Visible to the public Biblio

Found 187 results

Filters: Keyword is Data models  [Clear All Filters]
Ahmadon, M. A. B., Yamaguchi, S., Saon, S., Mahamad, A. K..  2017.  On service security analysis for event log of IoT system based on data Petri net. 2017 IEEE International Symposium on Consumer Electronics (ISCE). :4–8.

The Internet of Things (IoT) has bridged our physical world to the cyber world which allows us to achieve our desired lifestyle. However, service security is an essential part to ensure that the designed service is not compromised. In this paper, we proposed a security analysis for IoT services. We focus on the context of detecting malicious operation from an event log of the designed IoT services. We utilized Petri nets with data to model IoT service which is logically correct. Then, we check the trace from an event log by tracking the captured process and data. Finally, we illustrated the approach with a smart home service and showed the effectiveness of our approach.

Matt, J., Waibel, P., Schulte, S..  2017.  Cost- and Latency-Efficient Redundant Data Storage in the Cloud. 2017 IEEE 10th Conference on Service-Oriented Computing and Applications (SOCA). :164–172.

With the steady increase of offered cloud storage services, they became a popular alternative to local storage systems. Beside several benefits, the usage of cloud storage services can offer, they have also some downsides like potential vendor lock-in or unavailability. Different pricing models, storage technologies and changing storage requirements are further complicating the selection of the best fitting storage solution. In this work, we present a heuristic optimization approach that optimizes the placement of data on cloud-based storage services in a redundant, cost- and latency-efficient way while considering user-defined Quality of Service requirements. The presented approach uses monitored data access patterns to find the best fitting storage solution. Through extensive evaluations, we show that our approach saves up to 30% of the storage cost and reduces the upload and download times by up to 48% and 69% in comparison to a baseline that follows a state-of-the-art approach.

An, S., Zhao, Z., Zhou, H..  2017.  Research on an Agent-Based Intelligent Social Tagging Recommendation System. 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). 1:43–46.

With the repaid growth of social tagging users, it becomes very important for social tagging systems how the required resources are recommended to users rapidly and accurately. Firstly, the architecture of an agent-based intelligent social tagging system is constructed using agent technology. Secondly, the design and implementation of user interest mining, personalized recommendation and common preference group recommendation are presented. Finally, a self-adaptive recommendation strategy for social tagging and its implementation are proposed based on the analysis to the shortcoming of the personalized recommendation strategy and the common preference group recommendation strategy. The self-adaptive recommendation strategy achieves equilibrium selection between efficiency and accuracy, so that it solves the contradiction between efficiency and accuracy in the personalized recommendation model and the common preference recommendation model.

Price-Williams, M., Heard, N., Turcotte, M..  2017.  Detecting Periodic Subsequences in Cyber Security Data. 2017 European Intelligence and Security Informatics Conference (EISIC). :84–90.

Anomaly detection for cyber-security defence hasgarnered much attention in recent years providing an orthogonalapproach to traditional signature-based detection systems.Anomaly detection relies on building probability models ofnormal computer network behaviour and detecting deviationsfrom the model. Most data sets used for cyber-security havea mix of user-driven events and automated network events,which most often appears as polling behaviour. Separating theseautomated events from those caused by human activity is essentialto building good statistical models for anomaly detection. This articlepresents a changepoint detection framework for identifyingautomated network events appearing as periodic subsequences ofevent times. The opening event of each subsequence is interpretedas a human action which then generates an automated, periodicprocess. Difficulties arising from the presence of duplicate andmissing data are addressed. The methodology is demonstrated usingauthentication data from Los Alamos National Laboratory'senterprise computer network.

Joshaghani, R., Mehrpouyan, H..  2017.  A Model-Checking Approach for Enforcing Purpose-Based Privacy Policies. 2017 IEEE Symposium on Privacy-Aware Computing (PAC). :178–179.

With the growth of Internet in many different aspects of life, users are required to share private information more than ever. Hence, users need a privacy management tool that can enforce complex and customized privacy policies. In this paper, we propose a privacy management system that not only allows users to define complex privacy policies for data sharing actions, but also monitors users' behavior and relationships to generate realistic policies. In addition, the proposed system utilizes formal modeling and model-checking approach to prove that information disclosures are valid and privacy policies are consistent with one another.

