Visible to the public Biblio

Found 106 results

Filters: Keyword is Peer-to-peer computing  [Clear All Filters]
2019-11-26
Pradhan, Srikanta, Tripathy, Somanath, Nandi, Sukumar.  2018.  Blockchain Based Security Framework for P2P Filesharing System. 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1-6.

Peer to Peer (P2P) is a dynamic and self-organized technology, popularly used in File sharing applications to achieve better performance and avoids single point of failure. The popularity of this network has attracted many attackers framing different attacks including Sybil attack, Routing Table Insertion attack (RTI) and Free Riding. Many mitigation methods are also proposed to defend or reduce the impact of such attacks. However, most of those approaches are protocol specific. In this work, we propose a Blockchain based security framework for P2P network to address such security issues. which can be tailored to any P2P file-sharing system.

Tapsell, James, Naeem Akram, Raja, Markantonakis, Konstantinos.  2018.  An Evaluation of the Security of the Bitcoin Peer-To-Peer Network. 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1057-1062.

Underpinning the operation of Bitcoin is a peer-to-peer (P2P) network [1] that facilitates the execution of transactions by end users, as well as the transaction confirmation process known as bitcoin mining. The security of this P2P network is vital for the currency to function and subversion of the underlying network can lead to attacks on bitcoin users including theft of bitcoins, manipulation of the mining process and denial of service (DoS). As part of this paper the network protocol and bitcoin core software are analysed, with three bitcoin message exchanges (the connection handshake, GETHEADERS/HEADERS and MEMPOOL/INV) found to be potentially vulnerable to spoofing and use in distributed denial of service (DDoS) attacks. Possible solutions to the identified weaknesses and vulnerabilities are evaluated, such as the introduction of random nonces into network messages exchanges.

Wang, Pengfei, Wang, Fengyu, Lin, Fengbo, Cao, Zhenzhong.  2018.  Identifying Peer-to-Peer Botnets Through Periodicity Behavior Analysis. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :283-288.

Peer-to-Peer botnets have become one of the significant threat against network security due to their distributed properties. The decentralized nature makes their detection challenging. It is important to take measures to detect bots as soon as possible to minimize their harm. In this paper, we propose PeerGrep, a novel system capable of identifying P2P bots. PeerGrep starts from identifying hosts that are likely engaged in P2P communications, and then distinguishes P2P bots from P2P hosts by analyzing their active ratio, packet size and the periodicity of connection to destination IP addresses. The evaluation shows that PeerGrep can identify all P2P bots with quite low FPR even if the malicious P2P application and benign P2P application coexist within the same host or there is only one bot in the monitored network.

Acharjamayum, Irani, Patgiri, Ripon, Devi, Dhruwajita.  2018.  Blockchain: A Tale of Peer to Peer Security. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). :609-617.

The underlying or core technology of Bitcoin cryptocurrency has become a blessing for human being in this era. Everything is gradually changing to digitization in this today's epoch. Bitcoin creates virtual money using Blockchain that's become popular over the world. Blockchain is a shared public ledger, and it includes all transactions which are confirmed. It is almost impossible to crack the hidden information in the blocks of the Blockchain. However, there are certain security and technical challenges like scalability, privacy leakage, selfish mining, etc. which hampers the wide application of Blockchain. In this paper, we briefly discuss this emerging technology namely Blockchain. In addition, we extrapolate in-depth insight on Blockchain technology.

Rguibi, Mohamed Amine, Moussa, Najem.  2018.  Simulating Worm Propagation in Interconnected Peer-to-Peer Networks. 2018 International Conference on Advanced Communication Technologies and Networking (CommNet). :1-7.

Peer-to-peer computing (P2P) refers to the famous technology that provides peers an equal spontaneous collaboration in the network by using appropriate information and communication systems without the need for a central server coordination. Today, the interconnection of several P2P networks has become a genuine solution for increasing system reliability, fault tolerance and resource availability. However, the existence of security threats in such networks, allows us to investigate the safety of users from P2P threats by studying the effects of competition between these interconnected networks. In this paper, we present an e-epidemic model to characterize the worm propagation in an interconnected peer-to-peer network. Here, we address this issue by introducing a model of network competition where an unprotected network is willing to partially weaken its own safety in order to more severely damage a more protected network. The unprotected network can infect all peers in the competitive networks after their non react against the passive worm propagation. Our model also evaluated the effect of an immunization strategies adopted by the protected network to resist against attacking networks. The launch time of immunization strategies in the protected network, the number of peers synapse connected to the both networks, and other effective parameters have also been investigated in this paper.

