Visible to the public Biblio

Found 366 results

Filters: Keyword is Data models  [Clear All Filters]
Al-Ameer, Ali, AL-Sunni, Fouad.  2021.  A Methodology for Securities and Cryptocurrency Trading Using Exploratory Data Analysis and Artificial Intelligence. 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA). :54–61.
This paper discusses securities and cryptocurrency trading using artificial intelligence (AI) in the sense that it focuses on performing Exploratory Data Analysis (EDA) on selected technical indicators before proceeding to modelling, and then to develop more practical models by introducing new reward loss function that maximizes the returns during training phase. The results of EDA reveal that the complex patterns within the data can be better captured by discriminative classification models and this was endorsed by performing back-testing on two securities using Artificial Neural Network (ANN) and Random Forests (RF) as discriminative models against their counterpart Na\"ıve Bayes as a generative model. To enhance the learning process, the new reward loss function is utilized to retrain the ANN with testing on AAPL, IBM, BRENT CRUDE and BTC using auto-trading strategy that serves as the intelligent unit, and the results indicate this loss superiorly outperforms the conventional cross-entropy used in predictive models. The overall results of this work suggest that there should be larger focus on EDA and more practical losses in the research of machine learning modelling for stock market prediction applications.
Ren, Sothearin, Kim, Jae-Sung, Cho, Wan-Sup, Soeng, Saravit, Kong, Sovanreach, Lee, Kyung-Hee.  2021.  Big Data Platform for Intelligence Industrial IoT Sensor Monitoring System Based on Edge Computing and AI. 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :480–482.
The cutting edge of Industry 4.0 has driven everything to be converted to disruptive innovation and digitalized. This digital revolution is imprinted by modern and advanced technology that takes advantage of Big Data and Artificial Intelligence (AI) to nurture from automatic learning systems, smart city, smart energy, smart factory to the edge computing technology, and so on. To harness an appealing, noteworthy, and leading development in smart manufacturing industry, the modern industrial sciences and technologies such as Big Data, Artificial Intelligence, Internet of things, and Edge Computing have to be integrated cooperatively. Accordingly, a suggestion on the integration is presented in this paper. This proposed paper describes the design and implementation of big data platform for intelligence industrial internet of things sensor monitoring system and conveys a prediction of any upcoming errors beforehand. The architecture design is based on edge computing and artificial intelligence. To extend more precisely, industrial internet of things sensor here is about the condition monitoring sensor data - vibration, temperature, related humidity, and barometric pressure inside facility manufacturing factory.
Xu, Baoyue, Du, Dajun, Zhang, Changda, Zhang, Jin.  2021.  A Honeypot-based Attack Detection Method for Networked Inverted Pendulum System. 2021 40th Chinese Control Conference (CCC). :8645–8650.
The data transmitted via the network may be vulnerable to cyber attacks in networked inverted pendulum system (NIPS), how to detect cyber attacks is a challenging issue. To solve this problem, this paper investigates a honeypot-based attack detection method for NIPS. Firstly, honeypot for NIPS attack detection (namely NipsPot) is constructed by deceptive environment module of a virtual closed-loop control system, and the stealthiness of typical covert attacks is analysed. Secondly, attack data is collected by NipsPot, which is used to train supported vector machine (SVM) model for attack detection. Finally, simulation results demonstrate that NipsPot-based attack detector can achieve the accuracy rate of 99.78%, the precision rate of 98.75%, and the recall rate of 100%.
Roy, Kashob Kumar, Roy, Amit, Mahbubur Rahman, A K M, Amin, M Ashraful, Ali, Amin Ahsan.  2021.  Structure-Aware Hierarchical Graph Pooling using Information Bottleneck. 2021 International Joint Conference on Neural Networks (IJCNN). :1–8.
Graph pooling is an essential ingredient of Graph Neural Networks (GNNs) in graph classification and regression tasks. For these tasks, different pooling strategies have been proposed to generate a graph-level representation by downsampling and summarizing nodes' features in a graph. However, most existing pooling methods are unable to capture distinguishable structural information effectively. Besides, they are prone to adversarial attacks. In this work, we propose a novel pooling method named as HIBPool where we leverage the Information Bottleneck (IB) principle that optimally balances the expressiveness and robustness of a model to learn representations of input data. Furthermore, we introduce a novel structure-aware Discriminative Pooling Readout (DiP-Readout) function to capture the informative local subgraph structures in the graph. Finally, our experimental results show that our model significantly outperforms other state-of-art methods on several graph classification benchmarks and more resilient to feature-perturbation attack than existing pooling methods11Source code at:
Panda, Akash Kumar, Kosko, Bart.  2021.  Bayesian Pruned Random Rule Foams for XAI. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.
