Visible to the public Biblio

Found 678 results

Filters: Keyword is Collaboration  [Clear All Filters]
2020-04-03
Zhao, Hui, Li, Zhihui, Wei, Hansheng, Shi, Jianqi, Huang, Yanhong.  2019.  SeqFuzzer: An Industrial Protocol Fuzzing Framework from a Deep Learning Perspective. 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST). :59—67.
Industrial networks are the cornerstone of modern industrial control systems. Performing security checks of industrial communication processes helps detect unknown risks and vulnerabilities. Fuzz testing is a widely used method for performing security checks that takes advantage of automation. However, there is a big challenge to carry out security checks on industrial network due to the increasing variety and complexity of industrial communication protocols. In this case, existing approaches usually take a long time to model the protocol for generating test cases, which is labor-intensive and time-consuming. This becomes even worse when the target protocol is stateful. To help in addressing this problem, we employed a deep learning model to learn the structures of protocol frames and deal with the temporal features of stateful protocols. We propose a fuzzing framework named SeqFuzzer which automatically learns the protocol frame structures from communication traffic and generates fake but plausible messages as test cases. For proving the usability of our approach, we applied SeqFuzzer to widely-used Ethernet for Control Automation Technology (EtherCAT) devices and successfully detected several security vulnerabilities.
Lipp, Benjamin, Blanchet, Bruno, Bhargavan, Karthikeyan.  2019.  A Mechanised Cryptographic Proof of the WireGuard Virtual Private Network Protocol. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :231—246.
WireGuard is a free and open source Virtual Private Network (VPN) that aims to replace IPsec and OpenVPN. It is based on a new cryptographic protocol derived from the Noise Protocol Framework. This paper presents the first mechanised cryptographic proof of the protocol underlying WireGuard, using the CryptoVerif proof assistant. We analyse the entire WireGuard protocol as it is, including transport data messages, in an ACCE-style model. We contribute proofs for correctness, message secrecy, forward secrecy, mutual authentication, session uniqueness, and resistance against key compromise impersonation, identity mis-binding, and replay attacks. We also discuss the strength of the identity hiding provided by WireGuard. Our work also provides novel theoretical contributions that are reusable beyond WireGuard. First, we extend CryptoVerif to account for the absence of public key validation in popular Diffie-Hellman groups like Curve25519, which is used in many modern protocols including WireGuard. To our knowledge, this is the first mechanised cryptographic proof for any protocol employing such a precise model. Second, we prove several indifferentiability lemmas that are useful to simplify the proofs for sequences of key derivations.
Aires Urquiza, Abraão, AlTurki, Musab A., Kanovich, Max, Ban Kirigin, Tajana, Nigam, Vivek, Scedrov, Andre, Talcott, Carolyn.  2019.  Resource-Bounded Intruders in Denial of Service Attacks. 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). :382—38214.
Denial of Service (DoS) attacks have been a serious security concern, as no service is, in principle, protected against them. Although a Dolev-Yao intruder with unlimited resources can trivially render any service unavailable, DoS attacks do not necessarily have to be carried out by such (extremely) powerful intruders. It is useful in practice and more challenging for formal protocol verification to determine whether a service is vulnerable even to resource-bounded intruders that cannot generate or intercept arbitrary large volumes of traffic. This paper proposes a novel, more refined intruder model where the intruder can only consume at most some specified amount of resources in any given time window. Additionally, we propose protocol theories that may contain timeouts and specify service resource usage during protocol execution. In contrast to the existing resource-conscious protocol verification models, our model allows finer and more subtle analysis of DoS problems. We illustrate the power of our approach by representing a number of classes of DoS attacks, such as, Slow, Asymmetric and Amplification DoS attacks, exhausting different types of resources of the target, such as, number of workers, processing power, memory, and network bandwidth. We show that the proposed DoS problem is undecidable in general and is PSPACE-complete for the class of resource-bounded, balanced systems. Finally, we implemented our formal verification model in the rewriting logic tool Maude and analyzed a number of DoS attacks in Maude using Rewriting Modulo SMT in an automated fashion.
Nandi, Giann Spilere, Pereira, David, Vigil, Martín, Moraes, Ricardo, Morales, Analúcia Schiaffino, Araújo, Gustavo.  2019.  Security in Wireless Sensor Networks: A formal verification of protocols. 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). 1:425—431.