Wu, T. Y., Tseng, Y. M., Huang, S. S., Lai, Y. C..  2017.  Non-Repudiable Provable Data Possession Scheme With Designated Verifier in Cloud Storage Systems. IEEE Access. 5:19333–19341.

In cloud storage systems, users can upload their data along with associated tags (authentication information) to cloud storage servers. To ensure the availability and integrity of the outsourced data, provable data possession (PDP) schemes convince verifiers (users or third parties) that the outsourced data stored in the cloud storage server is correct and unchanged. Recently, several PDP schemes with designated verifier (DV-PDP) were proposed to provide the flexibility of arbitrary designated verifier. A designated verifier (private verifier) is trustable and designated by a user to check the integrity of the outsourced data. However, these DV-PDP schemes are either inefficient or insecure under some circumstances. In this paper, we propose the first non-repudiable PDP scheme with designated verifier (DV-NRPDP) to address the non-repudiation issue and resolve possible disputations between users and cloud storage servers. We define the system model, framework and adversary model of DV-NRPDP schemes. Afterward, a concrete DV-NRPDP scheme is presented. Based on the computing discrete logarithm assumption, we formally prove that the proposed DV-NRPDP scheme is secure against several forgery attacks in the random oracle model. Comparisons with the previously proposed schemes are given to demonstrate the advantages of our scheme.

Dering, M. L., Tucker, C. S..  2017.  Generative Adversarial Networks for Increasing the Veracity of Big Data. 2017 IEEE International Conference on Big Data (Big Data). :2595–2602.

This work describes how automated data generation integrates in a big data pipeline. A lack of veracity in big data can cause models that are inaccurate, or biased by trends in the training data. This can lead to issues as a pipeline matures that are difficult to overcome. This work describes the use of a Generative Adversarial Network to generate sketch data, such as those that might be used in a human verification task. These generated sketches are verified as recognizable using a crowd-sourcing methodology, and finds that the generated sketches were correctly recognized 43.8% of the time, in contrast to human drawn sketches which were 87.7% accurate. This method is scalable and can be used to generate realistic data in many domains and bootstrap a dataset used for training a model prior to deployment.

Gebhardt, D., Parikh, K., Dzieciuch, I., Walton, M., Hoang, N. A. V..  2017.  Hunting for Naval Mines with Deep Neural Networks. OCEANS 2017 - Anchorage. :1–5.

Explosive naval mines pose a threat to ocean and sea faring vessels, both military and civilian. This work applies deep neural network (DNN) methods to the problem of detecting minelike objects (MLO) on the seafloor in side-scan sonar imagery. We explored how the DNN depth, memory requirements, calculation requirements, and training data distribution affect detection efficacy. A visualization technique (class activation map) was incorporated that aids a user in interpreting the model's behavior. We found that modest DNN model sizes yielded better accuracy (98%) than very simple DNN models (93%) and a support vector machine (78%). The largest DNN models achieved textless;1% efficacy increase at a cost of a 17x increase of trainable parameter count and computation requirements. In contrast to DNNs popularized for many-class image recognition tasks, the models for this task require far fewer computational resources (0.3% of parameters), and are suitable for embedded use within an autonomous unmanned underwater vehicle.

Hill, Z., Nichols, W. M., Papa, M., Hale, J. C., Hawrylak, P. J..  2017.  Verifying Attack Graphs through Simulation. 2017 Resilience Week (RWS). :64–67.

Verifying attacks against cyber physical systems can be a costly and time-consuming process. By using a simulated environment, attacks can be verified quickly and accurately. By combining the simulation of a cyber physical system with a hybrid attack graph, the effects of a series of exploits can be accurately analysed. Furthermore, the use of a simulated environment to verify attacks may uncover new information about the nature of the attacks.

Chen, Y., Chen, W..  2017.  Finger ECG-Based Authentication for Healthcare Data Security Using Artificial Neural Network. 2017 IEEE 19th International Conference on E-Health Networking, Applications and Services (Healthcom). :1–6.

