Visible to the public Biblio

Found 339 results

Filters: Keyword is Monitoring  [Clear All Filters]
2020-07-13
Abuella, Hisham, Ekin, Sabit.  2019.  A New Paradigm for Non-contact Vitals Monitoring using Visible Light Sensing. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–2.
Typical techniques for tracking vital signs require body contact and most of these techniques are intrusive in nature. Body-contact methods might irritate the patient's skin and he/she might feel uncomfortable while sensors are touching his/her body. In this study, we present a new wireless (non-contact) method for monitoring human vital signs (breathing and heartbeat). We have demonstrated for the first time1 that vitals signs can be measured wirelessly through visible light signal reflected from a human subject, also referred to as visible light sensing (VLS). In this method, the breathing and heartbeat rates are measured without any body-contact device, using only a simple photodetector and a light source (e.g., LED). The light signal reflected from human subject is modulated by the physical motions during breathing and heartbeats. Signal processing tools such as filtering and Fourier transform are used to convert these small variations in the received light signal power to vitals data.We implemented the VLS-based non-contact vital signs monitoring system by using an off-the-shelf light source, a photodetector and a signal acquisition and processing unit. We observed more than 94% of accuracy as compared to a contact-based FDA (The Food and Drug Administration) approved devices. Additional evaluations are planned to assess the performance of the developed vitals monitoring system, e.g., different subjects, environments, etc. Non-contact vitals monitoring system can be used in various areas and scenarios such as medical facilities, residential homes, security and human-computer-interaction (HCI) applications.
2020-07-10
Koloveas, Paris, Chantzios, Thanasis, Tryfonopoulos, Christos, Skiadopoulos, Spiros.  2019.  A Crawler Architecture for Harvesting the Clear, Social, and Dark Web for IoT-Related Cyber-Threat Intelligence. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:3—8.
The clear, social, and dark web have lately been identified as rich sources of valuable cyber-security information that -given the appropriate tools and methods-may be identified, crawled and subsequently leveraged to actionable cyber-threat intelligence. In this work, we focus on the information gathering task, and present a novel crawling architecture for transparently harvesting data from security websites in the clear web, security forums in the social web, and hacker forums/marketplaces in the dark web. The proposed architecture adopts a two-phase approach to data harvesting. Initially a machine learning-based crawler is used to direct the harvesting towards websites of interest, while in the second phase state-of-the-art statistical language modelling techniques are used to represent the harvested information in a latent low-dimensional feature space and rank it based on its potential relevance to the task at hand. The proposed architecture is realised using exclusively open-source tools, and a preliminary evaluation with crowdsourced results demonstrates its effectiveness.
2020-07-06
Mason, Andrew, Zhao, Yifan, He, Hongmei, Gompelman, Raymon, Mandava, Srikanth.  2019.  Online Anomaly Detection of Time Series at Scale. 2019 International Conference on Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.
Cyber breaches can result in disruption to business operations, reputation damage as well as directly affecting the financial stability of the targeted corporations, with potential impacts on future profits and stock values. Automatic network-stream monitoring becomes necessary for cyber situation awareness, and time-series anomaly detection plays an important role in network stream monitoring. This study surveyed recent research on time-series analysis methods in respect of parametric and non-parametric techniques, and popular machine learning platforms for data analysis on streaming data on both single server and cloud computing environments. We believe it provides a good reference for researchers in both academia and industry to select suitable (time series) data analysis techniques, and computing platforms, dependent on the data scale and real-time requirements.
Xu, Zhiheng, Ng, Daniel Jun Xian, Easwaran, Arvind.  2019.  Automatic Generation of Hierarchical Contracts for Resilience in Cyber-Physical Systems. 2019 IEEE 25th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). :1–11.
With the growing scale of Cyber-Physical Systems (CPSs), it is challenging to maintain their stability under all operating conditions. How to reduce the downtime and locate the failures becomes a core issue in system design. In this paper, we employ a hierarchical contract-based resilience framework to guarantee the stability of CPS. In this framework, we use Assume Guarantee (A-G) contracts to monitor the non-functional properties of individual components (e.g., power and latency), and hierarchically compose such contracts to deduce information about faults at the system level. The hierarchical contracts enable rapid fault detection in large-scale CPS. However, due to the vast number of components in CPS, manually designing numerous contracts and the hierarchy becomes challenging. To address this issue, we propose a technique to automatically decompose a root contract into multiple lower-level contracts depending on I/O dependencies between components. We then formulate a multi-objective optimization problem to search the optimal parameters of each lower-level contract. This enables automatic contract refinement taking into consideration the communication overhead between components. Finally, we use a case study from the manufacturing domain to experimentally demonstrate the benefits of the proposed framework.
Gries, Stefan, Ollesch, Julius, Gruhn, Volker.  2019.  Modeling Semantic Dependencies to Allow Flow Monitoring in Networks with Black-Box Nodes. 2019 IEEE/ACM 5th International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS). :14–17.
Cyber-Physical Systems are distributed, heterogeneous systems that communicate and exchange data over networks. This creates semantic dependencies between the individual components. In the event of an error, it is difficult to identify the source of an occurring error that is spread due to those underlying dependencies. Tools such as the Information Flow Monitor solve this problem, but require compliance with a protocol. Nodes that do not adhere to this protocol prevent errors from being tracked. In this paper, we present a way to bridge these black-box nodes with a dependency model and to still be able to use them in monitoring tools.
2020-06-29
Rahman, Md. Mahmudur, Roy, Shanto, Yousuf, Mohammad Abu.  2019.  DDoS Mitigation and Intrusion Prevention in Content Delivery Networks using Distributed Virtual Honeypots. 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT). :1–6.

