Visible to the public Biblio

Found 245 results

Filters: Keyword is Monitoring  [Clear All Filters]
2019-11-18
Dong, Yuhao, Kim, Woojung, Boutaba, Raouf.  2018.  Conifer: Centrally-Managed PKI with Blockchain-Rooted Trust. 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1092–1099.
Secure naming systems, or more narrowly public key infrastructures (PKIs), form the basis of secure communications over insecure networks. All security guarantees against active attackers come from a trustworthy binding between user-facing names, such as domain names, to cryptographic identities, such as public keys. By offering a secure, distributed ledger with highly decentralized trust, blockchains such as Bitcoin show promise as the root of trust for naming systems with no central trusted parties. PKIs based upon blockchains, such as Namecoin and Blockstack, have greatly improved security and resilience compared to traditional centralized PKIs. Yet blockchain PKIs tend to significantly sacrifice scalability and flexibility in pursuit of decentralization, hindering large-scale deployability on the Internet. We propose Conifer, a novel PKI with an architecture based upon CONIKS, a centralized transparency-based PKI, and Catena, a blockchain-agnostic way of embedding a permissioned log, but with a different lookup strategy. In doing so, Conifer achieves decentralized trust with security at least as strong as existing blockchain-based naming systems, yet without sacrificing the flexibility and performance typically found in centralized PKIs. We also present our reference implementation of Conifer, demonstrating how it can easily be integrated into applications. Finally, we use experiments to evaluate the performance of Conifer compared with other naming systems, both centralized and blockchain-based, demonstrating that it incurs only a modest overhead compared to traditional centralized-trust systems while being far more scalable and performant than purely blockchain-based solutions.
2019-11-12
Mahale, Anusha, B.S., Kariyappa.  2019.  Architecture Analysis and Verification of I3C Protocol. 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA). :930-935.

In VLSI industry the design cycle is categorized into Front End Design and Back End Design. Front End Design flow is from Specifications to functional verification of RTL design. Back End Design is from logic synthesis to fabrication of chip. Handheld devices like Mobile SOC's is an amalgamation of many components like GPU, camera, sensor, display etc. on one single chip. In order to integrate these components protocols are needed. One such protocol in the emerging trend is I3C protocol. I3C is abbreviated as Improved Inter Integrated Circuit developed by Mobile Industry Processor Interface (MIPI) alliance. Most probably used for the interconnection of sensors in Mobile SOC's. The main motivation of adapting the standard is for the increase speed and low pin count in most of the hardware chips. The bus protocol is backward compatible with I2C devices. The paper includes detailed study I3C bus protocol and developing verification environment for the protocol. The test bench environment is written and verified using system Verilog and UVM. The Universal Verification Methodology (UVM) is base class library built using System Verilog which provides the fundamental blocks needed to quickly develop reusable and well-constructed verification components and test environments. The Functional Coverage of around 93.55 % and Code Coverage of around 98.89 % is achieved by verification closure.

E.V., Jaideep Varier, V., Prabakar, Balamurugan, Karthigha.  2019.  Design of Generic Verification Procedure for IIC Protocol in UVM. 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA). :1146-1150.

With the growth of technology, designs became more complex and may contain bugs. This makes verification an indispensable part in product development. UVM describe a standard method for verification of designs which is reusable and portable. This paper verifies IIC bus protocol using Universal Verification Methodology. IIC controller is designed in Verilog using Vivado. It have APB interface and its function and code coverage is carried out in Mentor graphic Questasim 10.4e. This work achieved 83.87% code coverage and 91.11% functional coverage.

2019-11-04
Harrison, William L., Allwein, Gerard.  2018.  Semantics-Directed Prototyping of Hardware Runtime Monitors. 2018 International Symposium on Rapid System Prototyping (RSP). :42-48.