Kim, Seoung Kyun, Ma, Zane, Murali, Siddharth, Mason, Joshua, Miller, Andrew, Bailey, Michael.  2018.  Measuring Ethereum Network Peers. Proceedings of the Internet Measurement Conference 2018. :91-104.

Ethereum, the second-largest cryptocurrency valued at a peak of \$138 billion in 2018, is a decentralized, Turing-complete computing platform. Although the stability and security of Ethereum—and blockchain systems in general—have been widely-studied, most analysis has focused on application level features of these systems such as cryptographic mining challenges, smart contract semantics, or block mining operators. Little attention has been paid to the underlying peer-to-peer (P2P) networks that are responsible for information propagation and that enable blockchain consensus. In this work, we develop NodeFinder to measure this previously opaque network at scale and illuminate the properties of its nodes. We analyze the Ethereum network from two vantage points: a three-month long view of nodes on the P2P network, and a single day snapshot of the Ethereum Mainnet peers. We uncover a noisy DEVp2p ecosystem in which fewer than half of all nodes contribute to the Ethereum Mainnet. Through a comparison with other previously studied P2P networks including BitTorrent, Gnutella, and Bitcoin, we find that Ethereum differs in both network size and geographical distribution.

2019-11-18
Singla, Ankush, Bertino, Elisa.  2018.  Blockchain-Based PKI Solutions for IoT. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :9–15.
Traditionally, a Certification Authority (CA) is required to sign, manage, verify and revoke public key certificates. Multiple CAs together form the CA-based Public Key Infrastructure (PKI). The use of a PKI forces one to place trust in the CAs, which have proven to be a single point-of-failure on multiple occasions. Blockchain has emerged as a transformational technology that replaces centralized trusted third parties with a decentralized, publicly verifiable, peer-to-peer data store which maintains data integrity among nodes through various consensus protocols. In this paper, we deploy three blockchain-based alternatives to the CA-based PKI for supporting IoT devices, based on Emercoin Name Value Service (NVS), smart contracts by Ethereum blockchain, and Ethereum Light Sync client. We compare these approaches with CA-based PKI and show that they are much more efficient in terms of computational and storage requirements in addition to providing a more robust and scalable PKI.
2019-09-26
Liu, Y., Zhang, J., Gao, Q..  2018.  A Blockchain-Based Secure Cloud Files Sharing Scheme with Fine-Grained Access Control. 2018 International Conference on Networking and Network Applications (NaNA). :277-283.
As cloud services greatly facilitate file sharing online, there's been a growing awareness of the security challenges brought by outsourcing data to a third party. Traditionally, the centralized management of cloud service provider brings about safety issues because the third party is only semi-trusted by clients. Besides, it causes trouble for sharing online data conveniently. In this paper, the blockchain technology is utilized for decentralized safety administration and provide more user-friendly service. Apart from that, Ciphertext-Policy Attribute Based Encryption is introduced as an effective tool to realize fine-grained data access control of the stored files. Meanwhile, the security analysis proves the confidentiality and integrity of the data stored in the cloud server. Finally, we evaluate the performance of computation overhead of our system.
Mishra, B., Jena, D..  2018.  CCA Secure Proxy Re-Encryption Scheme for Secure Sharing of Files through Cloud Storage. 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT). :1-6.
Cloud Storage Service(CSS) provides unbounded, robust file storage capability and facilitates for pay-per-use and collaborative work to end users. But due to security issues like lack of confidentiality, malicious insiders, it has not gained wide spread acceptance to store sensitive information. Researchers have proposed proxy re-encryption schemes for secure data sharing through cloud. Due to advancement of computing technologies and advent of quantum computing algorithms, security of existing schemes can be compromised within seconds. Hence there is a need for designing security schemes which can be quantum computing resistant. In this paper, a secure file sharing scheme through cloud storage using proxy re-encryption technique has been proposed. The proposed scheme is proven to be chosen ciphertext secure(CCA) under hardness of ring-LWE, Search problem using random oracle model. The proposed scheme outperforms the existing CCA secure schemes in-terms of re-encryption time and decryption time for encrypted files which results in an efficient file sharing scheme through cloud storage.
Pant, S., Kumar, V..  2018.  BitTrusty: A BitCoin Incentivized Peer-to-Peer File Sharing System. 2018 IEEE 3rd International Conference on Computing, Communication and Security (ICCCS). :148-155.
