Visible to the public Biblio

Filters: Keyword is Schnorr signature  [Clear All Filters]
Wu, Shanglun, Yuan, Yujie, Kar, Pushpendu.  2020.  Lightweight Verification and Fine-grained Access Control in Named Data Networking Based on Schnorr Signature and Hash Functions. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :1561–1566.
Named Data Networking (NDN) is a new kind of architecture for future Internet, which is exactly satisfied with the rapidly increasing mobile requirement and information-depended applications that dominate today's Internet. However, the current verification-data accessed system is not safe enough to prevent data leakage because no strongly method to resist any device or user to access it. We bring up a lightweight verification based on hash functions and a fine-grained access control based on Schnorr Signature to address the issue seamlessly. The proposed scheme is scalable and protect data confidentiality in a NDN network.
Srinate, Panpet, Chiewthanakul, Bhichate.  2018.  A variant of the Schnorr signature using an elliptic curve over a field of characteristic two. 2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE). :1–5.
Digital signature over elliptic curve is one of the most important applications of security because it is effective. Recently, it has been developed and defined in the various standard of security. The application of the digital signature are signer authentication, data integrity, and non-repudiation. Currently, the requirements to implement authentication process on a computer hardware with limited resource such as energy, memory and computing power are increasing. The developer should consider these factors along with security factor for the effective implement on the computer hardware with limited resource. In this paper, we propose the Schnorr signature scheme using Koblitz curve over a field of characteristic two. The advantage of Schnorr signature scheme is a good combination with Koblitz curve over a field of characteristic two, therefore its arithmetic can be performed in any computer. Moreover, we use Double-and-Add scalar multiplication to reduce time in the process of systems. In addition, this paper shows a result of time in the process of the system to compare the performance of the Schnorr signature scheme on Koblitz curve using Double-andAdd scalar multiplication with the Schnorr signature scheme on Koblitz curve using typical scalar multiplication. The result of this study is that both systems working correctly. However, the Schnorr signature scheme on Koblitz curve using Double-andAdd performs better in time efficiency than of Schnorr signature scheme on Koblitz curve using typical scalar multiplication.
Xin, Wei, Wang, M., Shao, Shuai, Wang, Z., Zhang, Tao.  2015.  A variant of schnorr signature scheme for path-checking in RFID-based supply chains. 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). :2608–2613.

The RFID technology has attracted considerable attention in recent years, and brings convenience to supply chain management. In this paper, we concentrate on designing path-checking protocols to check the valid paths in supply chains. By entering a valid path, the check reader can distinguish whether the tags have gone through the path or not. Based on modified schnorr signature scheme, we provide a path-checking method to achieve multi-signatures and final verification. In the end, we conduct security and privacy analysis to the scheme.

Chuan, T. H., Zhang, J., Maode, M., Chong, P. H. Joo, Labiod, H..  2015.  Secure Public Key Regime (SPKR) in vehicular networks. 2015 International Conference on Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC). :1–7.

Public Key Regime (PKR) was proposed as an alternative to certificate based PKI in securing Vehicular Networks (VNs). It eliminates the need for vehicles to append their certificate for verification because the Road Side Units (RSUs) serve as Delegated Trusted Authorities (DTAs) to issue up-to-date public keys to vehicles for communications. If a vehicle's private/public key needs to be revoked, the root TA performs real time updates and disseminates the changes to these RSUs in the network. Therefore, PKR does not need to maintain a huge Certificate Revocation List (CRL), avoids complex certificate verification process and minimizes the high latency. However, the PKR scheme is vulnerable to Denial of Service (DoS) and collusion attacks. In this paper, we study these attacks and propose a pre-authentication mechanism to secure the PKR scheme. Our new scheme is called the Secure Public Key Regime (SPKR). It is based on the Schnorr signature scheme that requires vehicles to expend some amount of CPU resources before RSUs issue the requested public keys to them. This helps to alleviate the risk of DoS attacks. Furthermore, our scheme is secure against collusion attacks. Through numerical analysis, we show that SPKR has a lower authentication delay compared with the Elliptic Curve Digital Signature (ECDSA) scheme and other ECDSA based counterparts.