Building memory protection mechanisms into embedded hardware is attractive because it has the potential to neutralize a host of software-based attacks with relatively small performance overhead. A hardware monitor, being at the lowest level of the system stack, is more difficult to bypass than a software monitor and hardware-based protections are also potentially more fine-grained than is possible in software: an individual instruction executing on a processor may entail multiple memory accesses, all of which may be tracked in hardware. Finally, hardware-based protection can be performed without the necessity of altering application binaries. This article presents a proof-of-concept codesign of a small embedded processor with a hardware monitor protecting against ROP-style code reuse attacks. While the case study is small, it indicates, we argue, an approach to rapid-prototyping runtime monitors in hardware that is quick, flexible, and extensible as well as being amenable to formal verification.

Sallam, Asmaa, Bertino, Elisa.  2018.  Detection of Temporal Data Ex-Filtration Threats to Relational Databases. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :146–155.
According to recent reports, the most common insider threats to systems are unauthorized access to or use of corporate information and exposure of sensitive data. While anomaly detection techniques have proved to be effective in the detection of early signs of data theft, these techniques are not able to detect sophisticated data misuse scenarios in which malicious insiders seek to aggregate knowledge by executing and combining the results of several queries. We thus need techniques that are able to track users' actions across time to detect correlated ones that collectively flag anomalies. In this paper, we propose such techniques for the detection of anomalous accesses to relational databases. Our approach is to monitor users' queries, sequences of queries and sessions of database connection to detect queries that retrieve amounts of data larger than the normal. Our evaluation of the proposed techniques indicates that they are very effective in the detection of anomalies.
2019-10-23
Chen, Jing, Yao, Shixiong, Yuan, Quan, He, Kun, Ji, Shouling, Du, Ruiying.  2018.  CertChain: Public and Efficient Certificate Audit Based on Blockchain for TLS Connections. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :2060-2068.

In recent years, real-world attacks against PKI take place frequently. For example, malicious domains' certificates issued by compromised CAs are widespread, and revoked certificates are still trusted by clients. In spite of a lot of research to improve the security of SSL/TLS connections, there are still some problems unsolved. On one hand, although log-based schemes provided certificate audit service to quickly detect CAs' misbehavior, the security and data consistency of log servers are ignored. On the other hand, revoked certificates checking is neglected due to the incomplete, insecure and inefficient certificate revocation mechanisms. Further, existing revoked certificates checking schemes are centralized which would bring safety bottlenecks. In this paper, we propose a blockchain-based public and efficient audit scheme for TLS connections, which is called Certchain. Specially, we propose a dependability-rank based consensus protocol in our blockchain system and a new data structure to support certificate forward traceability. Furthermore, we present a method that utilizes dual counting bloom filter (DCBF) with eliminating false positives to achieve economic space and efficient query for certificate revocation checking. The security analysis and experimental results demonstrate that CertChain is suitable in practice with moderate overhead.

2019-10-22
Deb Nath, Atul Prasad, Bhunia, Swarup, Ray, Sandip.  2018.  ArtiFact: Architecture and CAD Flow for Efficient Formal Verification of SoC Security Policies. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :411–416.
Verification of security policies represents one of the most critical, complex, and expensive steps of modern SoC design validation. SoC security policies are typically implemented as part of functional design flow, with a diverse set of protection mechanisms sprinkled across various IP blocks. An obvious upshot is that their verification requires comprehension and analysis of the entire system, representing a scalability bottleneck for verification tools. The scale and complexity of industrial SoC is far beyond the analysis capacity of state-of-the-art formal tools; even simulation-based security verification is severely limited in effectiveness because of the need to exercise subtle corner-cases across the entire system. We address this challenge by developing a novel security architecture that accounts for verification needs from the ground up. Our framework, ArtiFact, provides an alternative architecture for security policy implementation that exploits a flexible, centralized, infrastructure IP and enables scalable, streamlined verification of these policies. With our architecture, verification of system-level security policies reduces to analysis of this single IP and its interfaces, enabling off-the-shelf formal tools to successfully verify these policies. We introduce a CAD flow that supports both formal and dynamic (simulation-based) verification, and is built on top of such off-the-shelf tools. Our approach reduces verification time by over 62X and bug detection time by 34X for illustrative policies.
2019-09-09
Rathi, P. S., Rao, C. M..  2018.  An Enhanced Threshold Based Cryptography with Secrete Sharing and Particle Swarm Optimization for Data Sending in MANET. 2018 3rd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS). :87-91.

