Visible to the public Biblio

Found 492 results

Filters: Keyword is Monitoring  [Clear All Filters]
Ivaki, Naghmeh, Antunes, Nuno.  2020.  SIDE: Security-Aware Integrated Development Environment. 2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :149–150.
An effective way for building secure software is to embed security into software in the early stages of software development. Thus, we aim to study several evidences of code anomalies introduced during the software development phase, that may be indicators of security issues in software, such as code smells, structural complexity represented by diverse software metrics, the issues detected by static code analysers, and finally missing security best practices. To use such evidences for vulnerability prediction and removal, we first need to understand how they are correlated with security issues. Then, we need to discover how these imperfect raw data can be integrated to achieve a reliable, accurate and valuable decision about a portion of code. Finally, we need to construct a security actuator providing suggestions to the developers to remove or fix the detected issues from the code. All of these will lead to the construction of a framework, including security monitoring, security analyzer, and security actuator platforms, that are necessary for a security-aware integrated development environment (SIDE).
Qu, Dapeng, Zhang, Jiankun, Hou, Zhenhuan, Wang, Min, Dong, Bo.  2020.  A Trust Routing Scheme Based on Identification of Non-complete Cooperative Nodes in Mobile Peer-to-Peer Networks. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :22–29.
Mobile peer-to-peer network (MP2P) attracts increasing attentions due to the ubiquitous use of mobile communication and huge success of peer-to-peer (P2P) mode. However, open p2p mode makes nodes tend to be selfish, and the scarcity of resources in mobile nodes aggravates this problem, thus the nodes easily express a non-complete cooperative (NCC) attitude. Therefore, an identification of non-complete cooperative nodes and a corresponding trust routing scheme are proposed for MP2P in this paper. The concept of octant is firstly introduced to build a trust model which analyzes nodes from three dimensions, namely direct trust, internal state and recommendation reliability, and then the individual non-complete cooperative (INCC) nodes can be identified by the division of different octants. The direct trust monitors nodes' external behaviors, and the consideration of internal state and recommendation reliability contributes to differentiate the subjective and objective non-cooperation, and mitigate the attacks about direct trust values respectively. Thus, the trust model can identify various INCC nodes accurately. On the basis of identification of INCC nodes, cosine similarity method is applied to identify collusive non-complete cooperate (CNCC) nodes. Moreover, a trust routing scheme based on the identification of NCC nodes is presented to reasonably deal with different kinds of NCC nodes. Results from extensive simulation experiments demonstrate that this proposed identification and routing scheme have better performances, in terms of identification precision and packet delivery fraction than current schemes respectively.
Alemany, P., Ayed, D., Vilalta, R., Muñoz, R., Bisson, P., Casellas, R., Mart\'ınez, R..  2020.  Transport Network Slices with Security Service Level Agreements. 2020 22nd International Conference on Transparent Optical Networks (ICTON). :1–4.
This paper presents an initial architecture to manage End-to-End Network Slices which, once deployed, are associated with Security Service Level Agreement(s) to increase the security on the virtual deployed resources and create End-to-End Secure Network Slices. Moreover, the workflows regarding the Network Slicing provisioning and the whole SSLA Lifecycle management is detailed.
Tupakula, Uday, Varadharajan, Vijay, Karmakar, Kallol Krishna.  2020.  Attack Detection on the Software Defined Networking Switches. 2020 6th IEEE Conference on Network Softwarization (NetSoft). :262–266.
Software Defined Networking (SDN) is disruptive networking technology which adopts a centralised framework to facilitate fine-grained network management. However security in SDN is still in its infancy and there is need for significant work to deal with different attacks in SDN. In this paper we discuss some of the possible attacks on SDN switches and propose techniques for detecting the attacks on switches. We have developed a Switch Security Application (SSA)for SDN Controller which makes use of trusted computing technology and some additional components for detecting attacks on the switches. In particular TPM attestation is used to ensure that switches are in trusted state during boot time before configuring the flow rules on the switches. The additional components are used for storing and validating messages related to the flow rule configuration of the switches. The stored information is used for generating a trusted report on the expected flow rules in the switches and using this information for validating the flow rules that are actually enforced in the switches. If there is any variation to flow rules that are enforced in the switches compared to the expected flow rules by the SSA, then, the switch is considered to be under attack and an alert is raised to the SDN Administrator. The administrator can isolate the switch from network or make use of trusted report for restoring the flow rules in the switches. We will also present a prototype implementation of our technique.
