Biblio
Cyber-physical systems are an important component of most industrial infrastructures that allow the integration of control systems with state of the art information technologies. These systems aggregate distinct communication platforms and networked devices with different capabilities. This integration, has brought into play new uncertainties, not only from the tangible physical world, but also from a cyber space perspective. In light of this situation, awareness and resilience are invaluable properties of these kind of systems. The present work proposes an architecture based on a distributed middleware that relying on a hierarchical multi-agent framework for resilience enhancement. The proposed architecture takes into account physical and cyber vulnerabilities and guarantee state and context awareness, and a minimum level of acceptable operation, in response to physical disturbances and malicious attacks. This framework was evaluated on an IPv6 test-bed comprising several distributed devices, where performance and communication links health are analysed. Results from tests prove the relevance and benefits of the proposed approach.
Modern infrastructure is heavily reliant on systems with interconnected computational and physical resources, named Cyber-Physical Systems (CPSs). Hence, building resilient CPSs is a prime need and continuous monitoring of the CPS operational health is essential for improving resilience. This paper presents a framework for calculating and monitoring of health in CPSs using data driven techniques. The main advantages of this data driven methodology is that the ability of leveraging heterogeneous data streams that are available from the CPSs and the ability of performing the monitoring with minimal a priori domain knowledge. The main objective of the framework is to warn the operators of any degradation in cyber, physical or overall health of the CPS. The framework consists of four components: 1) Data acquisition and feature extraction, 2) state identification and real time state estimation, 3) cyber-physical health calculation and 4) operator warning generation. Further, this paper presents an initial implementation of the first three phases of the framework on a CPS testbed involving a Microgrid simulation and a cyber-network which connects the grid with its controller. The feature extraction method and the use of unsupervised learning algorithms are discussed. Experimental results are presented for the first two phases and the results showed that the data reflected different operating states and visualization techniques can be used to extract the relationships in data features.
With rapid growth of network size and complexity, network defenders are facing more challenges in protecting networked computers and other devices from acute attacks. Traffic visualization is an essential element in an anomaly detection system for visual observations and detection of distributed DoS attacks. This paper presents an interactive visualization system called TVis, proposed to detect both low-rate and highrate DDoS attacks using Heron's triangle-area mapping. TVis allows network defenders to identify and investigate anomalies in internal and external network traffic at both online and offline modes. We model the network traffic as an undirected graph and compute triangle-area map based on incidences at each vertex for each 5 seconds time window. The system triggers an alarm iff the system finds an area of the mapped triangle beyond the dynamic threshold. TVis performs well for both low-rate and high-rate DDoS detection in comparison to its competitors.
Every day, university networks are bombarded with attempts to steal the sensitive data of the various disparate domains and organizations they serve. For this reason, universities form teams of information security specialists called a Security Operations Center (SOC) to manage the complex operations involved in monitoring and mitigating such attacks. When a suspicious event is identified, members of the SOC are tasked to understand the nature of the event in order to respond to any damage the attack might have caused. This process is defined by administrative policies which are often very high-level and rarely systematically defined. This impedes the implementation of generalized and automated event response solutions, leading to specific ad hoc solutions based primarily on human intuition and experience as well as immediate administrative priorities. These solutions are often fragile, highly specific, and more difficult to reuse in other scenarios.
Mobile Ad-hoc network is decentralized and composed of various individual devices for communicating with each other. Its distributed nature and infrastructure deficiency are the way for various attacks in the network. On implementing Intrusion detection systems (IDS) in ad-hoc node securities were enhanced by means of auditing and monitoring process. This system is composed with clustering protocols which are highly effective in finding the intrusions with minimal computation cost on power and overhead. The existing protocols were linked with the routes, which are not prominent in detecting intrusions. The poor route structure and route renewal affect the cluster hardly. By which the cluster are unstable and results in maximization processing along with network traffics. Generally, the ad hoc networks are structured with battery and rely on power limitation. It needs an active monitoring node for detecting and responding quickly against the intrusions. It can be attained only if the clusters are strong with extensive sustaining capability. Whenever the cluster changes the routes also change and the prominent processing of achieving intrusion detection will not be possible. This raises the need of enhanced clustering algorithm which solved these drawbacks and ensures the network securities in all manner. We proposed CBIDP (cluster based Intrusion detection planning) an effective clustering algorithm which is ahead of the existing routing protocol. It is persistently irrespective of routes which monitor the intrusion perfectly. This simplified clustering methodology achieves high detecting rates on intrusion with low processing as well as memory overhead. As it is irrespective of the routes, it also overcomes the other drawbacks like traffics, connections and node mobility on the network. The individual nodes in the network are not operative on finding the intrusion or malicious node, it can be achieved by collaborating the clustering with the system.