Visible to the public Biblio

Filters: Keyword is state estimation  [Clear All Filters]
Xiong, Xiaoping, Sun, Di, Hao, Shaolei, Lin, Guangyang, Li, Hang.  2020.  Detection of False Data Injection Attack Based on Improved Distortion Index Method. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :1161—1168.
With the advancement of communication technology, the interoperability of the power grid operation has improved significantly, but due to its dependence on the communication system, it is extremely vulnerable to network attacks. Among them, the false data injection attack utilizes the loophole of bad data detection in the system and attacks the state estimation system, resulting in frequent occurrence of abnormal data in the system, which brings great harm to the power grid. In view of the fact that false data injection attacks are easy to avoid traditional bad data detection methods, this paper analyzes the different situations of false data injection attacks based on the characteristics of the power grid. Firstly, it proposes to apply the distortion index method to false data injection attack detection. Experiments prove that the detection results are good and can be complementary to traditional detection methods. Then, combined with the traditional normalized residual method, this paper proposes the improved distortion index method based on the distortion index, which is good at detecting abnormal data. The use of improved distortion index method to detect false data injection attacks can make up for the defect of the lack of universality of traditional detection methods, and meet the requirements of anomaly detection efficiency. Finally, based on the MATLAB power simulation test system, experimental simulation is carried out to verify the effectiveness and universality of the proposed method for false data injection attack detection.
Hopkins, Stephen, Kalaimannan, Ezhil, John, Caroline Sangeetha.  2020.  Cyber Resilience using State Estimation Updates Based on Cyber Attack Matrix Classification. 2020 IEEE Kansas Power and Energy Conference (KPEC). :1—6.
Cyber-physical systems (CPS) maintain operation, reliability, and safety performance using state estimation and control methods. Internet connectivity and Internet of Things (IoT) devices are integrated with CPS, such as in smart grids. This integration of Operational Technology (OT) and Information Technology (IT) brings with it challenges for state estimation and exposure to cyber-threats. This research establishes a state estimation baseline, details the integration of IT, evaluates the vulnerabilities, and develops an approach for detecting and responding to cyber-attack data injections. Where other approaches focus on integration of IT cyber-controls, this research focuses on development of classification tools using data currently available in state estimation methods to quantitatively determine the presence of cyber-attack data. The tools may increase computational requirements but provide methods which can be integrated with existing state estimation methods and provide for future research in state estimation based cyber-attack incident response. A robust cyber-resilient CPS includes the ability to detect and classify a cyber-attack, determine the true system state, and respond to the cyber-attack. The purpose of this paper is to establish a means for a cyber aware state estimator given the existence of sub-erroneous outlier detection, cyber-attack data weighting, cyber-attack data classification, and state estimation cyber detection.
Xu, Z., Easwaran, A..  2020.  A Game-Theoretic Approach to Secure Estimation and Control for Cyber-Physical Systems with a Digital Twin. 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). :20–29.
Cyber-Physical Systems (CPSs) play an increasingly significant role in many critical applications. These valuable applications attract various sophisticated attacks. This paper considers a stealthy estimation attack, which aims to modify the state estimation of the CPSs. The intelligent attackers can learn defense strategies and use clandestine attack strategies to avoid detection. To address the issue, we design a Chi-square detector in a Digital Twin (DT), which is an online digital model of the physical system. We use a Signaling Game with Evidence (SGE) to find the optimal attack and defense strategies. Our analytical results show that the proposed defense strategies can mitigate the impact of the attack on the physical estimation and guarantee the stability of the CPSs. Finally, we use an illustrative application to evaluate the performance of the proposed framework.
Song, Yufei, Yu, Zongchao, Liu, Xuan, Tian, Jianwei, CHEN, Mu.  2019.  Isolation Forest based Detection for False Data Attacks in Power Systems. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :4170—4174.
Power systems become a primary target of cyber attacks because of the vulnerability of the integrated communication networks. An attacker is able to manipulate the integrity of real-time data by maliciously modifying the readings of meters transmitted to the control center. Moreover, it is demonstrated that such attack can escape the bad data detection in state estimation if the topology and network information of the entire power grid is known to the attacker. In this paper, we propose an isolation forest (IF) based detection algorithm as a countermeasure against false data attack (FDA). This method requires no tedious pre-training procedure to obtain the labels of outliers. In addition, comparing with other algorithms, the IF based detection method can find the outliers quickly. The performance of the proposed detection method is verified using the simulation results on the IEEE 118-bus system.
Wang, Yufeng, Shi, Wanjiao, Jin, Qun, Ma, Jianhua.  2019.  An Accurate False Data Detection in Smart Grid Based on Residual Recurrent Neural Network and Adaptive threshold. 2019 IEEE International Conference on Energy Internet (ICEI). :499—504.
Smart grids are vulnerable to cyber-attacks, which can cause significant damage and huge economic losses. Generally, state estimation (SE) is used to observe the operation of the grid. State estimation of the grid is vulnerable to false data injection attack (FDIA), so diagnosing this type of malicious attack has a major impact on ensuring reliable operation of the power system. In this paper, we present an effective FDIA detection method based on residual recurrent neural network (R2N2) prediction model and adaptive judgment threshold. Specifically, considering the data contains both linear and nonlinear components, the R2N2 model divides the prediction process into two parts: the first part uses the linear model to fit the state data; the second part predicts the nonlinearity of the residuals of the linear prediction model. The adaptive judgment threshold is inferred through fitting the Weibull distribution with the sum of squared errors between the predicted values and observed values. The thorough simulation results demonstrate that our scheme performs better than other prediction based FDIA detection schemes.
Marquis, Victoria, Ho, Rebecca, Rainey, William, Kimpel, Matthew, Ghiorzi, Joseph, Cricchi, William, Bezzo, Nicola.  2018.  Toward attack-resilient state estimation and control of autonomous cyber-physical systems. 2018 Systems and Information Engineering Design Symposium (SIEDS). :70—75.