Khalid, Fatima, Masood, Ammar.  2020.  Hardware-Assisted Isolation Technologies: Security Architecture and Vulnerability Analysis. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1–8.
Hardware-assisted isolation technology provide a Trusted Execution Environment (TEE) for the Trusted Computing Base (TCB) of a system. Since there is no standardization for such systems, many technologies using different approaches have been implemented over time. Before selecting or implementing a TEE, it is essential to understand the security architecture, features and analyze the technologies with respect to the new security vulnerabilities (i.e. Micro-architectural class of vulnerabilities). These technologies can be divided into two main types: 1) Isolation by software virtualization and 2) Isolation by hardware. In this paper, we discuss technology implementation of each type i.e. Intel SGX and ARM TrustZone for type-1; Intel ME and AMD Secure Processor for type-2. We also cover the vulnerability analysis against each technology with respect to the latest discovered attacks. This would enable a user to precisely appreciate the security capabilities of each technology.
Jagadamba, G, Sheeba, R, Brinda, K N, Rohini, K C, Pratik, S K.  2020.  Adaptive E-Learning Authentication and Monitoring. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). :277–283.
E-learning enables the transfer of skills, knowledge, and education to a large number of recipients. The E-Learning platform has the tendency to provide face-to-face learning through a learning management system (LMS) and facilitated an improvement in traditional educational methods. The LMS saves organization time, money and easy administration. LMS also saves user time to move across the learning place by providing a web-based environment. However, a few students could be willing to exploit such a system's weakness in a bid to cheat if the conventional authentication methods are employed. In this scenario user authentication and surveillance of end user is more challenging. A system with the simultaneous authentication is put forth through multifactor adaptive authentication methods. The proposed system provides an efficient, low cost and human intervention adaptive for e-learning environment authentication and monitoring system.
Narayana, V.Lakshman, Midhunchakkaravarthy, Divya.  2020.  A Time Interval Based Blockchain Model for Detection of Malicious Nodes in MANET Using Network Block Monitoring Node. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :852–857.
Mobile Ad Hoc Networks (MANETs) are infrastructure-less networks that are mainly used for establishing communication during the situation where wired network fails. Security related information collection is a fundamental part of the identification of attacks in Mobile Ad Hoc Networks (MANETs). A node should find accessible routes to remaining nodes for information assortment and gather security related information during route discovery for choosing secured routes. During data communication, malicious nodes enter the network and cause disturbances during data transmission and reduce the performance of the system. In this manuscript, a Time Interval Based Blockchain Model (TIBBM) for security related information assortment that identifies malicious nodes in the MANET is proposed. The proposed model builds the Blockchain information structure which is utilized to distinguish malicious nodes at specified time intervals. To perform a malicious node identification process, a Network Block Monitoring Node (NBMN) is selected after route selection and this node will monitor the blocks created by the nodes in the routing table. At long last, NBMN node understands the location of malicious nodes by utilizing the Blocks created. The proposed model is compared with the traditional malicious node identification model and the results show that the proposed model exhibits better performance in malicious node detection.
Asci, Cihan, Wang, Wei, Sonkusale, Sameer.  2020.  Security Monitoring System Using Magnetically-Activated RFID Tags. 2020 IEEE SENSORS. :1–4.
Existing methods for home security monitoring depend on expensive custom battery-powered solutions. In this article, we present a battery-free solution that leverages any off-the-shelf passive radio frequency identification (RFID) tag for real-time entry detection. Sensor consists of a printed RFID antenna on paper, coupled to a magnetic reed switch and is affixed on the door. Opening of the door triggers the reed switch causing RFID signal transmission detected by any off-the-shelf passive RFID reader. This paper shows simulation and experimental results for such magnetically-actuated RFID (or magRFID) opening sensor.
Ambareen, Javeria, M, Prabhakar, Ara, Tabassum.  2020.  Edge Data Security for RFID-Based Devices. 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE). :272–277.