There are two types of network architectures are presents those are wired network and wireless network. MANETs is one of the examples of wireless network. Each and every network has their own features which make them different from other types of network. Some of the features of MANETs are; infrastructure less network, mobility, dynamic network topology which make it different and more popular from wired network but these features also generate different problems for achieving security due to the absence of centralized authority inside network as well as sending of data due to its mobility features. Achieving security in wired network is little-bit easy compare to MANETs because in wired network user need to just protect main centralized authority for achieving security whereas in MANETs there is no centralized authority available so protecting server in MANETs is difficult compare to wired network. Data sending and receiving process is also easy in wired network but mobility features makes this data sending and receiving process difficult in MANETs. Protecting server or central repository without making use of secrete sharing in wired network will create so many challenges and problem in terms of security. The proposed system makes use of Secrete sharing method to protect server from malicious nodes and `A New particle Swarm Optimization Method for MANETs' (NPSOM) for performing data sending and receiving operation in optimization way. NPSOM technique get equated with the steady particle swarm optimizer (PSO) technique. PSO was essentially designed by Kennedy, Eberhart in 1995. These methods are based upon 4 dissimilar types of parameters. These techniques were encouraged by common performance of animals, some of them are bird assembling and fish tuition, ant colony. The proposed system converts this PSO in the form of MANETs where Particle is nothing but the nodes in the network, Swarm means collection of multiple nodes and Optimization means finding the best and nearer root to reach to destination. Each and every element study about their own previous best solution which they are having with them for the given optimization problem, likewise they see for the groups previous best solution which they got for the same problem and finally they correct its solution depending on these values. This same process gets repeated for finding of the best and optimal solutions value. NPSOM technique, used in proposed system there every element changes its location according to the solution which they got previously and which is poorest as well as their collection's earlier poorest solution for finding best, optimal value. In this proposed system we are concentrating on, sidestepping element's and collections poorest solution which they got before.

Wang, S., Zhou, Y., Guo, R., Du, J., Du, J..  2018.  A Novel Route Randomization Approach for Moving Target Defense. 2018 IEEE 18th International Conference on Communication Technology (ICCT). :11–15.
Route randomization is an important research focus for moving target defense which seeks to proactively and dynamically change the forwarding routes in the network. In this paper, the difficulties of implementing route randomization in traditional networks are analyzed. To solve these difficulties and achieve effective route randomization, a novel route randomization approach is proposed, which is implemented by adding a mapping layer between routers' physical interfaces and their corresponding logical addresses. The design ideas and the details of proposed approach are presented. The effectiveness and performance of proposed approach are verified and evaluated by corresponding experiments.
2019-08-26
Markakis, E., Nikoloudakis, Y., Pallis, E., Manso, M..  2019.  Security Assessment as a Service Cross-Layered System for the Adoption of Digital, Personalised and Trusted Healthcare. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :91-94.

The healthcare sector is exploring the incorporation of digital solutions in order to improve access, reduce costs, increase quality and enhance their capacity in reaching a higher number of citizens. However, this opens healthcare organisations' systems to external elements used within or beyond their premises, new risks and vulnerabilities in what regards cyber threats and incidents. We propose the creation of a Security Assessment as a Service (SAaaS) crosslayered system that is able to identify vulnerabilities and proactively assess and mitigate threats in an IT healthcare ecosystem exposed to external devices and interfaces, considering that most users are not experts (even technologically illiterate") in cyber security and, thus, unaware of security tactics or policies whatsoever. The SAaaS can be integrated in an IT healthcare environment allowing the monitoring of existing and new devices, the limitation of connectivity and privileges to new devices, assess a device's cybersecurity risk and - based on the device's behaviour - the assignment and revoking of privileges. The SAaaS brings a controlled cyber aware environment that assures security, confidentiality and trust, even in the presence of non-trusted devices and environments.