This project develops techniques to protect against sensor attacks on cyber-physical systems. Specifically, a resilient version of the Kalman filtering technique accompanied with a watermarking approach is proposed to detect cyber-attacks and estimate the correct state of the system. The defense techniques are used in conjunction and validated on two case studies: i) an unmanned ground vehicle (UGV) in which an attacker alters the reference angle and ii) a Cube Satellite (CubeSat) in which an attacker modifies the orientation of the satellite degrading its performance. Based on this work, we show that the proposed techniques in conjunction achieve better resiliency and defense capability than either technique alone against spoofing and replay attacks.

Amarasinghe, Kasun, Wickramasinghe, Chathurika, Marino, Daniel, Rieger, Craig, Manicl, Milos.  2018.  Framework for Data Driven Health Monitoring of Cyber-Physical Systems. 2018 Resilience Week (RWS). :25—30.

Modern infrastructure is heavily reliant on systems with interconnected computational and physical resources, named Cyber-Physical Systems (CPSs). Hence, building resilient CPSs is a prime need and continuous monitoring of the CPS operational health is essential for improving resilience. This paper presents a framework for calculating and monitoring of health in CPSs using data driven techniques. The main advantages of this data driven methodology is that the ability of leveraging heterogeneous data streams that are available from the CPSs and the ability of performing the monitoring with minimal a priori domain knowledge. The main objective of the framework is to warn the operators of any degradation in cyber, physical or overall health of the CPS. The framework consists of four components: 1) Data acquisition and feature extraction, 2) state identification and real time state estimation, 3) cyber-physical health calculation and 4) operator warning generation. Further, this paper presents an initial implementation of the first three phases of the framework on a CPS testbed involving a Microgrid simulation and a cyber-network which connects the grid with its controller. The feature extraction method and the use of unsupervised learning algorithms are discussed. Experimental results are presented for the first two phases and the results showed that the data reflected different operating states and visualization techniques can be used to extract the relationships in data features.

Mitra, Aritra, Abbas, Waseem, Sundaram, Shreyas.  2018.  On the Impact of Trusted Nodes in Resilient Distributed State Estimation of LTI Systems. 2018 IEEE Conference on Decision and Control (CDC). :4547—4552.

We address the problem of distributed state estimation of a linear dynamical process in an attack-prone environment. A network of sensors, some of which can be compromised by adversaries, aim to estimate the state of the process. In this context, we investigate the impact of making a small subset of the nodes immune to attacks, or “trusted”. Given a set of trusted nodes, we identify separate necessary and sufficient conditions for resilient distributed state estimation. We use such conditions to illustrate how even a small trusted set can achieve a desired degree of robustness (where the robustness metric is specific to the problem under consideration) that could otherwise only be achieved via additional measurement and communication-link augmentation. We then establish that, unfortunately, the problem of selecting trusted nodes is NP-hard. Finally, we develop an attack-resilient, provably-correct distributed state estimation algorithm that appropriately leverages the presence of the trusted nodes.