A random rule foam grows and combines several independent fuzzy rule-based systems by randomly sampling input-output data from a trained deep neural classifier. The random rule foam defines an interpretable proxy system for the sampled black-box classifier. The random foam gives the complete Bayesian posterior probabilities over the foam subsystems that contribute to the proxy system's output for a given pattern input. It also gives the Bayesian posterior over the if-then fuzzy rules in each of these constituent foams. The random foam also computes a conditional variance that describes the uncertainty in its predicted output given the random foam's learned rule structure. The mixture structure leads to bootstrap confidence intervals around the output. Using the Bayesian posterior probabilities to prune or discard low-probability sub-foams improves the system's classification accuracy. Simulations used the MNIST image data set of 60,000 gray-scale images of ten hand-written digits. Dropping the lowest-probability foams per input pattern brought the pruned random foam's classification accuracy nearly to that of the neural classifier. Posterior pruning outperformed simple accuracy pruning of a random foam and outperformed a random forest trained on the same neural classifier.
Zhang, Yuyi, Xu, Feiran, Zou, Jingying, Petrosian, Ovanes L., Krinkin, Kirill V..  2021.  XAI Evaluation: Evaluating Black-Box Model Explanations for Prediction. 2021 II International Conference on Neural Networks and Neurotechnologies (NeuroNT). :13–16.
The results of evaluating explanations of the black-box model for prediction are presented. The XAI evaluation is realized through the different principles and characteristics between black-box model explanations and XAI labels. In the field of high-dimensional prediction, the black-box model represented by neural network and ensemble models can predict complex data sets more accurately than traditional linear regression and white-box models such as the decision tree model. However, an unexplainable characteristic not only hinders developers from debugging but also causes users mistrust. In the XAI field dedicated to ``opening'' the black box model, effective evaluation methods are still being developed. Within the established XAI evaluation framework (MDMC) in this paper, explanation methods for the prediction can be effectively tested, and the identified explanation method with relatively higher quality can improve the accuracy, transparency, and reliability of prediction.
Zhai, Tongqing, Li, Yiming, Zhang, Ziqi, Wu, Baoyuan, Jiang, Yong, Xia, Shu-Tao.  2021.  Backdoor Attack Against Speaker Verification. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2560–2564.
Speaker verification has been widely and successfully adopted in many mission-critical areas for user identification. The training of speaker verification requires a large amount of data, therefore users usually need to adopt third-party data (e.g., data from the Internet or third-party data company). This raises the question of whether adopting untrusted third-party data can pose a security threat. In this paper, we demonstrate that it is possible to inject the hidden backdoor for infecting speaker verification models by poisoning the training data. Specifically, we design a clustering-based attack scheme where poisoned samples from different clusters will contain different triggers (i.e., pre-defined utterances), based on our understanding of verification tasks. The infected models behave normally on benign samples, while attacker-specified unenrolled triggers will successfully pass the verification even if the attacker has no information about the enrolled speaker. We also demonstrate that existing back-door attacks cannot be directly adopted in attacking speaker verification. Our approach not only provides a new perspective for designing novel attacks, but also serves as a strong baseline for improving the robustness of verification methods. The code for reproducing main results is available at
Xu, Xiaojun, Wang, Qi, Li, Huichen, Borisov, Nikita, Gunter, Carl A., Li, Bo.  2021.  Detecting AI Trojans Using Meta Neural Analysis. 2021 IEEE Symposium on Security and Privacy (SP). :103–120.