Among the various challenges faced by the P2P file sharing systems like BitTorrent, the most common attack on the basic foundation of such systems is: Free-riding. Generally, free-riders are the users in the file sharing network who avoid contributing any resources but tend to consume the resources unethically from the P2P network whereas white-washers are more specific category of free-riders that voluntarily leave the system in a frequent fashion and appearing again and again with different identities to escape from the penal actions imposed by the network. BitTorrent being a collaborative distributed platform requires techniques for discouraging and punishing such user behavior. In this paper, we propose that ``Instead of punishing, we may focus more on rewarding the honest peers''. This approach could be presented as an alternative to other mechanisms of rewarding the peers like tit-for-tat [10], reciprocity based etc., built for the BitTorrent platform. The prime objective of BitTrusty is: providing incentives to the cooperative peers by rewarding in terms of cryptocoins based on blockchain. We have anticipated three ways of achieving the above defined objective. We are further investigating on how to integrate these two technologies of distributed systems viz. P2P file sharing systems and blockchain, and with this new paradigm, interesting research areas can be further developed, both in the field of P2P cryptocurrency networks and also when these networks are combined with other distributed scenarios.
Torkura, K. A., Sukmana, M. I. H., Meinig, M., Cheng, F., Meinel, C., Graupner, H..  2018.  A Threat Modeling Approach for Cloud Storage Brokerage and File Sharing Systems. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1-5.
Cloud storage brokerage systems abstract cloud storage complexities by mediating technical and business relationships between cloud stakeholders, while providing value-added services. This however raises security challenges pertaining to the integration of disparate components with sometimes conflicting security policies and architectural complexities. Assessing the security risks of these challenges is therefore important for Cloud Storage Brokers (CSBs). In this paper, we present a threat modeling schema to analyze and identify threats and risks in cloud brokerage brokerage systems. Our threat modeling schema works by generating attack trees, attack graphs, and data flow diagrams that represent the interconnections between identified security risks. Our proof-of-concept implementation employs the Common Configuration Scoring System (CCSS) to support the threat modeling schema, since current schemes lack sufficient security metrics which are imperatives for comprehensive risk assessments. We demonstrate the efficiency of our proposal by devising CCSS base scores for two attacks commonly launched against cloud storage systems: Cloud sStorage Enumeration Attack and Cloud Storage Exploitation Attack. These metrics are then combined with CVSS based metrics to assign probabilities in an Attack Tree. Thus, we show the possibility combining CVSS and CCSS for comprehensive threat modeling, and also show that our schemas can be used to improve cloud security.
2019-09-04
Paiker, N., Ding, X., Curtmola, R., Borcea, C..  2018.  Context-Aware File Discovery System for Distributed Mobile-Cloud Apps. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom). :198–203.
Recent research has proposed middleware to enable efficient distributed apps over mobile-cloud platforms. This paper presents a Context-Aware File Discovery Service (CAFDS) that allows distributed mobile-cloud applications to find and access files of interest shared by collaborating users. CAFDS enables programmers to search for files defined by context and content features, such as location, creation time, or the presence of certain object types within an image file. CAFDS provides low-latency through a cloud-based metadata server, which uses a decision tree to locate the nearest files that satisfy the context and content features requested by applications. We implemented CAFDS in Android and Linux. Experimental results show CAFDS achieves substantially lower latency than peer-to-peer solutions that cannot leverage context information.
Maltitz, M. von, Smarzly, S., Kinkelin, H., Carle, G..  2018.  A management framework for secure multiparty computation in dynamic environments. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–7.
Secure multiparty computation (SMC) is a promising technology for privacy-preserving collaborative computation. In the last years several feasibility studies have shown its practical applicability in different fields. However, it is recognized that administration, and management overhead of SMC solutions are still a problem. A vital next step is the incorporation of SMC in the emerging fields of the Internet of Things and (smart) dynamic environments. In these settings, the properties of these contexts make utilization of SMC even more challenging since some vital premises for its application regarding environmental stability and preliminary configuration are not initially fulfilled. We bridge this gap by providing FlexSMC, a management and orchestration framework for SMC which supports the discovery of nodes, supports a trust establishment between them and realizes robustness of SMC session by handling nodes failures and communication interruptions. The practical evaluation of FlexSMC shows that it enables the application of SMC in dynamic environments with reasonable performance penalties and computation durations allowing soft real-time and interactive use cases.
2019-06-10
Eziama, E., Jaimes, L. M. S., James, A., Nwizege, K. S., Balador, A., Tepe, K..  2018.  Machine Learning-Based Recommendation Trust Model for Machine-to-Machine Communication. 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). :1-6.