The increase of the digitalization taking place in various industrial domains is leading developers towards the design and implementation of more and more complex networked control systems (NCS) supported by Wireless Sensor Networks (WSN). This naturally raises new challenges for the current WSN technology, namely in what concerns improved guarantees of technical aspects such as real-time communications together with safe and secure transmissions. Notably, in what concerns security aspects, several cryptographic protocols have been proposed. Since the design of these protocols is usually error-prone, security breaches can still be exposed and MALICIOUSly exploited unless they are rigorously analyzed and verified. In this paper we formally verify, using ProVerif, three cryptographic protocols used in WSN, regarding the security properties of secrecy and authenticity. The security analysis performed in this paper is more robust than the ones performed in related work. Our contributions involve analyzing protocols that were modeled considering an unbounded number of participants and actions, and also the use of a hierarchical system to classify the authenticity results. Our verification shows that the three analyzed protocols guarantee secrecy, but can only provide authenticity in specific scenarios.
Fattahi, Jaouhar, Mejri, Mohamed, Pricop, Emil.  2019.  On the Security of Cryptographic Protocols Using the Little Theorem of Witness Functions. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). :1—5.
In this paper, we show how practical the little theorem of witness functions is in detecting security flaws in some categories of cryptographic protocols. We convey a formal analysis of the Needham-Schroeder symmetric-key protocol in the theory of witness functions. We show how it helps to warn about a security vulnerability in a given step of this protocol where the value of security of a sensitive ticket in a sent message unexpectedly decreases compared with its value when received. This vulnerability may be exploited by an intruder to mount a replay attack as described by Denning and Sacco.
Künnemann, Robert, Esiyok, Ilkan, Backes, Michael.  2019.  Automated Verification of Accountability in Security Protocols. 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). :397—39716.
Accountability is a recent paradigm in security protocol design which aims to eliminate traditional trust assumptions on parties and hold them accountable for their misbehavior. It is meant to establish trust in the first place and to recognize and react if this trust is violated. In this work, we discuss a protocol-agnostic definition of accountability: a protocol provides accountability (w.r.t. some security property) if it can identify all misbehaving parties, where misbehavior is defined as a deviation from the protocol that causes a security violation. We provide a mechanized method for the verification of accountability and demonstrate its use for verification and attack finding on various examples from the accountability and causality literature, including Certificate Transparency and Krollˆ\textbackslashtextbackslashprimes Accountable Algorithms protocol. We reach a high degree of automation by expressing accountability in terms of a set of trace properties and show their soundness and completeness.
Pothong, Kruakae, Pschetz, Larissa, Watson, Jeremy, Gbadamosi, James, Asaturyan, Andre.  2019.  Making IoT security policies relevant, inclusive and practical for people: A multi-dimensional method. Living in the Internet of Things (IoT 2019). :1—11.
Growing amounts of research on IoT and its implications for security, privacy, economy and society has been carried out to inform policies and design. However, ordinary people who are citizens and users of these emerging technologies have rarely been involved in the processes that inform these policies, governance mechanisms and design due to the institutionalised processes that prioritise objective knowledge over subjective ones. People's subjective experiences are often discarded. This priority is likely to further widen the gap between people, technology policies and design as technologies advance towards delegated human agencies, which decreases human interfaces in technology-mediated relationships with objects, systems, services, trade and other (often) unknown third-party beneficiaries. Such a disconnection can have serious implications for policy implementation, especially when it involves human limitations. To address this disconnection, we argue that a space for people to meaningfully contribute their subjective knowledge — experience- to complex technology policies that, in turn, shape their experience and well-being needs to be constructed. To this end, our paper contributes the design and pilot implementation of a method to reconnect and involve people in IoT security policymaking and development.
Ayache, Meryeme, Khoumsi, Ahmed, Erradi, Mohammed.  2019.  Managing Security Policies within Cloud Environments Using Aspect-Oriented State Machines. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). :1—10.