Radio-frequency identification (RFID) has become a preferred technology for monitoring in industrial internet of things (IIoT) applications like supply chain, medical industry, vehicle tracking and warehouse monitoring where information is required continually. Typical security threats seen in these applications are denial of service (DOS) attack, transmission attack etc. We propose a novel edge data security schema based on spike modulation along with backscatter communication technique to modulate both sensor and identification (ID) information. It is observed that this data encoding schema works well even in a multi-tag single-reader environment. Further, it uses lower power and offers a low-cost solution for Industrial IoT applications.
Qurashi, Mohammed Al, Angelopoulos, Constantinos Marios, Katos, Vasilios.  2020.  An Architecture for Resilient Intrusion Detection in IoT Networks. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–7.
We introduce a lightweight architecture of Intrusion Detection Systems (IDS) for ad-hoc IoT networks. Current state-of-the-art IDS have been designed based on assumptions holding from conventional computer networks, and therefore, do not properly address the nature of IoT networks. In this work, we first identify the correlation between the communication overheads and the placement of an IDS (as captured by proper placement of active IDS agents in the network). We model such networks as Random Geometric Graphs. We then introduce a novel IDS architectural approach by having only a minimum subset of the nodes acting as IDS agents. These nodes are able to monitor the network and detect attacks at the networking layer in a collaborative manner by monitoring 1-hop network information provided by routing protocols such as RPL. Conducted experiments show that our proposed IDS architecture is resilient and robust against frequent topology changes due to node failures. Our detailed experimental evaluation demonstrates significant performance gains in terms of communication overhead and energy dissipation while maintaining high detection rates.
Beg, Omar Ali, Yadav, Ajay P., Johnson, Taylor T., Davoudi, Ali.  2020.  Formal Online Resiliency Monitoring in Microgrids. 2020 Resilience Week (RWS). :99–105.
This work adopts an online resiliency monitoring framework employing metric temporal logic (MTL) under cyber-physical anomalies, namely false-data injection attacks, denial-of-service attacks, and physical faults. Such anomalies adversely affect the frequency synchronization, load sharing, and voltage regulation in microgrids. MTL formalism is adopted to monitor the outputs of inverters/converters against operational bounds, detect and quantify cyber-physical anomalies, monitor the microgrid's resiliency during runtime, and compare mitigation strategies. Since the proposed framework does not require system knowledge, it can be deployed on a complex microgrid. This is verified using an IEEE 34-bus feeder system and a DC microgrid cluster in a controller/hardware-in-the-loop environment.
Venkataramanan, Venkatesh, Hahn, Adam, Srivastava, Anurag.  2020.  CP-SAM: Cyber-Physical Security Assessment Metric for Monitoring Microgrid Resiliency. IEEE Transactions on Smart Grid. 11:1055–1065.
Trustworthy and secure operation of the cyber-power system calls for resilience against malicious and accidental failures. The objective of a resilient system is to withstand and recover operation of the system to supply critical loads despite multiple contingencies in the system. To take timely actions, we need to continuously measure the cyberphysical security of the system. We propose a cyber-physical security assessment metric (CP-SAM) based on quantitative factors affecting resiliency and utilizing concepts from graph theoretic analysis, probabilistic model of availability, attack graph metrics, and vulnerabilities across different layers of the microgrid system. These factors are integrated into a single metric using a multi-criteria decision making (MCDM) technique, Choquet Integral to compute CP-SAM. The developed metric will be valuable for i) monitoring the microgrid resiliency considering a holistic cyber-physical model; and ii) enable better decision-making to select best possible mitigation strategies towards resilient microgrid system. Developed CP-SAM can be extended for active distribution system and has been validated in a real-world power-grid test-bed to monitor the microgrid resiliency.
Zeke, LI, Zewen, CHEN, Chunyan, WANG, Zhiguang, XU, Ye, LIANG.  2020.  Research on Security Evaluation Technology of Wireless Access of Electric Power Monitoring System Based on Fuzzy. 2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET). :318–321.
In order to solve the defense problem of wireless network security threats in new energy stations, a new wireless network security risk assessment model which proposes a wireless access security evaluation method for power monitoring system based on fuzzy theory, was established based on the study of security risk assessment methods in this paper. The security evaluation method first divides the security evaluation factor set, then determines the security evaluation weight coefficient, then calculates the network security level membership matrix, and finally combines specific examples to analyze the resulting data. this paper provided new ideas and methods for the wireless access security evaluation of new energy stations.