Chakrabarty, Shantanu, Sikdar, Biplab.  2019.  A Methodology for Detecting Stealthy Transformer Tap Command Injection Attacks in Smart Grids. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1—6.
On-Load Tap Changing transformers are a widely used voltage regulation device. In the context of modern or smart grids, the control signals, i.e., the tap change commands are sent through SCADA channels. It is well known that the power system SCADA networks are prone to attacks involving injection of false data or commands. While false data injection is well explored in existing literature, attacks involving malicious control signals/commands are relatively unexplored. In this paper, an algorithm is developed to detect a stealthily introduced malicious tap change command through a compromised SCADA channel. This algorithm is based on the observation that a stealthily introduced false data or command masks the true estimation of only a few state variables. This leaves the rest of the state variables to show signs of a change in system state brought about by the attack. Using this observation, an index is formulated based on the ratios of injection or branch currents to voltages of the terminal nodes of the tap changers. This index shows a significant increase when there is a false tap command injection, resulting in easy classification from normal scenarios where there is no attack. The algorithm is computationally light, easy to implement and reliable when tested extensively on several tap changers placed in an IEEE 118-bus system.
Gayathri, Bhimavarapu, Yammani, Chandrasekhar.  2019.  Multi-Attacking Strategy on Smart Grid with Incomplete Network Information. 2019 8th International Conference on Power Systems (ICPS). :1—5.

The chances of cyber-attacks have been increased because of incorporation of communication networks and information technology in power system. Main objective of the paper is to prove that attacker can launch the attack vector without the knowledge of complete network information and the injected false data can't be detected by power system operator. This paper also deals with analyzing the impact of multi-attacking strategy on the power system. This false data attacks incurs lot of damage to power system, as it misguides the power system operator. Here, we demonstrate the construction of attack vector and later we have demonstrated multiple attacking regions in IEEE 14 bus system. Impact of attack vector on the power system can be observed and it is proved that the attack cannot be detected by power system operator with the help of residue check method.

Noor, Joseph, Ali-Eldin, Ahmed, Garcia, Luis, Rao, Chirag, Dasari, Venkat R., Ganesan, Deepak, Jalaian, Brian, Shenoy, Prashant, Srivastava, Mani.  2019.  The Case for Robust Adaptation: Autonomic Resource Management is a Vulnerability. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :821–826.
Autonomic resource management for distributed edge computing systems provides an effective means of enabling dynamic placement and adaptation in the face of network changes, load dynamics, and failures. However, adaptation in-and-of-itself offers a side channel by which malicious entities can extract valuable information. An attacker can take advantage of autonomic resource management techniques to fool a system into misallocating resources and crippling applications. Using a few scenarios, we outline how attacks can be launched using partial knowledge of the resource management substrate - with as little as a single compromised node. We argue that any system that provides adaptation must consider resource management as an attack surface. As such, we propose ADAPT2, a framework that incorporates concepts taken from Moving-Target Defense and state estimation techniques to ensure correctness and obfuscate resource management, thereby protecting valuable system and application information from leaking.
Moradi, Ashkan, Venkategowda, Naveen K. D., Werner, Stefan.  2019.  Coordinated Data-Falsification Attacks in Consensus-based Distributed Kalman Filtering. 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). :495–499.
This paper considers consensus-based distributed Kalman filtering subject to data-falsification attack, where Byzantine agents share manipulated data with their neighboring agents. The attack is assumed to be coordinated among the Byzantine agents and follows a linear model. The goal of the Byzantine agents is to maximize the network-wide estimation error while evading false-data detectors at honest agents. To that end, we propose a joint selection of Byzantine agents and covariance matrices of attack sequences to maximize the network-wide estimation error subject to constraints on stealthiness and the number of Byzantine agents. The attack strategy is then obtained by employing block-coordinate descent method via Boolean relaxation and backward stepwise based subset selection method. Numerical results show the efficiency of the proposed attack strategy in comparison with other naive and uncoordinated attacks.
Nakayama, Kiyoshi, Muralidhar, Nikhil, Jin, Chenrui, Sharma, Ratnesh.  2019.  Detection of False Data Injection Attacks in Cyber-Physical Systems using Dynamic Invariants. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). :1023–1030.