Gries, S., Hesenius, M., Gruhn, V..  2018.  Embedding Non-Compliant Nodes into the Information Flow Monitor by Dependency Modeling. 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS). :1541-1542.

Observing semantic dependencies in large and heterogeneous networks is a critical task, since it is quite difficult to find the actual source of a malfunction in the case of an error. Dependencies might exist between many network nodes and among multiple hops in paths. If those dependency structures are unknown, debugging errors gets quite difficult. Since CPS and other large networks change at runtime and consists of custom software and hardware, as well as components off-the-shelf, it is necessary to be able to not only include own components in approaches to detect dependencies between nodes. In this paper we present an extension to the Information Flow Monitor approach. Our goal is that this approach should be able to handle unalterable blackbox nodes. This is quite challenging, since the IFM originally requires each network node to be compliant with the IFM protocol.

2019-08-05
Severson, T., Rodriguez-Seda, E., Kiriakidis, K., Croteau, B., Krishnankutty, D., Robucci, R., Patel, C., Banerjee, N..  2018.  Trust-Based Framework for Resilience to Sensor-Targeted Attacks in Cyber-Physical Systems. 2018 Annual American Control Conference (ACC). :6499-6505.

Networked control systems improve the efficiency of cyber-physical plants both functionally, by the availability of data generated even in far-flung locations, and operationally, by the adoption of standard protocols. A side-effect, however, is that now the safety and stability of a local process and, in turn, of the entire plant are more vulnerable to malicious agents. Leveraging the communication infrastructure, the authors here present the design of networked control systems with built-in resilience. Specifically, the paper addresses attacks known as false data injections that originate within compromised sensors. In the proposed framework for closed-loop control, the feedback signal is constructed by weighted consensus of estimates of the process state gathered from other interconnected processes. Observers are introduced to generate the state estimates from the local data. Side-channel monitors are attached to each primary sensor in order to assess proper code execution. These monitors provide estimates of the trust assigned to each observer output and, more importantly, independent of it; these estimates serve as weights in the consensus algorithm. The authors tested the concept on a multi-sensor networked physical experiment with six primary sensors. The weighted consensus was demonstrated to yield a feedback signal within specified accuracy even if four of the six primary sensors were injecting false data.

Gerard, B., Rebaï, S. B., Voos, H., Darouach, M..  2018.  Cyber Security and Vulnerability Analysis of Networked Control System Subject to False-Data Injection. 2018 Annual American Control Conference (ACC). :992-997.

In the present paper, the problem of networked control system (NCS) cyber security is considered. The geometric approach is used to evaluate the security and vulnerability level of the controlled system. The proposed results are about the so-called false data injection attacks and show how imperfectly known disturbances can be used to perform undetectable, or at least stealthy, attacks that can make the NCS vulnerable to attacks from malicious outsiders. A numerical example is given to illustrate the approach.

Mai, H. L., Nguyen, T., Doyen, G., Cogranne, R., Mallouli, W., Oca, E. M. de, Festor, O..  2018.  Towards a security monitoring plane for named data networking and its application against content poisoning attack. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–9.

Named Data Networking (NDN) is the most mature proposal of the Information Centric Networking paradigm, a clean-slate approach for the Future Internet. Although NDN was designed to tackle security issues inherent to IP networks natively, newly introduced security attacks in its transitional phase threaten NDN's practical deployment. Therefore, a security monitoring plane for NDN is indispensable before any potential deployment of this novel architecture in an operating context by any provider. We propose an approach for the monitoring and anomaly detection in NDN nodes leveraging Bayesian Network techniques. A list of monitored metrics is introduced as a quantitative measure to feature the behavior of an NDN node. By leveraging the hypothesis testing theory, a micro detector is developed to detect whenever the metric significantly changes from its normal behavior. A Bayesian network structure that correlates alarms from micro detectors is designed based on the expert knowledge of the NDN specification and the NFD implementation. The relevance and performance of our security monitoring approach are demonstrated by considering the Content Poisoning Attack (CPA), one of the most critical attacks in NDN, through numerous experiment data collected from a real NDN deployment.