Content Delivery Networks(CDN) is a standout amongst the most encouraging innovations that upgrade performance for its clients' websites by diverting web demands from browsers to topographically dispersed CDN surrogate nodes. However, due to the variable nature of CDN, it suffers from various security and resource allocation issues. The most common attack which is used to bring down a whole network as well as CDN without even finding a loophole in the security is DDoS. In this proposal, we proposed a distributed virtual honeypot model for diminishing DDoS attacks and prevent intrusion in securing CDN. Honeypots are specially utilized to imitate the primary server with the goal that the attack is alleviated to the fake rather than the main server. Our proposed layer based model utilizes honeypot to be more effective reducing the cost of the system as well as maintaining the smooth delivery in geographically dispersed servers without performance degradation.

Blazek, Petr, Gerlich, Tomas, Martinasek, Zdenek.  2019.  Scalable DDoS Mitigation System. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP). :617–620.
Distributed Denial of Service attacks (DDoS) are used by attackers for their effectiveness. This type of attack is one of the most devastating attacks in the Internet. Every year, the intensity of DDoS attacks increases and attackers use sophisticated multi-target DDoS attacks. In this paper, a modular system that allows to increase the filtering capacity linearly and allows to protect against the combination of DDoS attacks is designed and implemented. The main motivation for development of the modular filtering system was to find a cheap solution for filtering DDoS attacks with possibility to increase filtering capacity. The proposed system is based on open-source detection and filtration tools.
Liang, Xiaoyu, Znati, Taieb.  2019.  An empirical study of intelligent approaches to DDoS detection in large scale networks. 2019 International Conference on Computing, Networking and Communications (ICNC). :821–827.
Distributed Denial of Services (DDoS) attacks continue to be one of the most challenging threats to the Internet. The intensity and frequency of these attacks are increasing at an alarming rate. Numerous schemes have been proposed to mitigate the impact of DDoS attacks. This paper presents a comprehensive empirical evaluation of Machine Learning (ML)based DDoS detection techniques, to gain better understanding of their performance in different types of environments. To this end, a framework is developed, focusing on different attack scenarios, to investigate the performance of a class of ML-based techniques. The evaluation uses different performance metrics, including the impact of the “Class Imbalance Problem” on ML-based DDoS detection. The results of the comparative analysis show that no one technique outperforms all others in all test cases. Furthermore, the results underscore the need for a method oriented feature selection model to enhance the capabilities of ML-based detection techniques. Finally, the results show that the class imbalance problem significantly impacts performance, underscoring the need to address this problem in order to enhance ML-based DDoS detection capabilities.
2020-06-26
Niedermaier, Matthias, Fischer, Florian, Merli, Dominik, Sigl, Georg.  2019.  Network Scanning and Mapping for IIoT Edge Node Device Security. 2019 International Conference on Applied Electronics (AE). :1—6.