Modern cyber-physical systems are increasingly complex and vulnerable to attacks like false data injection aimed at destabilizing and confusing the systems. We develop and evaluate an attack-detection framework aimed at learning a dynamic invariant network, data-driven temporal causal relationships between components of cyber-physical systems. We evaluate the relative performance in attack detection of the proposed model relative to traditional anomaly detection approaches. In this paper, we introduce Granger Causality based Kalman Filter with Adaptive Robust Thresholding (G-KART) as a framework for anomaly detection based on data-driven functional relationships between components in cyber-physical systems. In particular, we select power systems as a critical infrastructure with complex cyber-physical systems whose protection is an essential facet of national security. The system presented is capable of learning with or without network topology the task of detection of false data injection attacks in power systems. Kalman filters are used to learn and update the dynamic state of each component in the power system and in-turn monitor the component for malicious activity. The ego network for each node in the invariant graph is treated as an ensemble model of Kalman filters, each of which captures a subset of the node's interactions with other parts of the network. We finally also introduce an alerting mechanism to surface alerts about compromised nodes.

Xiao, Jiaping, Jiang, Jianchun.  2018.  Real-time Security Evaluation for Unmanned Aircraft Systems under Data-driven Attacks*. 2018 13th World Congress on Intelligent Control and Automation (WCICA). :842—847.

With rapid advances in the fields of the Internet of Things and autonomous systems, the network security of cyber-physical systems(CPS) becomes more and more important. This paper focuses on the real-time security evaluation for unmanned aircraft systems which are cyber-physical systems relying on information communication and control system to achieve autonomous decision making. Our problem formulation is motivated by scenarios involving autonomous unmanned aerial vehicles(UAVs) working continuously under data-driven attacks when in an open, uncertain, and even hostile environment. Firstly, we investigated the state estimation method in CPS integrated with data-driven attacks model, and then proposed a real-time security scoring algorithm to evaluate the security condition of unmanned aircraft systems under different threat patterns, considering the vulnerability of the systems and consequences brought by data attacks. Our simulation in a UAV illustrated the efficiency and reliability of the algorithm.

Xiong, Leilei, Grijalva, Santiago.  2019.  N-1 RTU Cyber-Physical Security Assessment Using State Estimation. 2019 IEEE Power Energy Society General Meeting (PESGM). :1–5.
Real-time supervisory control and data acquisition (SCADA) systems use remote terminal units (RTUs) to monitor and manage the flow of power at electrical substations. As their connectivity to different utility and private networks increases, RTUs are becoming more vulnerable to cyber-attacks. Some attacks seek to access RTUs to directly control power system devices with the intent to shed load or cause equipment damage. Other attacks (such as denial-of-service) target network availability and seek to block, delay, or corrupt communications between the RTU and the control center. In the most severe case, when communications are entirely blocked, the loss of an RTU can cause the power system to become unobservable. It is important to understand how losing an RTU impacts the system state (bus voltage magnitudes and angles). The system state is determined by the state estimator and serves as the input to other critical EMS applications. There is currently no systematic approach for assessing the cyber-physical impact of losing RTUs. This paper proposes a methodology for N-1 RTU cyber-physical security assessment that could benefit power system control and operation. We demonstrate our approach on the IEEE 14-bus system as well as on a synthetic 200-bus system.
Chen, Yanping, Ma, Long, Xia, Hong, Gao, Cong, Wang, Zhongmin, Yu, Zhong.  2019.  Trust-Based Distributed Kalman Filter Estimation Fusion under Malicious Cyber Attacks. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :2255—2260.

We consider distributed Kalman filter for dynamic state estimation over wireless sensor networks. It is promising but challenging when network is under cyber attacks. Since the information exchange between nodes, the malicious attacks quickly spread across the entire network, which causing large measurement errors and even to the collapse of sensor networks. Aiming at the malicious network attack, a trust-based distributed processing frame is proposed. Which allows neighbor nodes to exchange information, and a series of trusted nodes are found using truth discovery. As a demonstration, distributed Cooperative Localization is considered, and numerical results are provided to evaluate the performance of the proposed approach by considering random, false data injection and replay attacks.

