Visible to the public Biblio

Found 526 results

Filters: Keyword is Monitoring  [Clear All Filters]
Wen, Kaiyuan, Gang, Su, Li, Zhifeng, Zou, Zhexiang.  2021.  Design of Remote Control Intelligent Vehicle System with Three-dimensional Immersion. 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE). :287–290.
The project uses 3D immersive technology to innovatively apply virtual reality technology to the monitoring field, and proposes the concept and technical route of remote 3D immersive intelligent control. A design scheme of a three-dimensional immersive remote somatosensory intelligent controller is proposed, which is applied to the remote three-dimensional immersive control of a crawler mobile robot, and the test and analysis of the principle prototype are completed.
Chattopadhyay, Abhiroop, Valdes, Alfonso, Sauer, Peter W., Nuqui, Reynaldo.  2021.  A Cyber Threat Mitigation Approach For Wide Area Control of SVCs using Stability Monitoring. 2021 IEEE Madrid PowerTech. :1–6.
We propose a stability monitoring approach for the mitigation of cyber threats directed at the wide area control (WAC) system used for coordinated control of Flexible AC Transmission Systems (FACTS) used for power oscillation damping (POD) of active power flow on inter-area tie lines. The approach involves monitoring the modes of the active power oscillation on an inter-area tie line using the Matrix Pencil (MP) method. We use the stability characteristics of the observed modes as a proxy for the presence of destabilizing cyber threats. We monitor the system modes to determine whether any destabilizing modes appear after the WAC system engages to control the POD. If the WAC signal exacerbates the POD performance, the FACTS falls back to POD using local measurements. The proposed approach does not require an expansive system-wide view of the network. We simulate replay, control integrity, and timing attacks for a test system and present results that demonstrate the performance of the SM approach for mitigation.
Bu, Xiande, Liu, Chuan, Yao, Jiming.  2021.  Design of 5G-oriented Computing Framework for The Edge Agent Used in Power IoT. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:2076–2080.
The goal of the edge computing framework is to solve the problem of management and control in the access of massive 5G terminals in the power Internet of things. Firstly, this paper analyzes the needs of IOT agent in 5G ubiquitous connection, equipment management and control, intelligent computing and other aspects. In order to meet with these needs, paper develops the functions and processes of the edge computing framework, including unified access of heterogeneous devices, protocol adaptation, edge computing, cloud edge collaboration, security control and so on. Finally, the performance of edge computing framework is verified by the pressure test of 5G wireless ubiquitous connection.
M, Kiruthika., M.S, Saravanan..  2021.  A Related work on secure event logs protection with user identity using privacy preservation for the cloud infrastructure. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1–4.
The cloud infrastructure is not new to the society from past one decade. But even in recent time, the companies started migrating from local services to cloud services for better connectivity and for other requirements, this is due to companies financial limitations on existing infrastructure, they are migrating to less cost and hire and fire support based cloud infrastructures. But the proposed cloud infrastructure require security on event logs accessed by different end users on the cloud environment. To adopt the security on local services to cloud service based infrastructure, it need better identify management between end users. Therefore this paper presents the related works of user identity as a service for each user involving in cloud service and the accessing permission and protection will be monitored and controlled by the cloud security infrastructures.
Hassell, Suzanne, Beraud, Paul, Cruz, Alen, Ganga, Gangadhar, Martin, Steve, Toennies, Justin, Vazquez, Pablo, Wright, Gary, Gomez, Daniel, Pietryka, Frank et al..  2012.  Evaluating network cyber resiliency methods using cyber threat, Vulnerability and Defense Modeling and Simulation. MILCOM 2012 - 2012 IEEE Military Communications Conference. :1—6.
This paper describes a Cyber Threat, Vulnerability and Defense Modeling and Simulation tool kit used for evaluation of systems and networks to improve cyber resiliency. This capability is used to help increase the resiliency of networks at various stages of their lifecycle, from initial design and architecture through the operation of deployed systems and networks. Resiliency of computer systems and networks to cyber threats is facilitated by the modeling of agile and resilient defenses versus threats and running multiple simulations evaluated against resiliency metrics. This helps network designers, cyber analysts and Security Operations Center personnel to perform trades using what-if scenarios to select resiliency capabilities and optimally design and configure cyber resiliency capabilities for their systems and networks.