The Machine Type Communication Devices (MTCDs) are usually based on Internet Protocol (IP), which can cause billions of connected objects to be part of the Internet. The enormous amount of data coming from these devices are quite heterogeneous in nature, which can lead to security issues, such as injection attacks, ballot stuffing, and bad mouthing. Consequently, this work considers machine learning trust evaluation as an effective and accurate option for solving the issues associate with security threats. In this paper, a comparative analysis is carried out with five different machine learning approaches: Naive Bayes (NB), Decision Tree (DT), Linear and Radial Support Vector Machine (SVM), KNearest Neighbor (KNN), and Random Forest (RF). As a critical element of the research, the recommendations consider different Machine-to-Machine (M2M) communication nodes with regard to their ability to identify malicious and honest information. To validate the performances of these models, two trust computation measures were used: Receiver Operating Characteristics (ROCs), Precision and Recall. The malicious data was formulated in Matlab. A scenario was created where 50% of the information were modified to be malicious. The malicious nodes were varied in the ranges of 10%, 20%, 30%, 40%, and the results were carefully analyzed.

Arsalan, A., Rehman, R. A..  2018.  Prevention of Timing Attack in Software Defined Named Data Network with VANETs. 2018 International Conference on Frontiers of Information Technology (FIT). :247–252.

Software Defined Network (SDN) is getting popularity both from academic and industry. Lot of researches have been made to combine SDN with future Internet paradigms to manage and control networks efficiently. SDN provides better management and control in a network through decoupling of data and control plane. Named Data Networking (NDN) is a future Internet technique with aim to replace IPv4 addressing problems. In NDN, communication between different nodes done on the basis of content names rather than IP addresses. Vehicular Ad-hoc Network (VANET) is a subtype of MANET which is also considered as a hot area for future applications. Different vehicles communicate with each other to form a network known as VANET. Communication between VANET can be done in two ways (i) Vehicle to Vehicle (V2V) (ii) Vehicle to Infrastructure (V2I). Combination of SDN and NDN techniques in future Internet can solve lot of problems which were hard to answer by considering a single technique. Security in VANET is always challenging due to unstable topology of VANET. In this paper, we merge future Internet techniques and propose a new scheme to answer timing attack problem in VANETs named as Timing Attack Prevention (TAP) protocol. Proposed scheme is evaluated through simulations which shows the superiority of proposed protocol regarding detection and mitigation of attacker vehicles as compared to normal timing attack scenario in NDN based VANET.

Majumder, S., Bhattacharyya, D..  2018.  Mitigating wormhole attack in MANET using absolute deviation statistical approach. 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC). :317–320.

MANET is vulnerable to so many attacks like Black hole, Wormhole, Jellyfish, Dos etc. Attackers can easily launch Wormhole attack by faking a route from original within network. In this paper, we propose an algorithm on AD (Absolute Deviation) of statistical approach to avoid and prevent Wormhole attack. Absolute deviation covariance and correlation take less time to detect Wormhole attack than classical one. Any extra necessary conditions, like GPS are not needed in proposed algorithms. From origin to destination, a fake tunnel is created by wormhole attackers, which is a link with good amount of frequency level. A false idea is created by this, that the source and destination of the path are very nearby each other and will take less time. But the original path takes more time. So it is necessary to calculate the time taken to avoid and prevent Wormhole attack. Better performance by absolute deviation technique than AODV is proved by simulation, done by MATLAB simulator for wormhole attack. Then the packet drop pattern is also measured for Wormholes using Absolute Deviation Correlation Coefficient.

Saifuddin, K. M., Ali, A. J. B., Ahmed, A. S., Alam, S. S., Ahmad, A. S..  2018.  Watchdog and Pathrater based Intrusion Detection System for MANET. 2018 4th International Conference on Electrical Engineering and Information Communication Technology (iCEEiCT). :168–173.