Tuttle, Michael, Wicker, Braden, Poshtan, Majid, Callenes, Joseph.  2019.  Algorithmic Approaches to Characterizing Power Flow Cyber-Attack Vulnerabilities. 2019 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1—5.
As power grid control systems become increasingly automated and distributed, security has become a significant design concern. Systems increasingly expose new avenues, at a variety of levels, for attackers to exploit and enable widespread disruptions and/or surveillance. Much prior work has explored the implications of attack models focused on false data injection at the front-end of the control system (i.e. during state estimation) [1]. Instead, in this paper we focus on characterizing the inherent cyber-attack vulnerabilities with power flow. Power flow (and power flow constraints) are at the core of many applications critical to operation of power grids (e.g. state estimation, economic dispatch, contingency analysis, etc.). We propose two algorithmic approaches for characterizing the vulnerability of buses within power grids to cyber-attacks. Specifically, we focus on measuring the instability of power flow to attacks which manifest as either voltage or power related errors. Our results show that attacks manifesting as voltage errors are an order of magnitude more likely to cause instability than attacks manifesting as power related errors (and 5x more likely for state estimation as compared to power flow).
Al-Eryani, Yasser, Baroudi, Uthman.  2019.  An Investigation on Detecting Bad Data Injection Attack in Smart Grid. 2019 International Conference on Computer and Information Sciences (ICCIS). :1–4.
Security and consistency of smart grids is one of the main issues in the design and maintenance of highly controlled and monitored new power grids. Bad data injection attack could lead to disasters such as power system outage, or huge economical losses. In many attack scenarios, the attacker can come up with new attack strategies that couldn't be detected by the traditional bad data detection methods. Adaptive Partitioning State Estimation (APSE) method [3] has been proposed recently to combat such attacks. In this work, we evaluate and compare with a traditional method. The main idea of APSE is to increase the sensitivity of the chi-square test by partitioning the large grids into small ones and apply the test on each partition individually and repeat this procedure until the faulty node is located. Our simulation findings using MATPOWER program show that the method is not consistent where it is sensitive the systems size and the location of faulty nodes as well.
Lakshminarayana, Subhash, Belmega, E. Veronica, Poor, H. Vincent.  2019.  Moving-Target Defense for Detecting Coordinated Cyber-Physical Attacks in Power Grids. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
This work proposes a moving target defense (MTD) strategy to detect coordinated cyber-physical attacks (CCPAs) against power grids. A CCPA consists of a physical attack, such as disconnecting a transmission line, followed by a coordinated cyber attack that injects false data into the sensor measurements to mask the effects of the physical attack. Such attacks can lead to undetectable line outages and cause significant damage to the grid. The main idea of the proposed approach is to invalidate the knowledge that the attackers use to mask the effects of the physical attack by actively perturbing the grid's transmission line reactances using distributed flexible AC transmission system (D-FACTS) devices. We identify the MTD design criteria in this context to thwart CCPAs. The proposed MTD design consists of two parts. First, we identify the subset of links for D-FACTS device deployment that enables the defender to detect CCPAs against any link in the system. Then, in order to minimize the defense cost during the system's operational time, we use a game-theoretic approach to identify the best subset of links (within the D-FACTS deployment set) to perturb which will provide adequate protection. Extensive simulations performed using the MATPOWER simulator on IEEE bus systems verify the effectiveness of our approach in detecting CCPAs and reducing the operator's defense cost.
Zhang, Chiyu, Hwang, Inseok.  2019.  Decentralized Multi-Sensor Scheduling for Multi-Target Tracking and Identity Management. 2019 18th European Control Conference (ECC). :1804–1809.
This paper proposes a multi-target tracking and identity management method with multiple sensors: a primary sensor with a large detection range to provide the targets' state estimates, and multiple secondary sensors capable of recognizing the targets' identities. Each of the secondary sensors is assigned to a sector of the operation area; a secondary sensor decides which target in its assigned sector to be identified and controls itself to identify the target. We formulate the decision-making process as an optimization problem to minimize the uncertainty of the targets' identities subject to the sensor dynamic constraints. The proposed algorithm is decentralized since the secondary sensors only communicate with the primary sensor for the target information, and need not to synchronize with each other. By integrating the proposed algorithm with the existing multi-target tracking algorithms, we develop a closed-loop multi-target tracking and identity management algorithm. The effectiveness of the proposed algorithm is demonstrated with illustrative numerical examples.
Zhang, Zhenyong, Wu, Junfeng, Yau, David, Cheng, Peng, Chen, Jiming.  2018.  Secure Kalman Filter State Estimation by Partially Homomorphic Encryption. 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS). :345–346.
Recently, the security of state estimation has been attracting significant research attention due to the need for trustworthy situation awareness in emerging (e.g., industrial) cyber-physical systems. In this paper, we investigate secure estimation based on Kalman filtering (SEKF) using partially homomorphically encrypted data. The encryption will enhance the confidentiality not only of data transmitted in the communication network, but also key system information required by the estimator. We use a multiplicative homomorphic encryption scheme, but with a modified decryption algorithm. SEKF is able to conceal comprehensive information (i.e., system parameters, measurements, and state estimates) aggregated at the sink node of the estimator, while retaining the effectiveness of normal Kalman filtering. Therefore, even if an attacker has gained unauthorized access to the estimator and associated communication channels, he will not be able to obtain sufficient knowledge of the system state to guide the attack, e.g., ensure its stealthiness. We present an implementation structure of the SEKF to reduce the communication overhead compared with traditional secure multiparty computation (SMC) methods. Finally, we demonstrate the effectiveness of the SEKF on an IEEE 9-bus power system.
Severson, T., Rodriguez-Seda, E., Kiriakidis, K., Croteau, B., Krishnankutty, D., Robucci, R., Patel, C., Banerjee, N..  2018.  Trust-Based Framework for Resilience to Sensor-Targeted Attacks in Cyber-Physical Systems. 2018 Annual American Control Conference (ACC). :6499-6505.