The amount of connected devices in the industrial environment is growing continuously, due to the ongoing demands of new features like predictive maintenance. New business models require more data, collected by IIoT edge node sensors based on inexpensive and low performance Microcontroller Units (MCUs). A negative side effect of this rise of interconnections is the increased attack surface, enabled by a larger network with more network services. Attaching badly documented and cheap devices to industrial networks often without permission of the administrator even further increases the security risk. A decent method to monitor the network and detect “unwanted” devices is network scanning. Typically, this scanning procedure is executed by a computer or server in each sub-network. In this paper, we introduce network scanning and mapping as a building block to scan directly from the Industrial Internet of Things (IIoT) edge node devices. This module scans the network in a pseudo-random periodic manner to discover devices and detect changes in the network structure. Furthermore, we validate our approach in an industrial testbed to show the feasibility of this approach.

2020-06-19
Shapiro, Jeffrey H., Boroson, Don M., Dixon, P. Ben, Grein, Matthew E., Hamilton, Scott A..  2019.  Quantum Low Probability of Intercept. 2019 Conference on Lasers and Electro-Optics (CLEO). :1—2.

Quantum low probability of intercept transmits ciphertext in a way that prevents an eavesdropper possessing the decryption key from recovering the plaintext. It is capable of Gbps communication rates on optical fiber over metropolitan-area distances.

2020-06-15
ALshukri, Dawoud, R, Vidhya Lavanya, P, Sumesh E, Krishnan, Pooja.  2019.  Intelligent Border Security Intrusion Detection using IoT and Embedded systems. 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC). :1–3.
Border areas are generally considered as places where great deal of violence, intrusion and cohesion between several parties happens. This often led to danger for the life of employees, soldiers and common man working or living in border areas. Further geographical conditions like mountains, snow, forest, deserts, harsh weather and water bodies often lead to difficult access and monitoring of border areas. Proposed system uses thermal imaging camera (FLIR) for detection of various objects and infiltrators. FLIR is assigned an IP address and connected through local network to the control center. Software code captures video and subsequently the intrusion detection. A motor controlled spotlight with infrared and laser gun is used to illuminate under various conditions at the site. System also integrates sound sensor to detect specific sounds and motion sensors to sense suspicious movements. Based on the decision, a buzzer and electric current through fence for further protection can be initiated. Sensors are be integrated through IoT for an efficient control of large border area and connectivity between sites.
Gorbachov, Valeriy, Batiaa, Abdulrahman Kataeba, Ponomarenko, Olha, Kotkova, Oksana.  2019.  Impact Evaluation of Embedded Security Mechanisms on System Performance. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S T). :407–410.
Experience in designing general-purpose systems that enforce security goals shows that achieving universality, security, and performance remains a very difficult challenge. As a result, two directions emerged in designing, one of which focused on universality and performance with limited security mechanisms, and another - on robust security with reasonable performance for limited sets of applications. In the first case, popular but unsecure systems were created, and various efforts were subsequently made to upgrade the protected infrastructure for such systems. In the work, the latter approach is considered. It is obvious that the inclusion of built-in security mechanisms leads to a decrease in system performance. The paper considers a reference monitor and the assessment of its impact on system performance. For this purpose, the functional structure of reference monitor is built and the analytical model of impact evaluation on system performance is proposed.
2020-06-12
Grochol, David, Sekanina, Lukas.  2018.  Fast Reconfigurable Hash Functions for Network Flow Hashing in FPGAs. 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). :257—263.

Efficient monitoring of high speed computer networks operating with a 100 Gigabit per second (Gbps) data throughput requires a suitable hardware acceleration of its key components. We present a platform capable of automated designing of hash functions suitable for network flow hashing. The platform employs a multi-objective linear genetic programming developed for the hash function design. We evolved high-quality hash functions and implemented them in a field programmable gate array (FPGA). Several evolved hash functions were combined together in order to form a new reconfigurable hash function. The proposed reconfigurable design significantly reduces the area on a chip while the maximum operation frequency remains very close to the fastest hash functions. Properties of evolved hash functions were compared with the state-of-the-art hash functions in terms of the quality of hashing, area and operation frequency in the FPGA.