Wearable and mobile medical devices provide efficient, comfortable, and economic health monitoring, having a wide range of applications from daily to clinical scenarios. Health data security becomes a critically important issue. Electrocardiogram (ECG) has proven to be a potential biometric in human recognition over the past decade. Unlike conventional authentication methods using passwords, fingerprints, face, etc., ECG signal can not be simply intercepted, duplicated, and enables continuous identification. However, in many of the studies, algorithms developed are not suitable for practical application, which usually require long ECG data for authentication. In this work, we introduce a two-phase authentication using artificial neural network (NN) models. This algorithm enables fast authentication within only 3 seconds, meanwhile achieves reasonable performance in recognition. We test the proposed method in a controlled laboratory experiment with 50 subjects. Finger ECG signals are collected using a mobile device at different times and physical statues. At the first stage, a ``General'' NN model is constructed based on data from the cohort and used for preliminary screening, while at the second stage ``Personal'' NN models constructed from single individual's data are applied as fine-grained identification. The algorithm is tested on the whole data set, and on different sizes of subsets (5, 10, 20, 30, and 40). Results proved that the proposed method is feasible and reliable for individual authentication, having obtained average False Acceptance Rate (FAR) and False Rejection Rate (FRR) below 10% for the whole data set.

Pandey, M., Pandey, R., Chopra, U. K..  2017.  Rendering Trustability to Semantic Web Applications-Manchester Approach. 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS). :255–259.

The Semantic Web today is a web that allows for intelligent knowledge retrieval by means of semantically annotated tags. This web also known as Intelligent web aims to provide meaningful information to man and machines equally. However, the information thus provided lacks the component of trust. Therefore we propose a method to embed trust in semantic web documents by the concept of provenance which provides answers to who, when, where and by whom the documents were created or modified. This paper demonstrates the same using the Manchester approach of provenance implemented in a University Ontology.

Acquaviva, J., Mahon, M., Einfalt, B., LaPorta, T..  2017.  Optimal Cyber-Defense Strategies for Advanced Persistent Threats: A Game Theoretical Analysis. 2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS). :204–213.

We introduce a novel mathematical model that treats network security as a game between cyber attackers and network administrators. The model takes the form of a zero-sum repeated game where each sub-game corresponds to a possible state of the attacker. Our formulation views state as the set of compromised edges in a graph opposed to the more traditional node-based view. This provides a more expressive model since it allows the defender to anticipate the direction of attack. Both players move independently and in continuous time allowing for the possibility of one player moving several times before the other does. This model shows that defense-in-depth is not always a rational strategy for budget constrained network administrators. Furthermore, a defender can dissuade a rational attacker from attempting to attack a network if the defense budget is sufficiently high. This means that a network administrator does not need to make their system completely free of vulnerabilities, they only to ensure the penalties for being caught outweigh the potential rewards gained.

Lighari, S. N., Hussain, D. M. A..  2017.  Hybrid Model of Rule Based and Clustering Analysis for Big Data Security. 2017 First International Conference on Latest Trends in Electrical Engineering and Computing Technologies (IN℡LECT). :1–5.

The most of the organizations tend to accumulate the data related to security, which goes up-to terabytes in every month. They collect this data to meet the security requirements. The data is mostly in the shape of logs like Dns logs, Pcap files, and Firewall data etc. The data can be related to any communication network like cloud, telecom, or smart grid network. Generally, these logs are stored in databases or warehouses which becomes ultimately gigantic in size. Such a huge size of data upsurge the importance of security analytics in big data. In surveys, the security experts grumble about the existing tools and recommend for special tools and methods for big data security analysis. In this paper, we are using a big data analysis tool, which is known as apache spark. Although this tool is used for general purpose but we have used this for security analysis. It offers a very good library for machine learning algorithms including the clustering which is the main algorithm used in our work. In this work, we have developed a novel model, which combines rule based and clustering analysis for security analysis of big dataset. The dataset we are using in our experiment is the Kddcup99 which is a widely used dataset for intrusion detection. It is of MBs in size but can be used as a test case for big data security analysis.

Nembhard, F., Carvalho, M., Eskridge, T..  2017.  A Hybrid Approach to Improving Program Security. 2017 IEEE Symposium Series on Computational Intelligence (SSCI). :1–8.