Networked control systems improve the efficiency of cyber-physical plants both functionally, by the availability of data generated even in far-flung locations, and operationally, by the adoption of standard protocols. A side-effect, however, is that now the safety and stability of a local process and, in turn, of the entire plant are more vulnerable to malicious agents. Leveraging the communication infrastructure, the authors here present the design of networked control systems with built-in resilience. Specifically, the paper addresses attacks known as false data injections that originate within compromised sensors. In the proposed framework for closed-loop control, the feedback signal is constructed by weighted consensus of estimates of the process state gathered from other interconnected processes. Observers are introduced to generate the state estimates from the local data. Side-channel monitors are attached to each primary sensor in order to assess proper code execution. These monitors provide estimates of the trust assigned to each observer output and, more importantly, independent of it; these estimates serve as weights in the consensus algorithm. The authors tested the concept on a multi-sensor networked physical experiment with six primary sensors. The weighted consensus was demonstrated to yield a feedback signal within specified accuracy even if four of the six primary sensors were injecting false data.

Kolosok, I., Korkina, E., Mahnitko, A., Gavrilovs, A..  2018.  Supporting Cyber-Physical Security of Electric Power System by the State Estimation Technique. 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). :1–6.

Security is one of the most important properties of electric power system (EPS). We consider the state estimation (SE) tool as a barrier to the corruption of data on current operating conditions of the EPS. An algorithm for a two-level SE on the basis of SCADA and WAMS measurements is effective in terms of detection of malicious attacks on energy system. The article suggests a methodology to identify cyberattacks on SCADA and WAMS.

Lu, G., Feng, D..  2018.  Network Security Situation Awareness for Industrial Control System Under Integrity Attacks. 2018 21st International Conference on Information Fusion (FUSION). :1808-1815.

Due to the wide implementation of communication networks, industrial control systems are vulnerable to malicious attacks, which could cause potentially devastating results. Adversaries launch integrity attacks by injecting false data into systems to create fake events or cover up the plan of damaging the systems. In addition, the complexity and nonlinearity of control systems make it more difficult to detect attacks and defense it. Therefore, a novel security situation awareness framework based on particle filtering, which has good ability in estimating state for nonlinear systems, is proposed to provide an accuracy understanding of system situation. First, a system state estimation based on particle filtering is presented to estimate nodes state. Then, a voting scheme is introduced into hazard situation detection to identify the malicious nodes and a local estimator is constructed to estimate the actual system state by removing the identified malicious nodes. Finally, based on the estimated actual state, the actual measurements of the compromised nodes are predicted by using the situation prediction algorithm. At the end of this paper, a simulation of a continuous stirred tank is conducted to verify the efficiency of the proposed framework and algorithms.

Paudel, Sarita, Smith, Paul, Zseby, Tanja.  2018.  Stealthy Attacks on Smart Grid PMU State Estimation. Proceedings of the 13th International Conference on Availability, Reliability and Security. :16:1-16:10.

Smart grids require communication networks for supervision functions and control operations. With this they become attractive targets for attackers. In newer power grids, State Estimation (SE) is often performed based on Kalman Filters (KFs) to deal with noisy measurement data and detect Bad Data (BD) due to failures in the measurement system. Nevertheless, in a setting where attackers can gain access to modify sensor data, they can exploit the fact that SE is used to process the data. In this paper, we show how an attacker can modify Phasor Measurement Unit (PMU) sensor data in a way that it remains undetected in the state estimation process. We show how anomaly detection methods based on innovation gain fail if an attacker is aware of the state estimation and uses the right strategy to circumvent detection.