Visible to the public Biblio

Filters: Keyword is A Language and Framework for Development of Secure Mobile Applications  [Clear All Filters]
Nistor, Ligia, Kurilova, Darya, Balzer, Stephanie, Chung, Benjamin, Potanin, Alex, Aldrich, Jonathan.  2013.  Wyvern: A Simple, Typed, and Pure Object-oriented Language. Proceedings of the 5th Workshop on MechAnisms for SPEcialization, Generalization and inHerItance. :9–16.
The simplest and purest practical object-oriented language designs today are seen in dynamically-typed languages, such as Smalltalk and Self. Static types, however, have potential benefits for productivity, security, and reasoning about programs. In this paper, we describe the design of Wyvern, a statically typed, pure object-oriented language that attempts to retain much of the simplicity and expressiveness of these iconic designs. Our goals lead us to combine pure object-oriented and functional abstractions in a simple, typed setting. We present a foundational object-based language that we believe to be as close as one can get to simple typed lambda calculus while keeping object-orientation. We show how this foundational language can be translated to the typed lambda calculus via standard encodings. We then define a simple extension to this language that introduces classes and show that classes are no more than sugar for the foundational object-based language. Our future intention is to demonstrate that modules and other object-oriented features can be added to our language as not more than such syntactical extensions while keeping the object-oriented core as pure as possible. The design of Wyvern closely follows both historical and modern ideas about the essence of object-orientation, suggesting a new way to think about a minimal, practical, typed core language for objects.
Aldrich, Jonathan.  2013.  The Power of Interoperability: Why Objects Are Inevitable. Proceedings of the 2013 ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software. :101–116.
Three years ago in this venue, Cook argued that in their essence, objects are what Reynolds called procedural data structures. His observation raises a natural question: if procedural data structures are the essence of objects, has this contributed to the empirical success of objects, and if so, how? This essay attempts to answer that question. After reviewing Cook's definition, I propose the term service abstractions to capture the essential nature of objects. This terminology emphasizes, following Kay, that objects are not primarily about representing and manipulating data, but are more about providing services in support of higher-level goals. Using examples taken from object-oriented frameworks, I illustrate the unique design leverage that service abstractions provide: the ability to define abstractions that can be extended, and whose extensions are interoperable in a first-class way. The essay argues that the form of interoperable extension supported by service abstractions is essential to modern software: many modern frameworks and ecosystems could not have been built without service abstractions. In this sense, the success of objects was not a coincidence: it was an inevitable consequence of their service abstraction nature.
Fulton, Nathan.  2012.  Security Through Extensible Type Systems. Proceedings of the 3rd Annual Conference on Systems, Programming, and Applications: Software for Humanity. :107–108.
Researchers interested in security often wish to introduce new primitives into a language. Extensible languages hold promise in such scenarios, but only if the extension mechanism is sufficiently safe and expressive. This paper describes several modifications to an extensible language motivated by end-to-end security concerns.
Chen, Simin.  2012.  Declarative Access Policies Based on Objects, Relationships, and States. Proceedings of the 3rd Annual Conference on Systems, Programming, and Applications: Software for Humanity. :99–100.
Access policies are hard to express in existing programming languages. However, their accurate expression is a prerequisite for many of today's applications. We propose a new language that uses classes, first-class relationships, and first-class states to express access policies in a more declarative and fine-grained way than existing solutions allow.
Maass, Michael, Scherlis, William L., Aldrich, Jonathan.  2014.  In-nimbo Sandboxing. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :1:1–1:12.

Sandboxes impose a security policy, isolating applications and their components from the rest of a system. While many sandboxing techniques exist, state of the art sandboxes generally perform their functions within the system that is being defended. As a result, when the sandbox fails or is bypassed, the security of the surrounding system can no longer be assured. We experiment with the idea of in-nimbo sandboxing, encapsulating untrusted computations away from the system we are trying to protect. The idea is to delegate computations that may be vulnerable or malicious to virtual machine instances in a cloud computing environment. This may not reduce the possibility of an in-situ sandbox compromise, but it could significantly reduce the consequences should that possibility be realized. To achieve this advantage, there are additional requirements, including: (1) A regulated channel between the local and cloud environments that supports interaction with the encapsulated application, (2) Performance design that acceptably minimizes latencies in excess of the in-situ baseline. To test the feasibility of the idea, we built an in-nimbo sandbox for Adobe Reader, an application that historically has been subject to significant attacks. We undertook a prototype deployment with PDF users in a large aerospace firm. In addition to thwarting several examples of existing PDF-based malware, we found that the added increment of latency, perhaps surprisingly, does not overly impair the user experience with respect to performance or usability.