Mueller, Felicitas, Hentschel, Paul, de Jongh, Steven, Held, Lukas, Suriyah, Michael, Leibried, Thomas.  2020.  Congestion Management of the German Transmission Grid through Sector Coupling: A Modeling Approach. 2020 55th International Universities Power Engineering Conference (UPEC). :1–6.
The progressive expansion of renewable energies, especially wind power plants being promoted in Germany as part of the energy transition, places new demands on the transmission grid. As an alternative to grid expansion, sector coupling of the gas and electricity sector through Power-to-Gas (PtG) technology is seen as a great opportunity to make the energy transmission more flexible and reliable in the future as well as make use of already existing gas infrastructure. In this paper, PtG plants are dimensioned and placed in a model of the German transmission grid. Time series based load flow calculations are performed allowing conclusions about the line loading for the exemplary year 2016.
AlSabeh, Ali, Safa, Haidar, Bou-Harb, Elias, Crichigno, Jorge.  2020.  Exploiting Ransomware Paranoia For Execution Prevention. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Ransomware attacks cost businesses more than \$75 billion/year, and it is predicted to cost \$6 trillion/year by 2021. These numbers demonstrate the havoc produced by ransomware on a large number of sectors and urge security researches to tackle it. Several ransomware detection approaches have been proposed in the literature that interchange between static and dynamic analysis. Recently, ransomware attacks were shown to fingerprint the execution environment before they attack the system to counter dynamic analysis. In this paper, we exploit the behavior of contemporary ransomware to prevent its attack on real systems and thus avoid the loss of any data. We explore a set of ransomware-generated artifacts that are launched to sniff the surrounding. Furthermore, we design, develop, and evaluate an approach that monitors the behavior of a program by intercepting the called Windows APIs. Consequently, we determine in real-time if the program is trying to inspect its surrounding before the attack, and abort it immediately prior to the initiation of any malicious encryption or locking. Through empirical evaluations using real and recent ransomware samples, we study how ransomware and benign programs inspect the environment. Additionally, we demonstrate how to prevent ransomware with a low false positive rate. We make the developed approach available to the research community at large through GitHub to strongly promote cyber security defense operations and for wide-scale evaluations and enhancements.
Fadolalkarim, Daren, Bertino, Elisa, Sallam, Asmaa.  2020.  An Anomaly Detection System for the Protection of Relational Database Systems against Data Leakage by Application Programs. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :265—276.
Application programs are a possible source of attacks to databases as attackers might exploit vulnerabilities in a privileged database application. They can perform code injection or code-reuse attack in order to steal sensitive data. However, as such attacks very often result in changes in the program's behavior, program monitoring techniques represent an effective defense to detect on-going attacks. One such technique is monitoring the library/system calls that the application program issues while running. In this paper, we propose AD-PROM, an Anomaly Detection system that aims at protecting relational database systems against malicious/compromised applications PROgraMs aiming at stealing data. AD-PROM tracks calls executed by application programs on data extracted from a database. The system operates in two phases. The first phase statically and dynamically analyzes the behavior of the application in order to build profiles representing the application's normal behavior. AD-PROM analyzes the control and data flow of the application program (i.e., static analysis), and builds a hidden Markov model trained by the program traces (i.e., dynamic analysis). During the second phase, the program execution is monitored in order to detect anomalies that may represent data leakage attempts. We have implemented AD-PROM and carried experimental activities to assess its performance. The results showed that our system is highly accurate in detecting changes in the application programs' behaviors and has very low false positive rates.
Aiswarya Meenakshi, P., Veera Santhya, R., Sherine Jenny, R., Sudhakar, R..  2020.  Implementation and Cryptanalysis of Lightweight Block Ciphers. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). :253—258.
Encryption has become an important need for each and every data transmission. Large amount of delicate data is transferred regularly through different computer networks such as e-banking, email applications and file exchange. Cryptanalysis is study of analyzing the hidden information in the system. The process of cryptanalysis could be done by various features such as power, sound, electromagnetic radiation etc. Lightweight cryptography plays an important role in the IoT devices. It includes various appliances, vehicles, smart sensors and RFID-tags (RFID). PRESENT is one such algorithm, designed for resource constrained devices. This requires less memory and consumes less power. The project propounds a model in which the cryptographic keys are analyzed by the trace of power.