Ratasich, Denise, Khalid, Faiq, Geissler, Florian, Grosu, Radu, Shafique, Muhammad, Bartocci, Ezio.  2019.  A Roadmap Toward the Resilient Internet of Things for Cyber-Physical Systems. IEEE Access. 7:13260–13283.
The Internet of Things (IoT) is a ubiquitous system connecting many different devices - the things - which can be accessed from the distance. The cyber-physical systems (CPSs) monitor and control the things from the distance. As a result, the concepts of dependability and security get deeply intertwined. The increasing level of dynamicity, heterogeneity, and complexity adds to the system's vulnerability, and challenges its ability to react to faults. This paper summarizes the state of the art of existing work on anomaly detection, fault-tolerance, and self-healing, and adds a number of other methods applicable to achieve resilience in an IoT. We particularly focus on non-intrusive methods ensuring data integrity in the network. Furthermore, this paper presents the main challenges in building a resilient IoT for the CPS, which is crucial in the era of smart CPS with enhanced connectivity (an excellent example of such a system is connected autonomous vehicles). It further summarizes our solutions, work-in-progress and future work to this topic to enable ``Trustworthy IoT for CPS''. Finally, this framework is illustrated on a selected use case: a smart sensor infrastructure in the transport domain.
Conference Name: IEEE Access
Nguyen, Tien, Wang, Shiyuan, Alhazmi, Mohannad, Nazemi, Mostafa, Estebsari, Abouzar, Dehghanian, Payman.  2020.  Electric Power Grid Resilience to Cyber Adversaries: State of the Art. IEEE Access. 8:87592–87608.
The smart electricity grids have been evolving to a more complex cyber-physical ecosystem of infrastructures with integrated communication networks, new carbon-free sources of power generation, advanced monitoring and control systems, and a myriad of emerging modern physical hardware technologies. With the unprecedented complexity and heterogeneity in dynamic smart grid networks comes additional vulnerability to emerging threats such as cyber attacks. Rapid development and deployment of advanced network monitoring and communication systems on one hand, and the growing interdependence of the electric power grids to a multitude of lifeline critical infrastructures on the other, calls for holistic defense strategies to safeguard the power grids against cyber adversaries. In order to improve the resilience of the power grid against adversarial attacks and cyber intrusions, advancements should be sought on detection techniques, protection plans, and mitigation practices in all electricity generation, transmission, and distribution sectors. This survey discusses such major directions and recent advancements from a lens of different detection techniques, equipment protection plans, and mitigation strategies to enhance the energy delivery infrastructure resilience and operational endurance against cyber attacks. This undertaking is essential since even modest improvements in resilience of the power grid against cyber threats could lead to sizeable monetary savings and an enriched overall social welfare.
Conference Name: IEEE Access
Barbeau, Michel, Cuppens, Frédéric, Cuppens, Nora, Dagnas, Romain, Garcia-Alfaro, Joaquin.  2021.  Resilience Estimation of Cyber-Physical Systems via Quantitative Metrics. IEEE Access. 9:46462–46475.
This paper is about the estimation of the cyber-resilience of CPS. We define two new resilience estimation metrics: k-steerability and l-monitorability. They aim at assisting designers to evaluate and increase the cyber-resilience of CPS when facing stealthy attacks. The k-steerability metric reflects the ability of a controller to act on individual plant state variables when, at least, k different groups of functionally diverse input signals may be processed. The l-monitorability metric indicates the ability of a controller to monitor individual plant state variables with l different groups of functionally diverse outputs. Paired together, the metrics lead to CPS reaching (k,l)-resilience. When k and l are both greater than one, a CPS can absorb and adapt to control-theoretic attacks manipulating input and output signals. We also relate the parameters k and l to the recoverability of a system. We define recoverability strategies to mitigate the impact of perpetrated attacks. We show that the values of k and l can be augmented by combining redundancy and diversity in hardware and software, in order to apply the moving target paradigm. We validate the approach via simulation and numeric results.
Conference Name: IEEE Access
Keshk, Marwa, Turnbull, Benjamin, Sitnikova, Elena, Vatsalan, Dinusha, Moustafa, Nour.  2021.  Privacy-Preserving Schemes for Safeguarding Heterogeneous Data Sources in Cyber-Physical Systems. IEEE Access. 9:55077–55097.