In machine learning Trojan attacks, an adversary trains a corrupted model that obtains good performance on normal data but behaves maliciously on data samples with certain trigger patterns. Several approaches have been proposed to detect such attacks, but they make undesirable assumptions about the attack strategies or require direct access to the trained models, which restricts their utility in practice.This paper addresses these challenges by introducing a Meta Neural Trojan Detection (MNTD) pipeline that does not make assumptions on the attack strategies and only needs black-box access to models. The strategy is to train a meta-classifier that predicts whether a given target model is Trojaned. To train the meta-model without knowledge of the attack strategy, we introduce a technique called jumbo learning that samples a set of Trojaned models following a general distribution. We then dynamically optimize a query set together with the meta-classifier to distinguish between Trojaned and benign models.We evaluate MNTD with experiments on vision, speech, tabular data and natural language text datasets, and against different Trojan attacks such as data poisoning attack, model manipulation attack, and latent attack. We show that MNTD achieves 97% detection AUC score and significantly outperforms existing detection approaches. In addition, MNTD generalizes well and achieves high detection performance against unforeseen attacks. We also propose a robust MNTD pipeline which achieves around 90% detection AUC even when the attacker aims to evade the detection with full knowledge of the system.
Ayed, Mohamed Ali, Talhi, Chamseddine.  2021.  Federated Learning for Anomaly-Based Intrusion Detection. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.
We are attending a severe zero-day cyber attacks. Machine learning based anomaly detection is definitely the most efficient defence in depth approach. It consists to analyzing the network traffic in order to distinguish the normal behaviour from the abnormal one. This approach is usually implemented in a central server where all the network traffic is analyzed which can rise privacy issues. In fact, with the increasing adoption of Cloud infrastructures, it is important to reduce as much as possible the outsourcing of such sensitive information to the several network nodes. A better approach is to ask each node to analyze its own data and then to exchange its learning finding (model) with a coordinator. In this paper, we investigate the application of federated learning for network-based intrusion detection. Our experiment was conducted based on the C ICIDS2017 dataset. We present a f ederated learning on a deep learning algorithm C NN based on model averaging. It is a self-learning system for detecting anomalies caused by malicious adversaries without human intervention and can cope with new and unknown attacks without decreasing performance. These experimentation demonstrate that this approach is effective in detecting intrusion.
Luo, Xinjian, Wu, Yuncheng, Xiao, Xiaokui, Ooi, Beng Chin.  2021.  Feature Inference Attack on Model Predictions in Vertical Federated Learning. 2021 IEEE 37th International Conference on Data Engineering (ICDE). :181–192.
Federated learning (FL) is an emerging paradigm for facilitating multiple organizations' data collaboration without revealing their private data to each other. Recently, vertical FL, where the participating organizations hold the same set of samples but with disjoint features and only one organization owns the labels, has received increased attention. This paper presents several feature inference attack methods to investigate the potential privacy leakages in the model prediction stage of vertical FL. The attack methods consider the most stringent setting that the adversary controls only the trained vertical FL model and the model predictions, relying on no background information of the attack target's data distribution. We first propose two specific attacks on the logistic regression (LR) and decision tree (DT) models, according to individual prediction output. We further design a general attack method based on multiple prediction outputs accumulated by the adversary to handle complex models, such as neural networks (NN) and random forest (RF) models. Experimental evaluations demonstrate the effectiveness of the proposed attacks and highlight the need for designing private mechanisms to protect the prediction outputs in vertical FL.
Meijaard, Yoram, Meiler, Peter-Paul, Allodi, Luca.  2021.  Modelling Disruptive APTs targeting Critical Infrastructure using Military Theory. 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :178–190.
Disruptive Advanced Persistent Threats (D-APTs) are a new sophisticated class of cyberattacks targeting critical infrastructures. Whereas regular APTs are well-described in the literature, no existing APT kill chain model incorporates the disruptive actions of D-APTs and can be used to represent DAPTs in data. To this aim, the contribution of this paper is twofold: first, we review the evolution of existing APT kill chain models. Second, we present a novel D-APT model based on existing ATP models and military theory. The model describes the strategic objective setting, the operational kill chain and the tactics of the attacker, as well as the defender’s critical infrastructure, processes and societal function.
Park, Kyuchan, Ahn, Bohyun, Kim, Jinsan, Won, Dongjun, Noh, Youngtae, Choi, JinChun, Kim, Taesic.  2021.  An Advanced Persistent Threat (APT)-Style Cyberattack Testbed for Distributed Energy Resources (DER). 2021 IEEE Design Methodologies Conference (DMC). :1–5.