Tang, Di, Gu, Jian, Han, Weijia, Ma, Xiao.  2020.  Quantitative Analysis on Source-Location Privacy for Wireless Sensor Networks. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :805—809.
Wireless sensor networks (WSNs) have been widely used in various applications for continuous event monitoring and detection. Dual to lack of a protected physical boundary, WSNs are vulnerable to trace-back attacks. The existing secure routing protocols are designed to protect source location privacy by increasing uncertainty of routing direction against statistic analysis on traffic flow. Nevertheless, the security has not been quantitatively measured and shown the direction of secure routing design. In this paper, we propose a theoretical security measurement scheme to define and analyze the quantitative amount of the information leakage from each eavesdropped message. Through the theoretical analysis, we identify vulnerabilities of existing routing algorithms and quantitatively compute the direction information leakage based on various routing strategy. The theoretical analysis results also indicate the direction for maximization of source location privacy.
Mutalemwa, Lilian C., Shin, Seokjoo.  2020.  Improving the Packet Delivery Reliability and Privacy Protection in Monitoring Wireless Networks. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :1083—1088.
Source location privacy (SLP) protection ensures security of assets in monitoring wireless sensor networks (WSNs). Also, low end-to-end delay (EED) and high packet delivery ratio (PDR) guarantee high packet delivery reliability. Therefore, it is important to ensure high levels of SLP protection, low EED, and high PDR in mission-critical monitoring applications. Thus, this study proposes a new angle-based agent node routing protocol (APr) which is capable of achieving high levels of SLP protection, low EED, and high PDR. The proposed APr protocol employs multiple routing strategies to enable a dynamic agent node selection process and creation of obfuscating routing paths. Analysis results reveal that the APr protocol achieves high packet delivery reliability to outperform existing intermediate node-based protocols such as the AdrR and tree-based protocols such as the TbR. Furthermore, the APr protocol achieves significantly high levels of SLP protection to outperform the AdrR protocol.
Langer, Martin, Heine, Kai, Sibold, Dieter, Bermbach, Rainer.  2020.  A Network Time Security Based Automatic Key Management for PTPv2.1. 2020 IEEE 45th Conference on Local Computer Networks (LCN). :144–153.
The PTPv2.1 standard provides new protection mechanisms to ensure the authenticity and integrity of PTP messages. However, the distribution of the necessary security parameters is not part of the specification. This paper proposes a simple and practical approach for the automated distribution of these parameters by using a key management system that enables the Immediate Security Processing in PTP. It is based on the Network Time Security protocol and offers functions for group management, parameter updating and monitoring mechanisms. A Proof-of-Concept implementation provides initial results of the resources required for the key management system and its use.
Praptodiyono, Supriyanto, Jauhari, Moh., Fahrizal, Rian, Hasbullah, Iznan H., Osman, Azlan, Ul Rehman, Shafiq.  2020.  Integration of Firewall and IDS on Securing Mobile IPv6. 2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE). :163–168.
The number of Mobile device users in the word has evolved rapidly. Many internet users currently want to connect the internet for all utilities automatically. One of the technologies in the IPv6 network, which supports data access from moving users, is IPv6 Mobile protocol. In its mobility, the users on a range of networks can move the range to another network. High demand for this technology will interest to a hacker or a cracker to carry out an attack. One of them is a DoS attack that compromises a target to denial its services. A firewall is usually used to protect networks from external attacks. However, since the firewall based on the attacker database, the unknown may not be detected. In order to address the obstacle, a detection tool could be used. In this research, IDS as an intrusion detection tool was integrated with a firewall to be implemented in IPv6 Mobile to stop the DoS attack. The results of some experiments showed that the integration system could block the attack at 0.9 s in Correspondent Node and 1.2 s in Home Agent. The blocked attack can decrease the network throughput up to 27.44% when a Mobile Node in Home Agent, 28,87% when the Mobile Node in a Foreign Network. The final result of the blocked attack is reducing the average CPU utilization up to 30.99%.
Zheng, Yifeng, Pal, Arindam, Abuadbba, Sharif, Pokhrel, Shiva Raj, Nepal, Surya, Janicke, Helge.  2020.  Towards IoT Security Automation and Orchestration. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :55—63.