Suksomboon, Kalika, Ueda, Kazuaki, Tagami, Atsushi.  2018.  Content-centric Privacy Model for Monitoring Services in Surveillance Systems. Proceedings of the 5th ACM Conference on Information-Centric Networking. :190–191.
This paper proposes a content-centric privacy (CCP) model that enables a privacy-preserving monitoring services in surveillance systems without cloud dependency. We design a simple yet powerful method that could not be obtained from a cloud-like system. The CCP model includes two key ideas: (1) the separation of the private data (i.e., target object images) from the public data (i.e., background images), and (2) the service authentication with the classification model. Deploying the CCP model over ICN enables the privacy central around the content itself rather than relying on a cloud system. Our preliminary analysis shows that the ICN-based CCP model can preserve privacy with respect to the W3 -privacy in which the private information of target object are decoupled from the queries and cameras.
2019-07-01
Kebande, V. R., Kigwana, I., Venter, H. S., Karie, N. M., Wario, R. D..  2018.  CVSS Metric-Based Analysis, Classification and Assessment of Computer Network Threats and Vulnerabilities. 2018 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD). :1–10.

This paper provides a Common Vulnerability Scoring System (CVSS) metric-based technique for classifying and analysing the prevailing Computer Network Security Vulnerabilities and Threats (CNSVT). The problem that is addressed in this paper, is that, at the time of writing this paper, there existed no effective approaches for analysing and classifying CNSVT for purposes of assessments based on CVSS metrics. The authors of this paper have achieved this by generating a CVSS metric-based dynamic Vulnerability Analysis Classification Countermeasure (VACC) criterion that is able to rank vulnerabilities. The CVSS metric-based VACC has allowed the computation of vulnerability Similarity Measure (VSM) using the Hamming and Euclidean distance metric functions. Nevertheless, the CVSS-metric based on VACC also enabled the random measuring of the VSM for a selected number of vulnerabilities based on the [Ma-Ma], [Ma-Mi], [Mi-Ci], [Ma-Ci] ranking score. This is a technique that is aimed at allowing security experts to be able to conduct proper vulnerability detection and assessments across computer-based networks based on the perceived occurrence by checking the probability that given threats will occur or not. The authors have also proposed high-level countermeasures of the vulnerabilities that have been listed. The authors have evaluated the CVSS-metric based VACC and the results are promising. Based on this technique, it is worth noting that these propositions can help in the development of stronger computer and network security tools.

Kumar, S., Gaur, N., Kumar, A..  2018.  Developing a Secure Cyber Ecosystem for SCADA Architecture. 2018 Second International Conference on Computing Methodologies and Communication (ICCMC). :559–562.

Advent of Cyber has converted the entire World into a Global village. But, due to vurneabilites in SCADA architecture [1] national assests are more prone to cyber attacks.. Cyber invasions have a catastrophic effect in the minds of the civilian population, in terms of states security system. A robust cyber security is need of the hour to protect the critical information infastructrue & critical infrastructure of a country. Here, in this paper we scrutinize cyber terrorism, vurneabilites in SCADA network systems [1], [2] and concept of cyber resilience to combat cyber attacks.

2019-06-24
Wright, D., Stroschein, J..  2018.  A Malware Analysis and Artifact Capture Tool. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :328–333.

Malware authors attempt to obfuscate and hide their code in its static and dynamic states. This paper provides a novel approach to aid analysis by intercepting and capturing malware artifacts and providing dynamic control of process flow. Capturing malware artifacts allows an analyst to more quickly and comprehensively understand malware behavior and obfuscation techniques and doing so interactively allows multiple code paths to be explored. The faster that malware can be analyzed the quicker the systems and data compromised by it can be determined and its infection stopped. This research proposes an instantiation of an interactive malware analysis and artifact capture tool.