The security of computer programs and systems is a very critical issue. With the number of attacks launched on computer networks and software, businesses and IT professionals are taking steps to ensure that their information systems are as secure as possible. However, many programmers do not think about adding security to their programs until their projects are near completion. This is a major mistake because a system is as secure as its weakest link. If security is viewed as an afterthought, it is highly likely that the resulting system will have a large number of vulnerabilities, which could be exploited by attackers. One of the reasons programmers overlook adding security to their code is because it is viewed as a complicated or time-consuming process. This paper presents a tool that will help programmers think more about security and add security tactics to their code with ease. We created a model that learns from existing open source projects and documentation using machine learning and text mining techniques. Our tool contains a module that runs in the background to analyze code as the programmer types and offers suggestions of where security could be included. In addition, our tool fetches existing open source implementations of cryptographic algorithms and sample code from repositories to aid programmers in adding security easily to their projects.

Stefanova, Z., Ramachandran, K..  2017.  Network Attribute Selection, Classification and Accuracy (NASCA) Procedure for Intrusion Detection Systems. 2017 IEEE International Symposium on Technologies for Homeland Security (HST). :1–7.

With the progressive development of network applications and software dependency, we need to discover more advanced methods for protecting our systems. Each industry is equally affected, and regardless of whether we consider the vulnerability of the government or each individual household or company, we have to find a sophisticated and secure way to defend our systems. The starting point is to create a reliable intrusion detection mechanism that will help us to identify the attack at a very early stage; otherwise in the cyber security space the intrusion can affect the system negatively, which can cause enormous consequences and damage the system's privacy, security or financial stability. This paper proposes a concise, and easy to use statistical learning procedure, abbreviated NASCA, which is a four-stage intrusion detection method that can successfully detect unwanted intrusion to our systems. The model is static, but it can be adapted to a dynamic set up.

Elsaeidy, A., Elgendi, I., Munasinghe, K. S., Sharma, D., Jamalipour, A..  2017.  A smart city cyber security platform for narrowband networks. 2017 27th International Telecommunication Networks and Applications Conference (ITNAC). :1–6.

Smart city is gaining a significant attention all around the world. Narrowband technologies would have strong impact on achieving the smart city promises to its citizens with its powerful and efficient spectrum. The expected diversity of applications, different data structures and high volume of connecting devices for smart cities increase the persistent need to apply narrowband technologies. However, narrowband technologies have recognized limitations regarding security which make them an attractive target to cyber-attacks. In this paper, a novel platform architecture to secure smart city against cyber attackers is presented. The framework is providing a threat deep learning-based model to detect attackers based on users data behavior. The proposed architecture could be considered as an attempt toward developing a universal model to identify and block Denial of Service (DoS) attackers in a real time for smart city applications.

Liu, Z., Liao, Y., Yang, X., He, Y., Zhao, K..  2017.  Identity-Based Remote Data Integrity Checking of Cloud Storage From Lattices. 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM). :128–135.
In cloud storage, remote data integrity checking is considered as a crucial technique about data owners who upload enormous data to cloud server provider. A majority of the existing remote data integrity checking protocols rely on the expensive public key infrastructure. In addition, the verification of certificates needs heavy computation and communication cost. Meanwhile, the existing some protocols are not secure under the quantum computer attacks. However, lattice-based constructed cryptography can resist quantum computer attacks and is fairly effective, involving matrix-matrix or matrix-vector multiplications. So, we propose an identity-based remote data integrity checking protocol from lattices, which can eliminate the certificate management process and resist quantum computer attacks. Our protocol is completeness and provably secure based on the hardness small integer solution assumption. The presented scheme is secure against cloud service provider attacks, and leaks no any blocks of the stored file to the third party auditor during verification stage, namely the data privacy against the curiosity third party auditor attacks. The cloud service provider attack includes lost attack and tamper attack. Furthermore, the performance analysis of some protocols demonstrate that our protocol of remote data integrity checking is useful and efficient.
Feng, C., Wu, S., Liu, N..  2017.  A user-centric machine learning framework for cyber security operations center. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :173–175.