Cyber-Physical Systems (CPS) underpin global critical infrastructure, including power, water, gas systems and smart grids. CPS, as a technology platform, is unique as a target for Advanced Persistent Threats (APTs), given the potentially high impact of a successful breach. Additionally, CPSs are targets as they produce significant amounts of heterogeneous data from the multitude of devices and networks included in their architecture. It is, therefore, essential to develop efficient privacy-preserving techniques for safeguarding system data from cyber attacks. This paper introduces a comprehensive review of the current privacy-preserving techniques for protecting CPS systems and their data from cyber attacks. Concepts of Privacy preservation and CPSs are discussed, demonstrating CPSs' components and the way these systems could be exploited by either cyber and physical hacking scenarios. Then, classification of privacy preservation according to the way they would be protected, including perturbation, authentication, machine learning (ML), cryptography and blockchain, are explained to illustrate how they would be employed for data privacy preservation. Finally, we show existing challenges, solutions and future research directions of privacy preservation in CPSs.
Conference Name: IEEE Access
Jun, Shen, Cuibo, Yu.  2013.  The Study on the Self-Similarity and Simulation of CPS Traffic. 2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing. :215–219.
CPS traffic characteristics is one of key techniques of Cyber-Physical Systems (CPS). A deep research of CPS network traffic characteristics can help to better plan and design CPS networks. A brief overview of the key concepts of CPS is firstly presented. Then CPS application scenarios are analyzed in details and classified. The characteristics of CPS traffic is analyzed theoretically for different CPS application scenarios. At last, the characteristics of CPS traffic is verified using NS-2 simulation.
Ying, Xuhang, Bernieri, Giuseppe, Conti, Mauro, Bushnell, Linda, Poovendran, Radha.  2021.  Covert Channel-Based Transmitter Authentication in Controller Area Networks. IEEE Transactions on Dependable and Secure Computing. :1–1.
In recent years, the security of automotive Cyber-Physical Systems (CPSs) is facing urgent threats due to the widespread use of legacy in-vehicle communication systems. As a representative legacy bus system, the Controller Area Network (CAN) hosts Electronic Control Units (ECUs) that are crucial for the vehicles functioning. In this scenario, malicious actors can exploit the CAN vulnerabilities, such as the lack of built-in authentication and encryption schemes, to launch CAN bus attacks. In this paper, we present TACAN (Transmitter Authentication in CAN), which provides secure authentication of ECUs on the legacy CAN bus by exploiting the covert channels. TACAN turns upside-down the originally malicious concept of covert channels and exploits it to build an effective defensive technique that facilitates transmitter authentication. TACAN consists of three different covert channels: 1) Inter-Arrival Time (IAT)-based, 2) Least Significant Bit (LSB)-based, and 3) hybrid covert channels. In order to validate TACAN, we implement the covert channels on the University of Washington (UW) EcoCAR (Chevrolet Camaro 2016) testbed. We further evaluate the bit error, throughput, and detection performance of TACAN through extensive experiments using the EcoCAR testbed and a publicly available dataset collected from Toyota Camry 2010.
Conference Name: IEEE Transactions on Dependable and Secure Computing
Sutton, Robert, Ludwiniak, Robert, Pitropakis, Nikolaos, Chrysoulas, Christos, Dagiuklas, Tasos.  2021.  Towards An SDN Assisted IDS. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.
Modern Intrusion Detection Systems are able to identify and check all traffic crossing the network segments that they are only set to monitor. Traditional network infrastructures use static detection mechanisms that check and monitor specific types of malicious traffic. To mitigate this potential waste of resources and improve scalability across an entire network, we propose a methodology which deploys distributed IDS in a Software Defined Network allowing them to be used for specific types of traffic as and when it appears on a network. The core of our work is the creation of an SDN application that takes input from a Snort IDS instances, thus working as a classifier for incoming network traffic with a static ruleset for those classifications. Our application has been tested on a virtualised platform where it performed as planned holding its position for limited use on static and controlled test environments.
Rezaei, Ghazal, Hashemi, Massoud Reza.  2021.  An SDN-based Firewall for Networks with Varying Security Requirements. 2021 26th International Computer Conference, Computer Society of Iran (CSICC). :1–7.