2020-06-08
Pirani, Mohammad, Nekouei, Ehsan, Sandberg, Henrik, Johansson, Karl Henrik.  2019.  A Game-theoretic Framework for Security-aware Sensor Placement Problem in Networked Control Systems. 2019 American Control Conference (ACC). :114–119.
This paper studies the sensor placement problem in a networked control system for improving its security against cyber-physical attacks. The problem is formulated as a zero-sum game between an attacker and a detector. The attacker's decision is to select f nodes of the network to attack whereas the detector's decision is to place f sensors to detect the presence of the attack signals. In our formulation, the attacker minimizes its visibility, defined as the system L2 gain from the attack signals to the deployed sensors' outputs, and the detector maximizes the visibility of the attack signals. The equilibrium strategy of the game determines the optimal locations of the sensors. The existence of Nash equilibrium for the attacker-detector game is studied when the underlying connectivity graph is a directed or an undirected tree. When the game does not admit a Nash equilibrium, it is shown that the Stackelberg equilibrium of the game, with the detector as the game leader, can be computed efficiently. Our results show that, under the optimal sensor placement strategy, an undirected topology provides a higher security level for a networked control system compared with its corresponding directed topology.
2020-06-01
Utomo, Subroto Budhi, Hendradjaya, Bayu.  2018.  Multifactor Authentication on Mobile Secure Attendance System. 2018 International Conference on ICT for Smart Society (ICISS). :1–5.
BYOD (Bring Your Own Device) trends allows employees to use the smartphone as a tool in everyday work and also as an attendance device. The security of employee attendance system is important to ensure that employees do not commit fraud in recording attendance and when monitoring activities at working hours. In this paper, we propose a combination of fingerprint, secure android ID, and GPS as authentication factors, also addition of anti emulator and anti fake location module turn Mobile Attendance System into Mobile Secure Attendance System. Testing based on scenarios that have been adapted to various possible frauds is done to prove whether the system can minimize the occurrence of fraud in attendance recording and monitoring of employee activities.
Xenya, Michael Christopher, Kwayie, Crentsil, Quist-Aphesti, Kester.  2019.  Intruder Detection with Alert Using Cloud Based Convolutional Neural Network and Raspberry Pi. 2019 International Conference on Computing, Computational Modelling and Applications (ICCMA). :46–464.
In this paper, an intruder detection system has been built with an implementation of convolutional neural network (CNN) using raspberry pi, Microsoft's Azure and Twilio cloud systems. The CNN algorithm which is stored in the cloud is implemented to basically classify input data as either intruder or user. By using the raspberry pi as the middleware and raspberry pi camera for image acquisition, efficient execution of the learning and classification operations are performed using higher resources that cloud computing offers. The cloud system is also programmed to alert designated users via multimedia messaging services (MMS) when intruders or users are detected. Furthermore, our work has demonstrated that, though convolutional neural network could impose high computing demands on a processor, the input data could be obtained with low-cost modules and middleware which are of low processing power while subjecting the actual learning algorithm execution to the cloud system.
Vural, Serdar, Minerva, Roberto, Carella, Giuseppe A., Medhat, Ahmed M., Tomasini, Lorenzo, Pizzimenti, Simone, Riemer, Bjoern, Stravato, Umberto.  2018.  Performance Measurements of Network Service Deployment on a Federated and Orchestrated Virtualisation Platform for 5G Experimentation. 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :1–6.
The EU SoftFIRE project has built an experimentation platform for NFV and SDN experiments, tailored for testing and evaluating 5G network applications and solutions. The platform is a fully orchestrated virtualisation testbed consisting of multiple component testbeds across Europe. Users of the platform can deploy their virtualisation experiments via the platform's Middleware. This paper introduces the SoftFIRE testbed and its Middleware, and presents a set of KPI results for evaluation of experiment deployment performance.
2020-05-22
Shah, Mujahid, Ahmed, Sheeraz, Saeed, Khalid, Junaid, Muhammad, Khan, Hamayun, Ata-ur-rehman.  2019.  Penetration Testing Active Reconnaissance Phase – Optimized Port Scanning With Nmap Tool. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). :1—6.