To assure cyber security of an enterprise, typically SIEM (Security Information and Event Management) system is in place to normalize security events from different preventive technologies and flag alerts. Analysts in the security operation center (SOC) investigate the alerts to decide if it is truly malicious or not. However, generally the number of alerts is overwhelming with majority of them being false positive and exceeding the SOC's capacity to handle all alerts. Because of this, potential malicious attacks and compromised hosts may be missed. Machine learning is a viable approach to reduce the false positive rate and improve the productivity of SOC analysts. In this paper, we develop a user-centric machine learning framework for the cyber security operation center in real enterprise environment. We discuss the typical data sources in SOC, their work flow, and how to leverage and process these data sets to build an effective machine learning system. The paper is targeted towards two groups of readers. The first group is data scientists or machine learning researchers who do not have cyber security domain knowledge but want to build machine learning systems for security operations center. The second group of audiences are those cyber security practitioners who have deep knowledge and expertise in cyber security, but do not have machine learning experiences and wish to build one by themselves. Throughout the paper, we use the system we built in the Symantec SOC production environment as an example to demonstrate the complete steps from data collection, label creation, feature engineering, machine learning algorithm selection, model performance evaluations, to risk score generation.

Dai, H., Zhu, X., Yang, G., Yi, X..  2017.  A Verifiable Single Keyword Top-k Search Scheme against Insider Attacks over Cloud Data. 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM). :111–116.

With the development of cloud computing and its economic benefit, more and more companies and individuals outsource their data and computation to clouds. Meanwhile, the business way of resource outsourcing makes the data out of control from its owner and results in many security issues. The existing secure keyword search methods assume that cloud servers are curious-but-honest or partial honest, which makes them powerless to deal with the deliberately falsified or fabricated results of insider attacks. In this paper, we propose a verifiable single keyword top-k search scheme against insider attacks which can verify the integrity of search results. Data owners generate verification codes (VCs) for the corresponding files, which embed the ordered sequence information of the relevance scores between files and keywords. Then files and corresponding VCs are outsourced to cloud servers. When a data user performs a keyword search in cloud servers, the qualified result files are determined according to the relevance scores between the files and the interested keyword and then returned to the data user together with a VC. The integrity of the result files is verified by data users through reconstructing a new VC on the received files and comparing it with the received one. Performance evaluation have been conducted to demonstrate the efficiency and result redundancy of the proposed scheme.

Zebboudj, S., Brahami, R., Mouzaia, C., Abbas, C., Boussaid, N., Omar, M..  2017.  Big Data Source Location Privacy and Access Control in the Framework of IoT. 2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B). :1–5.

In the recent years, we have observed the development of several connected and mobile devices intended for daily use. This development has come with many risks that might not be perceived by the users. These threats are compromising when an unauthorized entity has access to private big data generated through the user objects in the Internet of Things. In the literature, many solutions have been proposed in order to protect the big data, but the security remains a challenging issue. This work is carried out with the aim to provide a solution to the access control to the big data and securing the localization of their generator objects. The proposed models are based on Attribute Based Encryption, CHORD protocol and $μ$TESLA. Through simulations, we compare our solutions to concurrent protocols and we show its efficiency in terms of relevant criteria.

Hassoon, I. A., Tapus, N., Jasim, A. C..  2017.  Enhance Privacy in Big Data and Cloud via Diff-Anonym Algorithm. 2017 16th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1–5.

The main issue with big data in cloud is the processed or used always need to be by third party. It is very important for the owners of data or clients to trust and to have the guarantee of privacy for the information stored in cloud or analyzed as big data. The privacy models studied in previous research showed that privacy infringement for big data happened because of limitation, privacy guarantee rate or dissemination of accurate data which is obtainable in the data set. In addition, there are various privacy models. In order to determine the best and the most appropriate model to be applied in the future, which also guarantees big data privacy, it is necessary to invest in research and study. In the next part, we surfed some of the privacy models in order to determine the advantages and disadvantages of each model in privacy assurance for big data in cloud. The present study also proposes combined Diff-Anonym algorithm (K-anonymity and differential models) to provide data anonymity with guarantee to keep balance between ambiguity of private data and clarity of general data.