2019-06-10
Nathezhtha, T., Yaidehi, V..  2018.  Cloud Insider Attack Detection Using Machine Learning. 2018 International Conference on Recent Trends in Advance Computing (ICRTAC). :60-65.

Security has always been a major issue in cloud. Data sources are the most valuable and vulnerable information which is aimed by attackers to steal. If data is lost, then the privacy and security of every cloud user are compromised. Even though a cloud network is secured externally, the threat of an internal attacker exists. Internal attackers compromise a vulnerable user node and get access to a system. They are connected to the cloud network internally and launch attacks pretending to be trusted users. Machine learning approaches are widely used for cloud security issues. The existing machine learning based security approaches classify a node as a misbehaving node based on short-term behavioral data. These systems do not differentiate whether a misbehaving node is a malicious node or a broken node. To address this problem, this paper proposes an Improvised Long Short-Term Memory (ILSTM) model which learns the behavior of a user and automatically trains itself and stores the behavioral data. The model can easily classify the user behavior as normal or abnormal. The proposed ILSTM not only identifies an anomaly node but also finds whether a misbehaving node is a broken node or a new user node or a compromised node using the calculated trust factor. The proposed model not only detects the attack accurately but also reduces the false alarm in the cloud network.

Alsumayt, A., Haggerty, J., Lotfi, A..  2018.  Evaluation of Detection Method to Mitigate DoS Attacks in MANETs. 2018 1st International Conference on Computer Applications Information Security (ICCAIS). :1–5.

A Mobile ad hoc Network (MANET) is a self-configure, dynamic, and non-fixed infrastructure that consists of many nodes. These nodes communicate with each other without an administrative point. However, due to its nature MANET becomes prone to many attacks such as DoS attacks. DoS attack is a severe as it prevents legitimate users from accessing to their authorised services. Monitoring, Detection, and rehabilitation (MrDR) method is proposed to detect DoS attacks. MrDR method is based on calculating different trust values as nodes can be trusted or not. In this paper, we evaluate the MrDR method which detect DoS attacks in MANET and compare it with existing method Trust Enhanced Anonymous on-demand routing Protocol (TEAP) which is also based on trust concept. We consider two factors to compare the performance of the proposed method to TEAP method: packet delivery ratio and network overhead. The results confirm that the MrDR method performs better in network performance compared to TEAP method.

Hussain, K., Hussain, S. J., Jhanjhi, N., Humayun, M..  2019.  SYN Flood Attack Detection based on Bayes Estimator (SFADBE) For MANET. 2019 International Conference on Computer and Information Sciences (ICCIS). :1–4.

SYN flood attack is a very serious cause for disturbing the normal traffic in MANET. SYN flood attack takes advantage of the congestion caused by populating a specific route with unwanted traffic that results in the denial of services. In this paper, we proposed an Adaptive Detection Mechanism using Artificial Intelligence technique named as SYN Flood Attack Detection Based on Bayes Estimator (SFADBE) for Mobile ad hoc Network (MANET). In SFADBE, every node will gather the current information of the available channel and the secure and congested free (Best Path) channel for the traffic is selected. Due to constant congestion, the availability of the data path can be the cause of SYN Flood attack. By using this AI technique, we experienced the SYN Flood detection probability more than the others did. Simulation results show that our proposed SFADBE algorithm is low cost and robust as compared to the other existing approaches.

2019-05-08
Moore, A. P., Cassidy, T. M., Theis, M. C., Bauer, D., Rousseau, D. M., Moore, S. B..  2018.  Balancing Organizational Incentives to Counter Insider Threat. 2018 IEEE Security and Privacy Workshops (SPW). :237–246.