Mobile Ad Hoc Network (MANET) is pretty vulnerable to attacks because of its broad distribution and open nodes. Hence, an effective Intrusion Detection System (IDS) is vital in MANET to deter unwanted malicious attacks. An IDS has been proposed in this paper based on watchdog and pathrater method as well as evaluation of its performance has been presented using Dynamic Source Routing (DSR) and Ad-hoc On-demand Distance Vector (AODV) routing protocols with and without considering the effect of the sinkhole attack. The results obtained justify that the proposed IDS is capable of detecting suspicious activities and identifying the malicious nodes. Moreover, it replaces the fake route with a real one in the routing table in order to mitigate the security risks. The performance appraisal also suggests that the AODV protocol has a capacity of sending more packets than DSR and yields more throughput.

2019-04-05
Lysenko, S., Bobrovnikova, K., Savenko, O..  2018.  A Botnet Detection Approach Based on the Clonal Selection Algorithm. 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT). :424-428.

The paper presents a new technique for the botnets' detection in the corporate area networks. It is based on the usage of the algorithms of the artificial immune systems. Proposed approach is able to distinguish benign network traffic from malicious one using the clonal selection algorithm taking into account the features of the botnet's presence in the network. An approach present the main improvements of the BotGRABBER system. It is able to detect the IRC, HTTP, DNS and P2P botnets.

Chen, S., Chen, Y., Tzeng, W..  2018.  Effective Botnet Detection Through Neural Networks on Convolutional Features. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :372-378.

Botnet is one of the major threats on the Internet for committing cybercrimes, such as DDoS attacks, stealing sensitive information, spreading spams, etc. It is a challenging issue to detect modern botnets that are continuously improving for evading detection. In this paper, we propose a machine learning based botnet detection system that is shown to be effective in identifying P2P botnets. Our approach extracts convolutional version of effective flow-based features, and trains a classification model by using a feed-forward artificial neural network. The experimental results show that the accuracy of detection using the convolutional features is better than the ones using the traditional features. It can achieve 94.7% of detection accuracy and 2.2% of false positive rate on the known P2P botnet datasets. Furthermore, our system provides an additional confidence testing for enhancing performance of botnet detection. It further classifies the network traffic of insufficient confidence in the neural network. The experiment shows that this stage can increase the detection accuracy up to 98.6% and decrease the false positive rate up to 0.5%.

2019-02-25
Xu, H., Hu, L., Liu, P., Xiao, Y., Wang, W., Dayal, J., Wang, Q., Tang, Y..  2018.  Oases: An Online Scalable Spam Detection System for Social Networks. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). :98–105.
Web-based social networks enable new community-based opportunities for participants to engage, share their thoughts, and interact with each other. Theses related activities such as searching and advertising are threatened by spammers, content polluters, and malware disseminators. We propose a scalable spam detection system, termed Oases, for uncovering social spam in social networks using an online and scalable approach. The novelty of our design lies in two key components: (1) a decentralized DHT-based tree overlay deployment for harvesting and uncovering deceptive spam from social communities; and (2) a progressive aggregation tree for aggregating the properties of these spam posts for creating new spam classifiers to actively filter out new spam. We design and implement the prototype of Oases and discuss the design considerations of the proposed approach. Our large-scale experiments using real-world Twitter data demonstrate scalability, attractive load-balancing, and graceful efficiency in online spam detection for social networks.
2019-02-18
Yuan, Y., Huo, L., Wang, Z., Hogrefe, D..  2018.  Secure APIT Localization Scheme Against Sybil Attacks in Distributed Wireless Sensor Networks. IEEE Access. 6:27629–27636.
For location-aware applications in wireless sensor networks (WSNs), it is important to ensure that sensor nodes can get correct locations in a hostile WSNs. Sybil attacks, which are vital threats in WSNs, especially in the distributed WSNs. They can forge one or multiple identities to decrease the localization accuracy, or sometimes to collapse the whole localization systems. In this paper, a novel lightweight sybilfree (SF)-APIT algorithm is presented to solve the problem of sybil attacks in APIT localization scheme, which is a popular range-free method and performs at individual node in a purely distributed fashion. The proposed SF-APIT scheme requires minimal overhead for wireless devices and works well based on the received signal strength. Simulations demonstrate that SF-APIT is an effective scheme in detecting and defending against sybil attacks with a high detection rate in distributed wireless localization schemes.
Shamieh, F., Alharbi, R..  2018.  Novel Sybil Defense Scheme for Peer–to–peer Applications. 2018 21st Saudi Computer Society National Computer Conference (NCC). :1–8.