With the new coronavirus crisis, medical devices' workload has increased dramatically, leaving them growingly vulnerable to security threats and in need of a comprehensive solution. In this work, we take advantage of the flexible and highly manageable nature of Software Defined Networks (SDN) to design a thoroughgoing security framework that covers a health organization's various security requirements. Our solution comes to be an advanced SDN firewall that solves the issues facing traditional firewalls. It enables the partitioning of the organization's network and the enforcement of different filtering and monitoring behaviors on each partition depending on security conditions. We pursued the network's efficient and dynamic security management with the least human intervention in designing our model which makes it generally qualified to use in networks with different security requirements.
Chasaki, Danai, Mansour, Christopher.  2021.  Detecting Malicious Hosts in SDN through System Call Learning. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
Software Defined Networking (SDN) has changed the way of designing and managing networks through programmability. However, programmability also introduces security threats. In this work we address the issue of malicious hosts running malicious applications that bypass the standard SDN based detection mechanisms. The SDN security system we are proposing periodically monitors the system calls utilization of the different SDN applications installed, learns from past system behavior using machine learning classifiers, and thus accurately detects the existence of an unusual activity or a malicious application.
Xu, Ben, Liu, Jun.  2021.  False Data Detection Based On LSTM Network In Smart Grid. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :314—317.
In contrast to traditional grids, smart grids can help utilities save energy, thereby reducing operating costs. In the smart grid, the quality of monitoring and control can be fully improved by combining computing and intelligent communication knowledge. However, this will expose the system to FDI attacks, and the system is vulnerable to intrusion. Therefore, it is very important to detect such erroneous data injection attacks and provide an algorithm to protect the system from such attacks. In this paper, a FDI detection method based on LSTM has been proposed, which is validated by the simulation on the ieee-14 bus platform.
Kummerow, André, Rösch, Dennis, Nicolai, Steffen, Brosinsky, Christoph, Westermann, Dirk, Naumann, é.  2021.  Attacking dynamic power system control centers - a cyber-physical threat analysis. 2021 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :01—05.

In dynamic control centers, conventional SCADA systems are enhanced with novel assistance functionalities to increase existing monitoring and control capabilities. To achieve this, different key technologies like phasor measurement units (PMU) and Digital Twins (DT) are incorporated, which give rise to new cyber-security challenges. To address these issues, a four-stage threat analysis approach is presented to identify and assess system vulnerabilities for novel dynamic control center architectures. For this, a simplified risk assessment method is proposed, which allows a detailed analysis of the different system vulnerabilities considering various active and passive cyber-attack types. Qualitative results of the threat analysis are presented and discussed for different use cases at the control center and substation level.

Chaves, Cesar G., Sepulveda, Johanna, Hollstein, Thomas.  2021.  Lightweight Monitoring Scheme for Flooding DoS Attack Detection in Multi-Tenant MPSoCs. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
The increasing use of Multiprocessor Systems-on-Chip (MPSoCs) within scalable multi-tenant systems, such as fog/cloud computing, faces the challenge of potential attacks originated by the execution of malicious tasks. Flooding Denial- of-Service (FDoS) attacks are one of the most common and powerful threats for Network-on-Chip (NoC)-based MPSoCs. Since, by overwhelming the NoC, the system is unable to forward legitimate traffic. However, the effectiveness of FDoS attacks depend on the NoC configuration. Moreover, designing a secure MPSoC capable of detecting such attacks while avoiding excessive power/energy and area costs is challenging. To this end, we present two contributions. First, we demonstrate two types of FDoS attacks: based on the packet injection rate (PIR-based FDoS) and based on the packet's payload length (PPL-based FDoS). We show that fair round-robin NoCs are intrinsically protected against PIR-based FDoS. Instead, PPL-based FDoS attacks represent a real threat to MPSoCs. Second, we propose a novel lightweight monitoring method for detecting communication disruptions. Simulation and synthesis results show the feasibility and efficiency of the presented approach.
Raja, Subashree, Bhamidipati, Padmaja, Liu, Xiaobang, Vemuri, Ranga.  2021.  Security Capsules: An Architecture for Post-Silicon Security Assertion Validation for Systems-on-Chip. 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :248–253.