Zhang, Y., Mao, W., Zeng, D..  2017.  Topic Evolution Modeling in Social Media Short Texts Based on Recurrent Semantic Dependent CRP. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :119–124.

Social media has become an important platform for people to express opinions, share information and communicate with others. Detecting and tracking topics from social media can help people grasp essential information and facilitate many security-related applications. As social media texts are usually short, traditional topic evolution models built based on LDA or HDP often suffer from the data sparsity problem. Recently proposed topic evolution models are more suitable for short texts, but they need to manually specify topic number which is fixed during different time period. To address these issues, in this paper, we propose a nonparametric topic evolution model for social media short texts. We first propose the recurrent semantic dependent Chinese restaurant process (rsdCRP), which is a nonparametric process incorporating word embeddings to capture semantic similarity information. Then we combine rsdCRP with word co-occurrence modeling and build our short-text oriented topic evolution model sdTEM. We carry out experimental studies on Twitter dataset. The results demonstrate the effectiveness of our method to monitor social media topic evolution compared to the baseline methods.

Jayasinghe, U., Otebolaku, A., Um, T. W., Lee, G. M..  2017.  Data centric trust evaluation and prediction framework for IOT. 2017 ITU Kaleidoscope: Challenges for a Data-Driven Society (ITU K). :1–7.

Application of trust principals in internet of things (IoT) has allowed to provide more trustworthy services among the corresponding stakeholders. The most common method of assessing trust in IoT applications is to estimate trust level of the end entities (entity-centric) relative to the trustor. In these systems, trust level of the data is assumed to be the same as the trust level of the data source. However, most of the IoT based systems are data centric and operate in dynamic environments, which need immediate actions without waiting for a trust report from end entities. We address this challenge by extending our previous proposals on trust establishment for entities based on their reputation, experience and knowledge, to trust estimation of data items [1-3]. First, we present a hybrid trust framework for evaluating both data trust and entity trust, which will be enhanced as a standardization for future data driven society. The modules including data trust metric extraction, data trust aggregation, evaluation and prediction are elaborated inside the proposed framework. Finally, a possible design model is described to implement the proposed ideas.

Chowdhury, M., Gawande, A., Wang, L..  2017.  Secure Information Sharing among Autonomous Vehicles in NDN. 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI). :15–26.

Autonomous vehicles must communicate with each other effectively and securely to make robust decisions. However, today's Internet falls short in supporting efficient data delivery and strong data security, especially in a mobile ad-hoc environment. Named Data Networking (NDN), a new data-centric Internet architecture, provides a better foundation for secure data sharing among autonomous vehicles. We examine two potential threats, false data dissemination and vehicle tracking, in an NDN-based autonomous vehicular network. To detect false data, we propose a four-level hierarchical trust model and the associated naming scheme for vehicular data authentication. Moreover, we address vehicle tracking concerns using a pseudonym scheme to anonymize vehicle names and certificate issuing proxies to further protect vehicle identity. Finally, we implemented and evaluated our AutoNDN application on Raspberry Pi-based mini cars in a wireless environment.

Nakhla, N., Perrett, K., McKenzie, C..  2017.  Automated computer network defence using ARMOUR: Mission-oriented decision support and vulnerability mitigation. 2017 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.

Mission assurance requires effective, near-real time defensive cyber operations to appropriately respond to cyber attacks, without having a significant impact on operations. The ability to rapidly compute, prioritize and execute network-based courses of action (CoAs) relies on accurate situational awareness and mission-context information. Although diverse solutions exist for automatically collecting and analysing infrastructure data, few deliver automated analysis and implementation of network-based CoAs in the context of the ongoing mission. In addition, such processes can be operatorintensive and available tools tend to be specific to a set of common data sources and network responses. To address these issues, Defence Research and Development Canada (DRDC) is leading the development of the Automated Computer Network Defence (ARMOUR) technology demonstrator and cyber defence science and technology (S&T) platform. ARMOUR integrates new and existing off-the-shelf capabilities to provide enhanced decision support and to automate many of the tasks currently executed manually by network operators. This paper describes the cyber defence integration framework, situational awareness, and automated mission-oriented decision support that ARMOUR provides.