Cloud Computing is the most suitable environment for the collaboration of multiple organizations via its multi-tenancy architecture. However, due to the distributed management of policies within these collaborations, they may contain several anomalies, such as conflicts and redundancies, which may lead to both safety and availability problems. On the other hand, current cloud computing solutions do not offer verification tools to manage access control policies. In this paper, we propose a cloud policy verification service (CPVS), that facilitates to users the management of there own security policies within Openstack cloud environment. Specifically, the proposed cloud service offers a policy verification approach to dynamically choose the adequate policy using Aspect-Oriented Finite State Machines (AO-FSM), where pointcuts and advices are used to adopt Domain-Specific Language (DSL) state machine artifacts. The pointcuts define states' patterns representing anomalies (e.g., conflicts) that may occur in a security policy, while the advices define the actions applied at the selected pointcuts to remove the anomalies. In order to demonstrate the efficiency of our approach, we provide time and space complexities. The approach was implemented as middleware service within Openstack cloud environment. The implementation results show that the middleware can detect and resolve different policy anomalies in an efficient manner.
Gerking, Christopher, Schubert, David.  2019.  Component-Based Refinement and Verification of Information-Flow Security Policies for Cyber-Physical Microservice Architectures. 2019 IEEE International Conference on Software Architecture (ICSA). :61—70.

Since cyber-physical systems are inherently vulnerable to information leaks, software architects need to reason about security policies to define desired and undesired information flow through a system. The microservice architectural style requires the architects to refine a macro-level security policy into micro-level policies for individual microservices. However, when policies are refined in an ill-formed way, information leaks can emerge on composition of microservices. Related approaches to prevent such leaks do not take into account characteristics of cyber-physical systems like real-time behavior or message passing communication. In this paper, we enable the refinement and verification of information-flow security policies for cyber-physical microservice architectures. We provide architects with a set of well-formedness rules for refining a macro-level policy in a way that enforces its security restrictions. Based on the resulting micro-level policies, we present a verification technique to check if the real-time message passing of microservices is secure. In combination, our contributions prevent information leaks from emerging on composition. We evaluate the accuracy of our approach using an extension of the CoCoME case study.

Belim, S.V., S.Yu, Belim.  2019.  Implementation of Discretionary Security Policy in the Distributed Systems Based on the Secret Sharing Scheme. 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1—4.
In this article the combination of secret sharing schemes and the requirement of discretionary security policy is considered. Secret sharing schemes of Shamir and Blakley are investigated. Conditions for parameters of schemes the providing forbidden information channels are received. Ways for concealment of the forbidden channels are suggested. Three modifications of the Shamir's scheme and two modifications of the Blakley's scheme are suggested. Transition from polynoms to exponential functions for formation the parts of a secret is carried out. The problem of masking the presence of the forbidden information channels is solved. Several approaches with the complete and partial concealment are suggested.
Kozlov, Aleksandr, Noga, Nikolai.  2019.  The Method of Assessing the Level of Compliance of Divisions of the Complex Network for the Corporate Information Security Policy Indicators. 2019 Twelfth International Conference "Management of large-scale system development" (MLSD). :1—5.
The method of assessment of degree of compliance of divisions of the complex distributed corporate information system to a number of information security indicators is offered. As a result of the methodology implementation a comparative assessment of compliance level of each of the divisions for the corporate information security policy requirements may be given. This assessment may be used for the purpose of further decision-making by the management of the corporation on measures to minimize risks as a result of possible implementation of threats to information security.
Al-Haj, Ali, Aziz, Benjamin.  2019.  Enforcing Multilevel Security Policies in Database-Defined Networks using Row-Level Security. 2019 International Conference on Networked Systems (NetSys). :1-6.
Despite the wide of range of research and technologies that deal with the problem of routing in computer networks, there remains a gap between the level of network hardware administration and the level of business requirements and constraints. Not much has been accomplished in literature in order to have a direct enforcement of such requirements on the network. This paper presents a new solution in specifying and directly enforcing security policies to control the routing configuration in a software-defined network by using Row-Level Security checks which enable fine-grained security policies on individual rows in database tables. We show, as a first step, how a specific class of such policies, namely multilevel security policies, can be enforced on a database-defined network, which presents an abstraction of a network's configuration as a set of database tables. We show that such policies can be used to control the flow of data in the network either in an upward or downward manner.
Luo, Xueting, Lu, Yueming.  2019.  A Method of Conflict Detection for Security Policy Based on B+ Tree. 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC). :466-472.
Security policy is widely used in network management systems to ensure network security. It is necessary to detect and resolve conflicts in security policies. This paper analyzes the shortcomings of existing security policy conflict detection methods and proposes a B+ tree-based security policy conflict detection method. First, the security policy is dimensioned to make each attribute corresponds to one dimension. Then, a layer of B+ tree index is constructed at each dimension level. Each rule will be uniquely mapped by multiple layers of nested indexes. This method can greatly improve the efficiency of conflict detection. The experimental results show that the method has very stable performance which can effectively prevent conflicts, the type of policy conflict can be detected quickly and accurately.