Reconnaissance might be the longest phase, sometimes take weeks or months. The black hat makes use of passive information gathering techniques. Once the attacker has sufficient statistics, then the attacker starts the technique of scanning perimeter and internal network devices seeking out open ports and related services. In this paper we are showing traffic accountability and time to complete the specific task during reconnaissance phase active scanning with nmap tool and proposed strategies that how to deal with large volumes of hosts and conserve network traffic as well as time of the specific task.

2020-05-18
Zhou, Wei, Yang, Weidong, Wang, Yan, Zhang, Hong.  2018.  Generalized Reconstruction-Based Contribution for Multiple Faults Diagnosis with Bayesian Decision. 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). :813–818.
In fault diagnosis of industrial process, there are usually more than one variable that are faulty. When multiple faults occur, the generalized reconstruction-based contribution can be helpful while traditional RBC may make mistakes. Due to the correlation between the variables, these faults usually propagate to other normal variables, which is called smearing effect. Thus, it is helpful to consider the pervious fault diagnosis results. In this paper, a data-driven fault diagnosis method which is based on generalized RBC and bayesian decision is presented. This method combines multi-dimensional RBC and bayesian decision. The proposed method improves the diagnosis capability of multiple and minor faults with greater noise. A numerical simulation example is given to show the effectiveness and superiority of the proposed method.
2020-05-15
Fan, Renshi, Du, Gaoming, Xu, Pengfei, Li, Zhenmin, Song, Yukun, Zhang, Duoli.  2019.  An Adaptive Routing Scheme Based on Q-learning and Real-time Traffic Monitoring for Network-on-Chip. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :244—248.
In the Network on Chip (NoC), performance optimization has always been a research focus. Compared with the static routing scheme, dynamical routing schemes can better reduce the data of packet transmission latency under network congestion. In this paper, we propose a dynamical Q-learning routing approach with real-time monitoring of NoC. Firstly, we design a real-time monitoring scheme and the corresponding circuits to record the status of traffic congestion for NoC. Secondly, we propose a novel method of Q-learning. This method finds an optimal path based on the lowest traffic congestion. Finally, we dynamically redistribute network tasks to increase the packet transmission speed and balance the traffic load. Compared with the C-XY routing and DyXY routing, our method achieved improvement in terms of 25.6%-49.5% and 22.9%-43.8%.
Krishnamoorthy, Raja, Kalaivaani, P.T., Jackson, Beulah.  2019.  Test methodology for detecting short-channel faults in network on- chip networks using IOT. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :1406—1417.
The NOC Network on chip provides better performance and scalability communication structures point-to-point signal node, shared through bus architecture. Information analysis of method using the IOT termination, as the energy consumed in this regard reduces and reduces the network load but it also displays safety concerns because the valuation data is stored or transmitted to the network in various stages of the node. Using encryption to protect data on the area of network-on-chip Analysis Machine is a way to solve data security issues. We propose a Network on chip based on a combined multicore cluster with special packages for computing-intensive data processing and encryption functionality and support for software, in a tight power envelope for analyzing and coordinating integrated encryption. Programming for regular computing tasks is the challenge of efficient and secure data analysis for IOT end-end applications while providing full-functionality with high efficiency and low power to satisfy the needs of multiple processing applications. Applications provide a substantial parallel, so they can also use NOC's ability. Applications must compose in. This system controls the movement of the packets through the network. As network on chip (NOC) systems become more prevalent in the processing unit. Routers and interconnection networks are the main components of NOC. This system controls the movement of packets over the network. Chip (NOC) networks are very backward for the network processing unit. Guides and Link Networks are critical elements of the NOC. Therefore, these areas require less access and power consumption, so we can better understand environmental and energy transactions. In this manner, a low-area and efficient NOC framework were proposed by removing virtual channels.
Madhukar, Anant, Misra, Dinesh Kumar, Zaheer, M M.  2018.  Indigenous Network Monitoring System. 2018 International Conference on Computational and Characterization Techniques in Engineering Sciences (CCTES). :262—266.

