values of various parameters.

2020-02-10
Salehi, Sajjad, Taghiyareh, Fattaneh.  2019.  Introspective Agents in Opinion Formation Modeling to Predict Social Market. 2019 5th International Conference on Web Research (ICWR). :28–34.
Individuals may change their opinion in effect of a wide range of factors like interaction with peer groups, governmental policies and personal intentions. Works in this area mainly focus on individuals in social network and their interactions while neglect other factors. In this paper we have introduced an opinion formation model that consider the internal tendency as a personal feature of individuals in social network. In this model agents may trust, distrust or be neutral to their neighbors. They modify their opinion based on the opinion of their neighbors, trust/distrust to them while considering the internal tendency. The results of simulation show that this model can predict the opinion of social network especially when the average of nodal degree and clustering coefficient are high enough. Since this model can predict the preferences of individuals in market, it can be used to define marketing and production strategy.
2019-03-25
Li, Y., Guan, Z., Xu, C..  2018.  Digital Image Self Restoration Based on Information Hiding. 2018 37th Chinese Control Conference (CCC). :4368–4372.
With the rapid development of computer networks, multimedia information is widely used, and the security of digital media has drawn much attention. The revised photo as a forensic evidence will distort the truth of the case badly tampered pictures on the social network can have a negative impact on the parties as well. In order to ensure the authenticity and integrity of digital media, self-recovery of digital images based on information hiding is studied in this paper. Jarvis half-tone change is used to compress the digital image and obtain the backup data, and then spread the backup data to generate the reference data. Hash algorithm aims at generating hash data by calling reference data and original data. Reference data and hash data together as a digital watermark scattered embedded in the digital image of the low-effective bits. When the image is maliciously tampered with, the hash bit is used to detect and locate the tampered area, and the image self-recovery is performed by extracting the reference data hidden in the whole image. In this paper, a thorough rebuild quality assessment of self-healing images is performed and better performance than the traditional DCT(Discrete Cosine Transform)quantization truncation approach is achieved. Regardless of the quality of the tampered content, a reference authentication system designed according to the principles presented in this paper allows higher-quality reconstruction to recover the original image with good quality even when the large area of the image is tampered.
2019-02-25
Ho, Kenny, Liesaputra, Veronica, Yongchareon, Sira, Mohaghegh, Mahsa.  2018.  Evaluating Social Spammer Detection Systems. Proceedings of the Australasian Computer Science Week Multiconference. :18:1–18:7.
The rising popularity of social network services, such as Twitter, has attracted many spammers and created a large number of fake accounts, overwhelming legitimate users with advertising, malware and unwanted and disruptive information. This not only inconveniences the users' social activities but causes financial loss and privacy issues. Identifying social spammers is challenging because spammers continually change their strategies to fool existing anti-spamming systems. Thus, many researchers have tried to propose new classification systems using various types of features extracted from the content and user's information. However, no comprehensive comparative study has been done to compare the effectiveness and the efficiency of the existing systems. At this stage, it is hard to know what the best anti spamming system is and why. This paper proposes a unified evaluation workbench that allows researchers to access various user and content-based features, implement new features, and evaluate and compare the performance of their systems against existing systems. Through our analysis, we can identify the most effective and efficient social spammer detection features and help develop a faster and more accurate classifier model that has higher true positives and lower false positives.
2018-08-23
Xi, X., Zhang, F., Lian, Z..  2017.  Implicit Trust Relation Extraction Based on Hellinger Distance. 2017 13th International Conference on Semantics, Knowledge and Grids (SKG). :223–227.

Recent studies have shown that adding explicit social trust information to social recommendation significantly improves the prediction accuracy of ratings, but it is difficult to obtain a clear trust data among users in real life. Scholars have studied and proposed some trust measure methods to calculate and predict the interaction and trust between users. In this article, a method of social trust relationship extraction based on hellinger distance is proposed, and user similarity is calculated by describing the f-divergence of one side node in user-item bipartite networks. Then, a new matrix factorization model based on implicit social relationship is proposed by adding the extracted implicit social relations into the improved matrix factorization. The experimental results support that the effect of using implicit social trust to recommend is almost the same as that of using actual explicit user trust ratings, and when the explicit trust data cannot be extracted, our method has a better effect than the other traditional algorithms.