Singi, Kapil, Kaulgud, Vikrant, Bose, R.P. Jagadeesh Chandra, Podder, Sanjay.  2019.  CAG: Compliance Adherence and Governance in Software Delivery Using Blockchain. 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). :32—39.
The software development life cycle (SDLC) starts with business and functional specifications signed with a client. In addition to this, the specifications also capture policy / procedure / contractual / regulatory / legislation / standard compliances with respect to a given client industry. The SDLC must adhere to service level agreements (SLAs) while being compliant to development activities, processes, tools, frameworks, and reuse of open-source software components. In today's world, global software development happens across geographically distributed (autonomous) teams consuming extraordinary amounts of open source components drawn from a variety of disparate sources. Although this is helping organizations deal with technical and economic challenges, it is also increasing unintended risks, e.g., use of a non-complaint license software might lead to copyright issues and litigations, use of a library with vulnerabilities pose security risks etc. Mitigation of such risks and remedial measures is a challenge due to lack of visibility and transparency of activities across these distributed teams as they mostly operate in silos. We believe a unified model that non-invasively monitors and analyzes the activities of distributed teams will help a long way in building software that adhere to various compliances. In this paper, we propose a decentralized CAG - Compliance Adherence and Governance framework using blockchain technologies. Our framework (i) enables the capturing of required data points based on compliance specifications, (ii) analyzes the events for non-conformant behavior through smart contracts, (iii) provides real-time alerts, and (iv) records and maintains an immutable audit trail of various activities.
Mishra, Menaka, Upadhyay, A.K..  2019.  Need of Private and Public Sector Information Security. 2019 9th International Conference on Cloud Computing, Data Science Engineering (Confluence). :168—173.
In this research paper author surveys the need of data protection from intelligent systems in the private and public sectors. For this, she identifies that the Smart Information Security Intel processes needs to be the suggestive key policy for both sectors of governance either public or private. The information is very sensitive for any organization. When the government offices are concerned, information needs to be abstracted and encapsulated so that there is no information stealing. For this purposes, the art of skill set and new optimized technology needs to be stationed. Author identifies that digital bar-coded air port like security using conveyor belts and digital bar-coded conveyor boxes to scan switched ON articles like internet of things needs to be placed. As otherwise, there can potentially be data, articles or information stealing from the operational sites where access is unauthorized. Such activities shall need to be scrutinized, minutely. The biometric such as fingerprints, iris, voice and face recognition pattern updates in the virtual data tables must be taken to keep data entry-exit log up to-date. The information technicians of the sentinel systems must help catch the anomalies in the professional working time in private and public sectors if there is red flag as indicator. The author in this research paper shall discuss in detail what we shall station, how we shall station and what all measures we might need to undertake to safeguard the stealing of sensitive information from the organizations like administration buildings, government buildings, educational schools, hospitals, courts, private buildings, banks and all other offices nation-wide. The TO-BE new processes shall make the AS-IS office system more information secured, data protected and personnel security stronger.
Kantarcioglu, Murat, Shaon, Fahad.  2019.  Securing Big Data in the Age of AI. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :218—220.
Increasingly organizations are collecting ever larger amounts of data to build complex data analytics, machine learning and AI models. Furthermore, the data needed for building such models may be unstructured (e.g., text, image, and video). Hence such data may be stored in different data management systems ranging from relational databases to newer NoSQL databases tailored for storing unstructured data. Furthermore, data scientists are increasingly using programming languages such as Python, R etc. to process data using many existing libraries. In some cases, the developed code will be automatically executed by the NoSQL system on the stored data. These developments indicate the need for a data security and privacy solution that can uniformly protect data stored in many different data management systems and enforce security policies even if sensitive data is processed using a data scientist submitted complex program. In this paper, we introduce our vision for building such a solution for protecting big data. Specifically, our proposed system system allows organizations to 1) enforce policies that control access to sensitive data, 2) keep necessary audit logs automatically for data governance and regulatory compliance, 3) sanitize and redact sensitive data on-the-fly based on the data sensitivity and AI model needs, 4) detect potentially unauthorized or anomalous access to sensitive data, 5) automatically create attribute-based access control policies based on data sensitivity and data type.