Advanced Persistent Threat (APT) is a professional stealthy threat actor who uses continuous and sophisticated attack techniques which have not been well mitigated by existing defense strategies. This paper proposes an APT-style cyber-attack tested for distributed energy resources (DER) in cyber-physical environments. The proposed security testbed consists of: 1) a real-time DER simulator; 2) a real-time cyber system using real network systems and a server; and 3) penetration testing tools generating APT-style attacks as cyber events. Moreover, this paper provides a cyber kill chain model for a DER system based on a latest MITRE’s cyber kill chain model to model possible attack stages. Several real cyber-attacks are created and their impacts in a DER system are provided to validate the feasibility of the proposed security testbed for DER systems.
Kserawi, Fawaz, Malluhi, Qutaibah M..  2020.  Privacy Preservation of Aggregated Data Using Virtual Battery in the Smart Grid. 2020 IEEE 6th International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application (DependSys). :106–111.
Smart Meters (SM) are IoT end devices used to collect user utility consumption with limited processing power on the edge of the smart grid (SG). While SMs have great applications in providing data analysis to the utility provider and consumers, private user information can be inferred from SMs readings. For preserving user privacy, a number of methods were developed that use perturbation by adding noise to alter user load and hide consumer data. Most methods limit the amount of perturbation noise using differential privacy to preserve the benefits of data analysis. However, additive noise perturbation may have an undesirable effect on billing. Additionally, users may desire to select complete privacy without giving consent to having their data analyzed. We present a virtual battery model that uses perturbation with additive noise obtained from a virtual chargeable battery. The level of noise can be set to make user data differentially private preserving statistics or break differential privacy discarding the benefits of data analysis for more privacy. Our model uses fog aggregation with authentication and encryption that employs lightweight cryptographic primitives. We use Diffie-Hellman key exchange for symmetrical encryption of transferred data and a two-way challenge-response method for authentication.
Yin, Yifei, Zulkernine, Farhana, Dahan, Samuel.  2020.  Determining Worker Type from Legal Text Data Using Machine Learning. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :444–450.
This project addresses a classic employment law question in Canada and elsewhere using machine learning approach: how do we know whether a worker is an employee or an independent contractor? This is a central issue for self-represented litigants insofar as these two legal categories entail very different rights and employment protections. In this interdisciplinary research study, we collaborated with the Conflict Analytics Lab to develop machine learning models aimed at determining whether a worker is an employee or an independent contractor. We present a number of supervised learning models including a neural network model that we implemented using data labeled by law researchers and compared the accuracy of the models. Our neural network model achieved an accuracy rate of 91.5%. A critical discussion follows to identify the key features in the data that influence the accuracy of our models and provide insights about the case outcomes.
Takemoto, Shu, Shibagaki, Kazuya, Nozaki, Yusuke, Yoshikawa, Masaya.  2020.  Deep Learning Based Attack for AI Oriented Authentication Module. 2020 35th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :5–8.
Neural Network Physical Unclonable Function (NN-PUF) has been proposed for the secure implementation of Edge AI. This study evaluates the tamper resistance of NN-PUF against machine learning attacks. The machine learning attack in this study learns CPRs using deep learning. As a result of the evaluation experiment, the machine learning attack predicted about 82% for CRPs. Therefore, this study revealed that NN-PUF is vulnerable to machine learning attacks.
Song, ZHANG, Yang, Li, Gaoyang, LI, Han, YU, Baozhong, HAO, Jinwei, SONG, Jingang, FAN.  2020.  An Improved Data Provenance Framework Integrating Blockchain and PROV Model. 2020 International Conference on Computer Science and Management Technology (ICCSMT). :323–327.
Data tracing is an important topic in the era of digital economy when data are considered as one of the core factors in economic activities. However, the current data traceability systems often fail to obtain public trust due to their centralization and opaqueness. Blockchain possesses natural technical features such as data tampering resistance, anonymity, encryption security, etc., and shows great potential of improving the data tracing credibility. In this paper, we propose a blockchain-PROV-based multi-center data provenance solution in where the PROV model standardizes the data record storage and provenance on the blockchain automatically and intelligently. The solution improves the transparency and credibility of the provenance data, such as to help the efficient control and open sharing of data assets.