The massive boom of Internet of Things (IoT) has led to the explosion of smart IoT devices and the emergence of various applications such as smart cities, smart grids, smart mining, connected health, and more. While the proliferation of IoT systems promises many benefits for different sectors, it also exposes a large attack surface, raising an imperative need to put security in the first place. It is impractical to heavily rely on manual operations to deal with security of massive IoT devices and applications. Hence, there is a strong need for securing IoT systems with minimum human intervention. In light of this situation, in this paper, we envision security automation and orchestration for IoT systems. After conducting a comprehensive evaluation of the literature and having conversations with industry partners, we envision a framework integrating key elements towards this goal. For each element, we investigate the existing landscapes, discuss the current challenges, and identify future directions. We hope that this paper will bring the attention of the academic and industrial community towards solving challenges related to security automation and orchestration for IoT systems.
Pan, Xiaoqin, Tang, Shaofei, Zhu, Zuqing.  2020.  Privacy-Preserving Multilayer In-Band Network Telemetry and Data Analytics. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :142—147.
As a new paradigm for the monitoring and troubleshooting of backbone networks, the multilayer in-band network telemetry (ML-INT) with deep learning (DL) based data analytics (DA) has recently been proven to be effective on realtime visualization and fine-grained monitoring. However, the existing studies on ML-INT&DA systems have overlooked the privacy and security issues, i.e., a malicious party can apply tapping in the data reporting channels between the data and control planes to illegally obtain plaintext ML-INT data in them. In this paper, we discuss a privacy-preserving DL-based ML-INT&DA system for realizing AI-assisted network automation in backbone networks in the form of IP-over-Optical. We first show a lightweight encryption scheme based on integer vector homomorphic encryption (IVHE), which is used to encrypt plaintext ML-INT data. Then, we architect a DL model for anomaly detection, which can directly analyze the ciphertext ML-INT data. Finally, we present the implementation and experimental demonstrations of the proposed system. The privacy-preserving DL-based ML-INT&DA system is realized in a real IP over elastic optical network (IP-over-EON) testbed, and the experimental results verify the feasibility and effectiveness of our proposal.
Flora, José.  2020.  Improving the Security of Microservice Systems by Detecting and Tolerating Intrusions. 2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :131–134.
Microservice architectures adoption is growing expeditiously in market size and adoption, including in business-critical systems. This is due to agility in development and deployment further increased by containers and their characteristics. Ensuring security is still a major concern due to challenges faced such as resource separation and isolation, as improper access to one service might compromise complete systems. This doctoral work intends to advance the security of microservice systems through research and improvement of methodologies for detection, tolerance and mitigation of security intrusions, while overcoming challenges related to multi-tenancy, heterogeneity, dynamicity of systems and environments. Our preliminary research shows that host-based IDSes are applicable in container environments. This will be extended to dynamic scenarios, serving as a steppingstone to research intrusion tolerance techniques suited to these environments. These methodologies will be demonstrated in realistic microservice systems: complex, dynamic, scalable and elastic.
Fargo, Farah, Franza, Olivier, Tunc, Cihan, Hariri, Salim.  2020.  VM Introspection-based Allowlisting for IaaS. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1—4.
Cloud computing has become the main backend of the IT infrastructure as it provides ubiquitous and on-demand computing to serve to a wide range of users including end-users and high-performance demanding agencies. The users can allocate and free resources allocated for their Virtual Machines (VMs) as needed. However, with the rapid growth of interest in cloud computing systems, several issues have arisen especially in the domain of cybersecurity. It is a known fact that not only the malicious users can freely allocate VMs, but also they can infect victims' VMs to run their own tools that include cryptocurrency mining, ransomware, or cyberattacks against others. Even though there exist intrusion detection systems (IDS), running an IDS on every VM can be a costly process and it would require fine configuration that only a small subset of the cloud users are knowledgeable about. Therefore, to overcome this challenge, in this paper we present a VM introspection based allowlisting method to be deployed and managed directly by the cloud providers to check if there are any malicious software running on the VMs with minimum user intervention. Our middleware monitors the processes and if it detects unknown events, it will notify the users and/or can take action as needed.