Military reconnaissance in 1999 has paved the way to establish its own, self-reliant and indigenous navigation system. The strategic necessity has been accomplished in 2013 by launching seven satellites in Geo-orbit and underlying Network control center in Bangalore and a new NavIC control center at Lucknow, later in 2016. ISTRAC is one of the premier and amenable center to track the Indian as well as external network satellite launch vehicle and provide house-keeping and inertial navigation (INC) data to launch control center in real time and to project team in off-line. Over the ISTRAC Launch network, Simple Network Management Protocol (SNMP) was disabled due to security and bandwidth reasons. The cons of SNMP comprise security risks that are normal trait whenever applied as an open standard. There is "security through obscurity" linked with any slight-used communications standard in SNMP. Detailed messages are being sent between devices, not just miniature pre-set codes. These cons in the SNMP are found in majority applications and more bandwidth seizure is another contention. Due to the above pros and cones in SNMP in form of open source, available network monitoring system (NMS) could not be employed for link monitoring and immediate decision making in ISTRAC network. The situation has made requisitions to evolve an in-house network monitoring system (NMS). It was evolved for real-time network monitoring as well as communication link performance explication. The evolved system has the feature of Internet control message protocol (ICMP) based link monitoring, 24/7 monitoring of all the nodes, GUI based real-time link status, Summary and individual link statistics on the GUI. It also identifies total downtime and generates summary reports. It does identification for out of order or looped packets, Email and SMS alert to Prime and Redundant system which one is down and repeat alert if the link is failed for more than 30 minutes. It has easy file based configuration and no application restart required. Generation of daily and monthly link status, offline link analysis plot of any day, less consumption of system resources are add-on features. It is fully secured in-house development, calculates total data flow over a network and co-relate data vs link percentage.

2020-05-11
Tabiban, Azadeh, Majumdar, Suryadipta, Wang, Lingyu, Debbabi, Mourad.  2018.  PERMON: An OpenStack Middleware for Runtime Security Policy Enforcement in Clouds. 2018 IEEE Conference on Communications and Network Security (CNS). :1–7.

To ensure the accountability of a cloud environment, security policies may be provided as a set of properties to be enforced by cloud providers. However, due to the sheer size of clouds, it can be challenging to provide timely responses to all the requests coming from cloud users at runtime. In this paper, we design and implement a middleware, PERMON, as a pluggable interface to OpenStack for intercepting and verifying the legitimacy of user requests at runtime, while leveraging our previous work on proactive security verification to improve the efficiency. We describe detailed implementation of the middleware and demonstrate its usefulness through a use case.

Nikolov, Dimitar, Kordev, Iliyan, Stefanova, Stela.  2018.  Concept for network intrusion detection system based on recurrent neural network classifier. 2018 IEEE XXVII International Scientific Conference Electronics - ET. :1–4.
This paper presents the effects of problem based learning project on a high-school student in Technology school “Electronic systems” associated with Technical University Sofia. The problem is creating an intrusion detection system for Apache HTTP Server with duration 6 months. The intrusion detection system is based on a recurrent neural network classifier namely long-short term memory units.
2020-05-04
de Sá, Alan Oliveira, Carmo, Luiz Fernando Rust da C., Santos Machado, Raphael C..  2019.  Countermeasure for Identification of Controlled Data Injection Attacks in Networked Control Systems. 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0 IoT). :455–459.
Networked Control Systems (NCS) are widely used in Industry 4.0 to obtain better management and operational capabilities, as well as to reduce costs. However, despite the benefits provided by NCSs, the integration of communication networks with physical plants can also expose these systems to cyber threats. This work proposes a link monitoring strategy to identify linear time-invariant transfer functions performed by a Man-in-the-Middle during controlled data injection attacks in NCSs. The results demonstrate that the proposed identification scheme provides adequate accuracy when estimating the attack function, and does not interfere in the plant behavior when the system is not under attack.