Ma, Chuang, You, Haisheng, Wang, Li, Zhang, Jiajun.  2020.  Intelligent Cybersecurity Situational Awareness Model Based on Deep Neural Network. 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :76–83.
In recent years, we have faced a series of online threats. The continuous malicious attacks on the network have directly caused a huge threat to the user's spirit and property. In order to deal with the complex security situation in today's network environment, an intelligent network situational awareness model based on deep neural networks is proposed. Use the nonlinear characteristics of the deep neural network to solve the nonlinear fitting problem, establish a network security situation assessment system, take the situation indicators output by the situation assessment system as a guide, and collect on the main data features according to the characteristics of the network attack method, the main data features are collected and the data is preprocessed. This model designs and trains a 4-layer neural network model, and then use the trained deep neural network model to understand and analyze the network situation data, so as to build the network situation perception model based on deep neural network. The deep neural network situational awareness model designed in this paper is used as a network situational awareness simulation attack prediction experiment. At the same time, it is compared with the perception model using gray theory and Support Vector Machine(SVM). The experiments show that this model can make perception according to the changes of state characteristics of network situation data, establish understanding through learning, and finally achieve accurate prediction of network attacks. Through comparison experiments, datatypized neural network deep neural network situation perception model is proved to be effective, accurate and superior.
Yilmaz, Ibrahim, Siraj, Ambareen, Ulybyshev, Denis.  2020.  Improving DGA-Based Malicious Domain Classifiers for Malware Defense with Adversarial Machine Learning. 2020 IEEE 4th Conference on Information Communication Technology (CICT). :1–6.
Domain Generation Algorithms (DGAs) are used by adversaries to establish Command and Control (C&C) server communications during cyber attacks. Blacklists of known/identified C&C domains are used as one of the defense mechanisms. However, static blacklists generated by signature-based approaches can neither keep up nor detect never-seen-before malicious domain names. To address this weakness, we applied a DGA-based malicious domain classifier using the Long Short-Term Memory (LSTM) method with a novel feature engineering technique. Our model's performance shows a greater accuracy compared to a previously reported model. Additionally, we propose a new adversarial machine learning-based method to generate never-before-seen malware-related domain families. We augment the training dataset with new samples to make the training of the models more effective in detecting never-before-seen malicious domain names. To protect blacklists of malicious domain names against adversarial access and modifications, we devise secure data containers to store and transfer blacklists.
Singh, Juhi, Sharmila, V Ceronmani.  2020.  Detecting Trojan Attacks on Deep Neural Networks. 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP). :1–5.
Machine learning and Artificial Intelligent techniques are the most used techniques. It gives opportunity to online sharing market where sharing and adopting model is being popular. It gives attackers many new opportunities. Deep neural network is the most used approached for artificial techniques. In this paper we are presenting a Proof of Concept method to detect Trojan attacks on the Deep Neural Network. Deploying trojan models can be dangerous in normal human lives (Application like Automated vehicle). First inverse the neuron network to create general trojan triggers, and then retrain the model with external datasets to inject Trojan trigger to the model. The malicious behaviors are only activated with the trojan trigger Input. In attack, original datasets are not required to train the model. In practice, usually datasets are not shared due to privacy or copyright concerns. We use five different applications to demonstrate the attack, and perform an analysis on the factors that affect the attack. The behavior of a trojan modification can be triggered without affecting the test accuracy for normal input datasets. After generating the trojan trigger and performing an attack. It's applying SHAP as defense against such attacks. SHAP is known for its unique explanation for model predictions.
Gayatri, R, Gayatri, Yendamury.  2020.  Detection of Trojan Based DoS Attacks on RSA Cryptosystem Using Hybrid Supervised Learning Models. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :1–5.
Privacy and security have become the most important aspects in any sphere of technology today from embedded systems to VLS I circuits. One such an attack compromising the privacy, security and trust of a networked control system by making them vulnerable to unauthorized access is the Hardware Trojan Horses. Even cryptographic algorithms whose purpose is to safeguard information are susceptible to these Trojan attacks. This paper discusses hybrid supervised machine learning models that predict with great accuracy whether the RSA asymmetric cryptosystem implemented in Atmel XMega microcontroller is Trojan-free (Golden) or Trojan-infected by analyzing the power profiles of the golden algorithm and trojan-infected algorithm. The power profiles are obtained using the ChipWhisperer Lite Board. The features selected from the power profiles are used to create datasets for the proposed hybrid models and train the proposed models using the 70/30 rule. The proposed hybrid models can be concluded that it has an accuracy of more than 88% irrespective of the Trojan types and size of the datasets.