The importance of peer-to-peer (P2P) network overlays produced enormous interest in the research community due to their robustness, scalability, and increase of data availability. P2P networks are overlays of logically connected hosts and other nodes including servers. P2P networks allow users to share their files without the need for any centralized servers. Since P2P networks are largely constructed of end-hosts, they are susceptible to abuse and malicious activity, such as sybil attacks. Impostors perform sybil attacks by assigning nodes multiple addresses, as opposed to a single address, with the goal of degrading network quality. Sybil nodes will spread malicious data and provide bogus responses to requests. To prevent sybil attacks from occurring, a novel defense mechanism is proposed. In the proposed scheme, the DHT key-space is divided and treated in a similar manner to radio frequency allocation incensing. An overlay of trusted nodes is used to detect and handle sybil nodes with the aid of source-destination pairs reporting on each other. The simulation results show that the proposed scheme detects sybil nodes in large sized networks with thousands of interactions.

2019-02-14
Narayanan, G., Das, J. K., Rajeswari, M., Kumar, R. S..  2018.  Game Theoretical Approach with Audit Based Misbehavior Detection System. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :1932-1935.
Mobile Ad-hoc Networks are dynamic in nature and do not have fixed infrastructure to govern nodes in the networks. The mission lies ahead in coordinating among such dynamically shifting nodes. The root problem of identifying and isolating misbehaving nodes that refuse to forward packets in multi-hop ad hoc networks is solved by the development of a comprehensive system called Audit-based Misbehavior Detection (AMD) that can efficiently isolates selective and continuous packet droppers. AMD evaluates node behavior on a per-packet basis, without using energy-expensive overhearing techniques or intensive acknowledgment schemes. Moreover, AMD can detect selective dropping attacks even in end-to-end encrypted traffic and can be applied to multi-channel networks. Game theoretical approaches are more suitable in deciding upon the reward mechanisms for which the mobile nodes operate upon. Rewards or penalties have to be decided by ensuring a clean and healthy MANET environment. A non-routine yet surprise alterations are well required in place in deciding suitable and safe reward strategies. This work focuses on integrating a Audit-based Misbehaviour Detection (AMD)scheme and an incentive based reputation scheme with game theoretical approach called Supervisory Game to analyze the selfish behavior of nodes in the MANETs environment. The proposed work GAMD significantly reduces the cost of detecting misbehavior nodes in the network.
2019-02-08
Cui, S., Asghar, M. R., Russello, G..  2018.  Towards Blockchain-Based Scalable and Trustworthy File Sharing. 2018 27th International Conference on Computer Communication and Networks (ICCCN). :1-2.
In blockchain-based systems, malicious behaviour can be detected using auditable information in transactions managed by distributed ledgers. Besides cryptocurrency, blockchain technology has recently been used for other applications, such as file storage. However, most of existing blockchain- based file storage systems can not revoke a user efficiently when multiple users have access to the same file that is encrypted. Actually, they need to update file encryption keys and distribute new keys to remaining users, which significantly increases computation and bandwidth overheads. In this work, we propose a blockchain and proxy re-encryption based design for encrypted file sharing that brings a distributed access control and data management. By combining blockchain with proxy re-encryption, our approach not only ensures confidentiality and integrity of files, but also provides a scalable key management mechanism for file sharing among multiple users. Moreover, by storing encrypted files and related keys in a distributed way, our method can resist collusion attacks between revoked users and distributed proxies.
Ioini, N. E., Pahl, C..  2018.  Trustworthy Orchestration of Container Based Edge Computing Using Permissioned Blockchain. 2018 Fifth International Conference on Internet of Things: Systems, Management and Security. :147-154.
The need to process the verity, volume and velocity of data generated by today's Internet of Things (IoT) devices has pushed both academia and the industry to investigate new architectural alternatives to support the new challenges. As a result, Edge Computing (EC) has emerged to address these issues, by placing part of the cloud resources (e.g., computation, storage, logic) closer to the edge of the network, which allows faster and context dependent data analysis and storage. However, as EC infrastructures grow, different providers who do not necessarily trust each other need to collaborate in order serve different IoT devices. In this context, EC infrastructures, IoT devices and the data transiting the network all need to be subject to identity and provenance checks, in order to increase trust and accountability. Each device/data in the network needs to be identified and the provenance of its actions needs to be tracked. In this paper, we propose a blockchain container based architecture that implements the W3C-PROV Data Model, to track identities and provenance of all orchestration decisions of a business network. This architecture provides new forms of interaction between the different stakeholders, which supports trustworthy transactions and leads to a new decentralized interaction model for IoT based applications.