In this paper, we propose a methodology for post-silicon validation through the evaluation of security assertions for systems-on-chip (SoC). The methodology is centered around a security architecture in which a "security capsule" is attached to each IP core in the SoC. The security capsule consists of a set of on-line and off-line assertion monitors, a dynamic trace-buffer to trace selected groups of signals, and a dynamic trace controller. The architecture is supported by a trace signal selection and grouping algorithm and a dynamic signal tracing method to evaluate the off-chip monitors. This paper presents the security capsule architecture, the signal selection and grouping algorithm, and the run-time signal tracing method. Results of using the methodology on two SoC architectures based on the OpenRISC-1200 and RISC-V processors are presented.
Guiza, Ouijdane, Mayr-Dorn, Christoph, Weichhart, Georg, Mayrhofer, Michael, Zangi, Bahman Bahman, Egyed, Alexander, Fanta, Björn, Gieler, Martin.  2021.  Automated Deviation Detection for Partially-Observable Human-Intensive Assembly Processes. 2021 IEEE 19th International Conference on Industrial Informatics (INDIN). :1–8.
Unforeseen situations on the shopfloor cause the assembly process to divert from its expected progress. To be able to overcome these deviations in a timely manner, assembly process monitoring and early deviation detection are necessary. However, legal regulations and union policies often limit the direct monitoring of human-intensive assembly processes. Grounded in an industry use case, this paper outlines a novel approach that, based on indirect privacy-respecting monitored data from the shopfloor, enables the near real-time detection of multiple types of process deviations. In doing so, this paper specifically addresses uncertainties stemming from indirect shopfloor observations and how to reason in their presence.
Abbood, Zainab Ali, Atilla, Doğu Çağdaş, Aydin, Çağatay, Mahmoud, Mahmoud Shuker.  2021.  A Survey on Intrusion Detection System in Ad Hoc Networks Based on Machine Learning. 2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI). :1–8.
This advanced research survey aims to perform intrusion detection and routing in ad hoc networks in wireless MANET networks using machine learning techniques. The MANETs are composed of several ad-hoc nodes that are randomly or deterministically distributed for communication and acquisition and to forward the data to the gateway for enhanced communication securely. MANETs are used in many applications such as in health care for communication; in utilities such as industries to monitor equipment and detect any malfunction during regular production activity. In general, MANETs take measurements of the desired application and send this information to a gateway, whereby the user can interpret the information to achieve the desired purpose. The main importance of MANETs in intrusion detection is that they can be trained to detect intrusion and real-time attacks in the CIC-IDS 2019 dataset. MANETs routing protocols are designed to establish routes between the source and destination nodes. What these routing protocols do is that they decompose the network into more manageable pieces and provide ways of sharing information among its neighbors first and then throughout the whole network. The landscape of exciting libraries and techniques is constantly evolving, and so are the possibilities and options for experiments. Implementing the framework in python helps in reducing syntactic complexity, increases performance compared to implementations in scripting languages, and provides memory safety.
Shah, Imran Ali, Kapoor, Nitika.  2021.  To Detect and Prevent Black Hole Attack in Mobile Ad Hoc Network. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1–4.
Mobile Ad hoc Networks ‘MANETs’ are still defenseless against peripheral threats due to the fact that this network has vulnerable access and also the absence of significant fact of administration. The black hole attack is a kind of some routing attack, in this type of attack the attacker node answers to the Route Requests (RREQs) thru faking and playing itself as an adjacent node of the destination node in order to get through the data packets transported from the source node. To counter this situation, we propose to deploy some nodes (exhibiting some distinctive functionality) in the network called DPS (Detection and Prevention System) nodes that uninterruptedly monitor the RREQs advertised by all other nodes in the networks. DPS nodes target to satisfy the set objectives in which it has to sense the mischievous nodes by detecting the activities of their immediate neighbor. In the case, when a node demonstrates some peculiar manners, which estimates according to the experimental data, DPS node states that particular distrustful node as black hole node by propagation of a threat message to all the remaining nodes in the network. A protocol with a clustering approach in AODV routing protocol is used to sense and avert the black hole attack in the mentioned network. Consequently, empirical evaluation shows that the black hole node is secluded and prohibited from the whole system and is not allowed any data transfer from any node thereafter.