2017-08-02
Pazahr, Ali, Zapater, J. Javier Samper, Sánchez, Francisco García, Botella, Carmen, Martinez, Rafael.  2016.  Semantically-enhanced Advertisement Recommender Systems in Social Networks. Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services. :179–189.

Providing recommendations on social systems has been in the spotlight of both academics and industry for some time already. Social network giants like Facebook, LinkedIn, Myspace, etc., are eager to find the silver bullet of recommendation. These applications permit clients to shape a few certain social networks through their day-by-day social cooperative communications. In the meantime, today's online experience depends progressively on social association. One of the main concerns in social network is establishing a successful business plan to make more profit from the social network. Doing a business on every platform needs a good business plan with some important solutions such as advertise the products or services of other companies which would be a kind of marketing for those external businesses. In this study a philosophy of a system speaking to of a comprehensive structure of advertisement recommender system for social networks will be presented. The framework uses a semantic logic to provide the recommended products and this capability can differentiate the recommender part of the framework from classical recommender methods. Briefly, the framework proposed in this study has been designed in a form that can generate advertisement recommendations in a simplified and effective way for social network users.

2017-06-27
Mu, Xin, Zhu, Feida, Lim, Ee-Peng, Xiao, Jing, Wang, Jianzong, Zhou, Zhi-Hua.  2016.  User Identity Linkage by Latent User Space Modelling. Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :1775–1784.

User identity linkage across social platforms is an important problem of great research challenge and practical value. In real applications, the task often assumes an extra degree of difficulty by requiring linkage across multiple platforms. While pair-wise user linkage between two platforms, which has been the focus of most existing solutions, provides reasonably convincing linkage, the result depends by nature on the order of platform pairs in execution with no theoretical guarantee on its stability. In this paper, we explore a new concept of ``Latent User Space'' to more naturally model the relationship between the underlying real users and their observed projections onto the varied social platforms, such that the more similar the real users, the closer their profiles in the latent user space. We propose two effective algorithms, a batch model(ULink) and an online model(ULink-On), based on latent user space modelling. Two simple yet effective optimization methods are used for optimizing objective function: the first one based on the constrained concave-convex procedure(CCCP) and the second on accelerated proximal gradient. To our best knowledge, this is the first work to propose a unified framework to address the following two important aspects of the multi-platform user identity linkage problem –- (I) the platform multiplicity and (II) online data generation. We present experimental evaluations on real-world data sets for not only traditional pairwise-platform linkage but also multi-platform linkage. The results demonstrate the superiority of our proposed method over the state-of-the-art ones.

2017-04-24
Ye, Conghuan, Ling, Hefei, Xiong, Zenggang, Zou, Fuhao, Liu, Cong, Xu, Fang.  2016.  Secure Social Multimedia Big Data Sharing Using Scalable JFE in the TSHWT Domain. ACM Trans. Multimedia Comput. Commun. Appl.. 12:61:1–61:23.