2020-03-30
Thida, Aye, Shwe, Thanda.  2020.  Process Provenance-based Trust Management in Collaborative Fog Environment. 2020 IEEE Conference on Computer Applications(ICCA). :1–5.
With the increasing popularity and adoption of IoT technology, fog computing has been used as an advancement to cloud computing. Although trust management issues in cloud have been addressed, there are still very few studies in a fog area. Trust is needed for collaborating among fog nodes and trust can further improve the reliability by assisting in selecting the fog nodes to collaborate. To address this issue, we present a provenance based trust mechanism that traces the behavior of the process among fog nodes. Our approach adopts the completion rate and failure rate as the process provenance in trust scores of computing workload, especially obvious measures of trustworthiness. Simulation results demonstrate that the proposed system can effectively be used for collaboration in a fog environment.
2020-03-27
Al-Rushdan, Huthifh, Shurman, Mohammad, Alnabelsi, Sharhabeel H., Althebyan, Qutaibah.  2019.  Zero-Day Attack Detection and Prevention in Software-Defined Networks. 2019 International Arab Conference on Information Technology (ACIT). :278–282.
The zero-day attack in networks exploits an undiscovered vulnerability, in order to affect/damage networks or programs. The term “zero-day” refers to the number of days available to the software or the hardware vendor to issue a patch for this new vulnerability. Currently, the best-known defense mechanism against the zero-day attacks focuses on detection and response, as a prevention effort, which typically fails against unknown or new vulnerabilities. To the best of our knowledge, this attack has not been widely investigated for Software-Defined Networks (SDNs). Therefore, in this work we are motivated to develop anew zero-day attack detection and prevention mechanism, which is designed and implemented for SDN using a modified sandbox tool, named Cuckoo. Our experiments results, under UNIX system, show that our proposed design successfully stops zero-day malwares by isolating the infected client, and thus, prevents these malwares from infesting other clients.
Walker, Aaron, Amjad, Muhammad Faisal, Sengupta, Shamik.  2019.  Cuckoo’s Malware Threat Scoring and Classification: Friend or Foe? 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0678–0684.
Malware threat classification involves understanding the behavior of the malicious software and how it affects a victim host system. Classifying threats allows for measured response appropriate to the risk involved. Malware incident response depends on many automated tools for the classification of threat to help identify the appropriate reaction to a threat alert. Cuckoo Sandbox is one such tool which can be used for automated analysis of malware and one method of threat classification provided is a threat score. A security analyst might submit a suspicious file to Cuckoo for analysis to determine whether or not the file contains malware or performs potentially malicious behavior on a system. Cuckoo is capable of producing a report of this behavior and ranks the severity of the observed actions as a score from one to ten, with ten being the most severe. As such, a malware sample classified as an 8 would likely take priority over a sample classified as a 3. Unfortunately, this scoring classification can be misleading due to the underlying methodology of severity classification. In this paper we demonstrate why the current methodology of threat scoring is flawed and therefore we believe it can be improved with greater emphasis on analyzing the behavior of the malware. This allows for a threat classification rating which scales with the risk involved in the malware behavior.
Tamura, Keiichi, Omagari, Akitada, Hashida, Shuichi.  2019.  Novel Defense Method against Audio Adversarial Example for Speech-to-Text Transcription Neural Networks. 2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA). :115–120.
With the developments in deep learning, the security of neural networks against vulnerabilities has become one of the most urgent research topics in deep learning. There are many types of security countermeasures. Adversarial examples and their defense methods, in particular, have been well-studied in recent years. An adversarial example is designed to make neural networks misclassify or produce inaccurate output. Audio adversarial examples are a type of adversarial example where the main target of attack is a speech-to-text transcription neural network. In this study, we propose a new defense method against audio adversarial examples for the speech-to-text transcription neural networks. It is difficult to determine whether an input waveform data representing the sound of voice is an audio adversarial example. Therefore, the main framework of the proposed defense method is based on a sandbox approach. To evaluate the proposed defense method, we used actual audio adversarial examples that were created on Deep Speech, which is a speech-to-text transcription neural network. We confirmed that our defense method can identify audio adversarial examples to protect speech-to-text systems.