Traditional security practices focus on negative incentives that attempt to force compliance through constraints, monitoring, and punishment. This paper describes a missing dimension of most organizations' insider threat defense-one that explicitly considers positive incentives for attracting individuals to act in the interests of the organization. Positive incentives focus on properties of the organizational context of workforce management practices - including those relating to organizational supportiveness, coworker connectedness, and job engagement. Without due attention to the organizational context in which insider threats occur, insider misbehaviors may simply reoccur as a natural response to counterproductive or dysfunctional management practices. A balanced combination of positive and negative incentives can improve employees' relationships with the organization and provide a means for employees to better cope with personal and professional stressors. An insider threat program that balances organizational incentives can become an advocate for the workforce and a means for improving employee work life - a welcome message to employees who feel threatened by programs focused on discovering insider wrongdoing.

2019-05-01
Barrere, M., Hankin, C., Barboni, A., Zizzo, G., Boem, F., Maffeis, S., Parisini, T..  2018.  CPS-MT: A Real-Time Cyber-Physical System Monitoring Tool for Security Research. 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). :240–241.

Monitoring systems are essential to understand and control the behaviour of systems and networks. Cyber-physical systems (CPS) are particularly delicate under that perspective since they involve real-time constraints and physical phenomena that are not usually considered in common IT solutions. Therefore, there is a need for publicly available monitoring tools able to contemplate these aspects. In this poster/demo, we present our initiative, called CPS-MT, towards a versatile, real-time CPS monitoring tool, with a particular focus on security research. We first present its architecture and main components, followed by a MiniCPS-based case study. We also describe a performance analysis and preliminary results. During the demo, we will discuss CPS-MT's capabilities and limitations for security applications.

Ren, W., Yardley, T., Nahrstedt, K..  2018.  EDMAND: Edge-Based Multi-Level Anomaly Detection for SCADA Networks. 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1-7.

Supervisory Control and Data Acquisition (SCADA) systems play a critical role in the operation of large-scale distributed industrial systems. There are many vulnerabilities in SCADA systems and inadvertent events or malicious attacks from outside as well as inside could lead to catastrophic consequences. Network-based intrusion detection is a preferred approach to provide security analysis for SCADA systems due to its less intrusive nature. Data in SCADA network traffic can be generally divided into transport, operation, and content levels. Most existing solutions only focus on monitoring and event detection of one or two levels of data, which is not enough to detect and reason about attacks in all three levels. In this paper, we develop a novel edge-based multi-level anomaly detection framework for SCADA networks named EDMAND. EDMAND monitors all three levels of network traffic data and applies appropriate anomaly detection methods based on the distinct characteristics of data. Alerts are generated, aggregated, prioritized before sent back to control centers. A prototype of the framework is built to evaluate the detection ability and time overhead of it.

Berjab, N., Le, H. H., Yu, C., Kuo, S., Yokota, H..  2018.  Hierarchical Abnormal-Node Detection Using Fuzzy Logic for ECA Rule-Based Wireless Sensor Networks. 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC). :289-298.

The Internet of things (IoT) is a distributed, networked system composed of many embedded sensor devices. Unfortunately, these devices are resource constrained and susceptible to malicious data-integrity attacks and failures, leading to unreliability and sometimes to major failure of parts of the entire system. Intrusion detection and failure handling are essential requirements for IoT security. Nevertheless, as far as we know, the area of data-integrity detection for IoT has yet to receive much attention. Most previous intrusion-detection methods proposed for IoT, particularly for wireless sensor networks (WSNs), focus only on specific types of network attacks. Moreover, these approaches usually rely on using precise values to specify abnormality thresholds. However, sensor readings are often imprecise and crisp threshold values are inappropriate. To guarantee a lightweight, dependable monitoring system, we propose a novel hierarchical framework for detecting abnormal nodes in WSNs. The proposed approach uses fuzzy logic in event-condition-action (ECA) rule-based WSNs to detect malicious nodes, while also considering failed nodes. The spatiotemporal semantics of heterogeneous sensor readings are considered in the decision process to distinguish malicious data from other anomalies. Following our experiments with the proposed framework, we stress the significance of considering the sensor correlations to achieve detection accuracy, which has been neglected in previous studies. Our experiments using real-world sensor data demonstrate that our approach can provide high detection accuracy with low false-alarm rates. We also show that our approach performs well when compared to two well-known classification algorithms.