Levina, Alla, Kamnev, Ivan, Zikratov, Igor.  2021.  Implementation White-Box Cryptography for Elliptic Curve Cryptography. 2021 10th Mediterranean Conference on Embedded Computing (MECO). :1–4.
The development of technologies makes it possible to increase the power of information processing systems, but the modernization of processors brings not only an increase in performance but also an increase in the number of errors and vulnerabilities that can allow an attacker to attack the system and gain access to confidential information. White-Box cryptography allows (due to its structure) not only monitoring possible changes but also protects the processed data even with full access of the attacker to the environment. Elliptic Curve Cryptography (ECC) due to its properties, is becoming stronger and stronger in our lives, as it allows you to get strong encryption at a lower cost of processing your own algorithm. This allows you to reduce the load on the system and increase its performance.
Sureshkumar, S, Agash, C P, Ramya, S, Kaviyaraj, R, Elanchezhiyan, S.  2021.  Augmented Reality with Internet of Things. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1426—1430.
Today technological changes make the probability of more complex things made into simple tasks with more accuracy in major areas and mostly in Manufacturing Industry. Internet of things contributes its major part in automation which helps human to make life easy by monitoring and directed to a related person with in a fraction of second. Continuous advances and improvement in computer vision, mobile computing and tablet screens have led to a revived interest in Augmented Reality the Augmented Reality makes the complex automation into an easier task by making more realistic real time animation in monitoring and automation on Internet of Things (eg like temperature, time, object information, installation manual, real time testing).In order to identify and link the augmented content, like object control of home appliances, industrial appliances. The AR-IoT will have a much cozier atmosphere and enhance the overall Interactivity of the IoT environment. Augmented Reality applications use a myriad of data generated by IoT devices and components, AR helps workers become more competitive and productive with the realistic environment in IoT. Augmented Reality and Internet of Things together plays a critical role in the development of next generation technologies. This paper describes the concept of how Augmented Reality can be integrated with industry(AR-IoT)4.0 and how the sensors are used to monitoring objects/things contiguously round the clock, and make the process of converting real-time physical objects into smart things for the upcoming new era with AR-IoT.
Ren, Sothearin, Kim, Jae-Sung, Cho, Wan-Sup, Soeng, Saravit, Kong, Sovanreach, Lee, Kyung-Hee.  2021.  Big Data Platform for Intelligence Industrial IoT Sensor Monitoring System Based on Edge Computing and AI. 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :480–482.
The cutting edge of Industry 4.0 has driven everything to be converted to disruptive innovation and digitalized. This digital revolution is imprinted by modern and advanced technology that takes advantage of Big Data and Artificial Intelligence (AI) to nurture from automatic learning systems, smart city, smart energy, smart factory to the edge computing technology, and so on. To harness an appealing, noteworthy, and leading development in smart manufacturing industry, the modern industrial sciences and technologies such as Big Data, Artificial Intelligence, Internet of things, and Edge Computing have to be integrated cooperatively. Accordingly, a suggestion on the integration is presented in this paper. This proposed paper describes the design and implementation of big data platform for intelligence industrial internet of things sensor monitoring system and conveys a prediction of any upcoming errors beforehand. The architecture design is based on edge computing and artificial intelligence. To extend more precisely, industrial internet of things sensor here is about the condition monitoring sensor data - vibration, temperature, related humidity, and barometric pressure inside facility manufacturing factory.
Fajari, Muhammad Fadhillah, Ogi, Dion.  2021.  Implementation of Efficient Anonymous Certificate-Based Multi-Message and Multi-Receiver Signcryption On Raspberry Pi-Based Internet of Things Monitoring System. 2021 International Conference on ICT for Smart Society (ICISS). :1–5.
Internet of things as a technology that connect internet and physical world has been implemented in many diverse fields and has been proven very useful and flexible. In every implementation of technology that involve internet, security must be a great concern, including the implementation of IoT technology. A lot of alternatives can be used to achieve security of IoT. Ming et al. has proposed novel signcryption scheme to secure IoT of monitoring health data. In this work, proposed signcryption scheme from Ming et al. has been successfully implemented using Raspberry Pi and ESP32 and has proven work in securing IoT data.