Salehi, Majid, Hughes, Danny, Crispo, Bruno.  2019.  MicroGuard: Securing Bare-Metal Microcontrollers against Code-Reuse Attacks. 2019 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
Bare-metal microcontrollers are a family of Internet of Things (IoT) devices which are increasingly deployed in critical industrial environments. Similar to other IoT devices, bare-metal microcontrollers are vulnerable to memory corruption and code-reuse attacks. We propose MicroGuard, a novel mitigation method based on component-level sandboxing and automated code randomization to securely encapsulate application components in isolated environments. We implemented MicroGuard and evaluated its efficacy and efficiency with a real-world benchmark against different types of attacks. As our evaluation shows, MicroGuard provides better security than ACES, current state-of-the-art protection framework for bare-metal microcontrollers, with a comparable performance overhead.
Cabrini, Fábio H., de Barros Castro Filho, Albérico, Filho, Filippo V., Kofuji, Sergio T., Moura, Angelo Rafael Lunardelli Pucci.  2019.  Helix SandBox: An Open Platform to Fast Prototype Smart Environments Applications. 2019 IEEE 1st Sustainable Cities Latin America Conference (SCLA). :1–6.
This paper presents the Helix SandBox, an open platform for quick prototyping of smart environment applications. Its architecture was designed to be a lightweight solution that aimed to simplify the instance integration and setup of the main Generic Enablers provided in the FIWARE architecture. As a Powered by FIWARE platform, the SandBox operates with the NGSI standard for interoperability between systems. The platform offers a container-based multicloud architecture capable of running in public, private and bare metal clouds or even in the leading hypervisors available. This paper also proposes a multi-layered architecture capable of integrates the cloud, fog, edge and IoT layers through the federation concept. Lastly, we present two Smart Cities applications conducted in the form of Proof of Concept (PoC) that use the Helix SandBox platform as back-end.
Hassan, Galal, Rashwan, Abdulmonem M., Hassanein, Hossam S..  2019.  SandBoxer: A Self-Contained Sensor Architecture for Sandboxing the Industrial Internet of Things. 2019 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
The Industrial Internet-of-Things (IIoT) has gained significant interest from both the research and industry communities. Such interest came with a vision towards enabling automation and intelligence for futuristic versions of our day to day devices. However, such a vision demands the need for accelerated research and development of IIoT systems, in which sensor integration, due to their diversity, impose a significant roadblock. Such roadblocks are embodied in both the cost and time to develop an IIoT platform, imposing limits on the innovation of sensor manufacturers, as a result of the demand to maintain interface compatibility for seamless integration and low development costs. In this paper, we propose an IIoT system architecture (SandBoxer) tailored for sensor integration, that utilizes a collaborative set of efforts from various technologies and research fields. The paper introduces the concept of ”development-sandboxing” as a viable choice towards building the foundation for enabling true-plug-and-play IIoT. We start by outlining the key characteristics desired to create an architecture that catalyzes IIoT research and development. We then present our vision of the architecture through the use of a sensor-hosted EEPROM and scripting to ”sandbox” the sensors, which in turn accelerates sensor integration for developers and creates a broader innovation path for sensor manufacturers. We also discuss multiple design alternative, challenges, and use cases in both the research and industry.
Liu, Yingying, Wang, Yiwei.  2019.  A Robust Malware Detection System Using Deep Learning on API Calls. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1456–1460.
With the development of technology, the massive malware become the major challenge to current computer security. In our work, we implemented a malware detection system using deep learning on API calls. By means of cuckoo sandbox, we extracted the API calls sequence of malicious programs. Through filtering and ordering the redundant API calls, we extracted the valid API sequences. Compared with GRU, BGRU, LSTM and SimpleRNN, we evaluated the BLSTM on the massive datasets including 21,378 samples. The experimental results demonstrate that BLSTM has the best performance for malware detection, reaching the accuracy of 97.85%.
Sgambelluri, A., Dugeon, O., Sevilla, K., Ubaldi, F., Monti, P., De Dios, O. G., Paolucci, F..  2019.  Multi-Operator Orchestration of Connectivity Services Exploiting Stateful BRPC and BGP-LS in the 5GEx Sandbox. 2019 Optical Fiber Communications Conference and Exhibition (OFC). :1–3.
QoS-based connectivity coordinated by the 5GEx Multi-domain Orchestrator exploiting novel stateful BRPC is demonstrated for the first time over a multi-operator multi-technology transport network within the European 5GEx Sandbox, including Segment Routing and optical domains.