Ma, Zhongrui, Yuanyuan, Huang, Lu, Jiazhong.  2020.  Trojan Traffic Detection Based on Machine Learning. 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :157–160.
At present, most Trojan detection methods are based on the features of host and code. Such methods have certain limitations and lag. This paper analyzes the network behavior features and network traffic of several typical Trojans such as Zeus and Weasel, and proposes a Trojan traffic detection algorithm based on machine learning. First, model different machine learning algorithms and use Random Forest algorithm to extract features for Trojan behavior and communication features. Then identify and detect Trojans' traffic. The accuracy is as high as 95.1%. Comparing the detection of different machine learning algorithms, experiments show that our algorithm has higher accuracy, which is helpful and useful for identifying Trojan.
Franchina, L., Socal, A..  2020.  Innovative Predictive Model for Smart City Security Risk Assessment. 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). :1831–1836.
In a Smart City, new technologies such as big data analytics, data fusion and artificial intelligence will increase awareness by measuring many phenomena and storing a huge amount of data. 5G will allow communication of these data among different infrastructures instantaneously. In a Smart City, security aspects are going to be a major concern. Some drawbacks, such as vulnerabilities of a highly integrated system and information overload, must be considered. To overcome these downsides, an innovative predictive model for Smart City security risk assessment has been developed. Risk metrics and indicators are defined by considering data coming from a wide range of sensors. An innovative ``what if'' algorithm is introduced to identify critical infrastructures functional relationship. Therefore, it is possible to evaluate the effects of an incident that involves one infrastructure over the others.
Lovetsky, I.V., Bukvina, E.A., Ponomarchuk, Y.V..  2020.  On Providing Information Security for Decentralized Databases. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1–5.
The paper discusses a prototype of a database, which can be used for operation in a decentralized mode for an information system. In this project, the focus is on creation of a data structure model that provides flexibility of business processes. The research is based on the development of a model for decentralized access rights distribution by including users in groups where they are assigned similar roles using consensus of other group members. This paper summarizes the main technologies that were used to ensure information security of the decentralized storage, the mechanisms for fixing access rights to an object access (the minimum entity of the system), describes a process of the data access control at the role level and an algorithm for managing the consensus for applying changes.
Bi, Ting, Chen, Xuehong, Li, Jun, Yang, Shuaifeng.  2020.  Research on Industrial Data Desensitization Algorithm Based on Fuzzy Set. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :1–5.
With the rapid development of internet technology, informatization and digitalization have penetrated into every link of human social life. A large amount of sensitive data has been accumulated and is still being generated within the enterprise. These sensitive data runs through the daily operation of enterprises and is widely used in business analysis, development and testing, and even some outsourcing business scenarios, which are increasing the possibility of sensitive data leakage and tampering. In fact, due to the improper use of data and the lack of protective measures and other reasons, data leakage events have happened again and again. Therefore, by introducing the concept of fuzzy set and using the membership function method, this paper proposes a desensitization technology framework for industrial data and a data desensitization algorithm based on fuzzy set, and verifies the desensitization effect and protective action on sensitive data of this algorithm through the test data desensitization experiment.
Peng, Cheng, Yongli, Wang, Boyi, Yao, Yuanyuan, Huang, Jiazhong, Lu, Qiao, Peng.  2020.  Cyber Security Situational Awareness Jointly Utilizing Ball K-Means and RBF Neural Networks. 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :261–265.
Low accuracy and slow speed of predictions for cyber security situational awareness. This paper proposes a network security situational awareness model based on accelerated accurate k-means radial basis function (RBF) neural network, the model uses the ball k-means clustering algorithm to cluster the input samples, to get the nodes of the hidden layer of the RBF neural network, speeding up the selection of the initial center point of the RBF neural network, and optimize the parameters of the RBF neural network structure. Finally, use the training data set to train the neural network, using the test data set to test the accuracy of this neural network structure, the results show that this method has a greater improvement in training speed and accuracy than other neural networks.