With the advent of social networks and cloud computing, the amount of multimedia data produced and communicated within social networks is rapidly increasing. In the meantime, social networking platforms based on cloud computing have made multimedia big data sharing in social networks easier and more efficient. The growth of social multimedia, as demonstrated by social networking sites such as Facebook and YouTube, combined with advances in multimedia content analysis, underscores potential risks for malicious use, such as illegal copying, piracy, plagiarism, and misappropriation. Therefore, secure multimedia sharing and traitor tracing issues have become critical and urgent in social networks. In this article, a joint fingerprinting and encryption (JFE) scheme based on tree-structured Haar wavelet transform (TSHWT) is proposed with the purpose of protecting media distribution in social network environments. The motivation is to map hierarchical community structure of social networks into a tree structure of Haar wavelet transform for fingerprinting and encryption. First, fingerprint code is produced using social network analysis (SNA). Second, the content is decomposed based on the structure of fingerprint code by the TSHWT. Then, the content is fingerprinted and encrypted in the TSHWT domain. Finally, the encrypted contents are delivered to users via hybrid multicast-unicast. The proposed method, to the best of our knowledge, is the first scalable JFE method for fingerprinting and encryption in the TSHWT domain using SNA. The use of fingerprinting along with encryption using SNA not only provides a double layer of protection for social multimedia sharing in social network environment but also avoids big data superposition effect. Theory analysis and experimental results show the effectiveness of the proposed JFE scheme.

2015-05-06
Biagioni, E..  2014.  Ubiquitous Interpersonal Communication over Ad-hoc Networks and the Internet. System Sciences (HICSS), 2014 47th Hawaii International Conference on. :5144-5153.

The hardware and low-level software in many mobile devices are capable of mobile-to-mobile communication, including ad-hoc 802.11, Bluetooth, and cognitive radios. We have started to leverage this capability to provide interpersonal communication both over infrastructure networks (the Internet), and over ad-hoc and delay-tolerant networks composed of the mobile devices themselves. This network is decentralized in the sense that it can function without any infrastructure, but does take advantage of infrastructure connections when available. All interpersonal communication is encrypted and authenticated so packets may be carried by devices belonging to untrusted others. The decentralized model of security builds a flexible trust network on top of the social network of communicating individuals. This social network can be used to prioritize packets to or from individuals closely related by the social network. Other packets are prioritized to favor packets likely to consume fewer network resources. Each device also has a policy that determines how many packets may be forwarded, with the goal of providing useful interpersonal communications using at most 1% of any given resource on mobile devices. One challenge in a fully decentralized network is routing. Our design uses Rendezvous Points (RPs) and Distributed Hash Tables (DHTs) for delivery over infrastructure networks, and hop-limited broadcast and Delay Tolerant Networking (DTN) within the wireless ad-hoc network.

2015-05-05
Oweis, N.E., Owais, S.S., Alrababa, M.A., Alansari, M., Oweis, W.G..  2014.  A survey of Internet security risk over social networks. Computer Science and Information Technology (CSIT), 2014 6th International Conference on. :1-4.

The Communities vary from country to country. There are civil societies and rural communities, which also differ in terms of geography climate and economy. This shows that the use of social networks vary from region to region depending on the demographics of the communities. So, in this paper, we researched the most important problems of the Social Network, as well as the risk which is based on the human elements. We raised the problems of social networks in the transformation of societies to another affected by the global economy. The social networking integration needs to strengthen social ties that lead to the existence of these problems. For this we focused on the Internet security risks over the social networks. And study on Risk Management, and then look at resolving various problems that occur from the use of social networks.
 

2014-10-24
Baras, J.S..  2014.  A fresh look at network science: Interdependent multigraphs models inspired from statistical physics. Communications, Control and Signal Processing (ISCCSP), 2014 6th International Symposium on. :497-500.

We consider several challenging problems in complex networks (communication, control, social, economic, biological, hybrid) as problems in cooperative multi-agent systems. We describe a general model for cooperative multi-agent systems that involves several interacting dynamic multigraphs and identify three fundamental research challenges underlying these systems from a network science perspective. We show that the framework of constrained coalitional network games captures in a fundamental way the basic tradeoff of benefits vs. cost of collaboration, in multi-agent systems, and demonstrate that it can explain network formation and the emergence or not of collaboration. Multi-metric problems in such networks are analyzed via a novel multiple partially ordered semirings approach. We investigate the interrelationship between the collaboration and communication multigraphs in cooperative swarms and the role of the communication topology, among the collaborating agents, in improving the performance of distributed task execution. Expander graphs emerge as efficient communication topologies for collaborative control. We relate these models and approaches to statistical physics.