Visible to the public Biblio

Found 418 results

Filters: Keyword is Monitoring  [Clear All Filters]
2019-03-25
Pawlenka, T., Škuta, J..  2018.  Security system based on microcontrollers. 2018 19th International Carpathian Control Conference (ICCC). :344–347.
The article describes design and realization of security system based on single-chip microcontrollers. System includes sensor modules for unauthorized entrance detection based on magnetic contact, measuring carbon monoxide level, movement detection and measuring temperature and humidity. System also includes control unit, control panel and development board Arduino with ethernet interface connected for web server implementation.
Refaat, S. S., Mohamed, A., Kakosimos, P..  2018.  Self-Healing control strategy; Challenges and opportunities for distribution systems in smart grid. 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018). :1–6.
Implementation of self-healing control system in smart grid is a persisting challenge. Self-Healing control strategy is the important guarantee to implement the smart grid. In addition, it is the support of achieving the secure operation, improving the reliability and security of distribution grid, and realizing the smart distribution grid. Although self-healing control system concept is presented in smart grid context, but the complexity of distribution network structure recommended to choose advanced control and protection system using a self-healing, this system must be able to heal any disturbance in the distribution system of smart grid to improve efficiency, resiliency, continuity, and reliability of the smart grid. This review focuses mostly on the key technology of self-healing control, gives an insight into the role of self-healing in distribution system advantages, study challenges and opportunities in the prospect of utilities. The main contribution of this paper is demonstrating proposed architecture, control strategy for self-healing control system includes fault detection, fault localization, faulted area isolation, and power restoration in the electrical distribution system.
2019-03-22
Obert, J., Chavez, A., Johnson, J..  2018.  Behavioral Based Trust Metrics and the Smart Grid. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1490-1493.

To ensure reliable and predictable service in the electrical grid it is important to gauge the level of trust present within critical components and substations. Although trust throughout a smart grid is temporal and dynamically varies according to measured states, it is possible to accurately formulate communications and service level strategies based on such trust measurements. Utilizing an effective set of machine learning and statistical methods, it is shown that establishment of trust levels between substations using behavioral pattern analysis is possible. It is also shown that the establishment of such trust can facilitate simple secure communications routing between substations.

2019-03-06
Xing, Z., Liu, L., Li, S., Liu, Y..  2018.  Analysis of Radiation Effects for Monitoring Circuit Based on Deep Belief Network and Support Vector Method. 2018 Prognostics and System Health Management Conference (PHM-Chongqing). :511-516.

The monitoring circuit is widely applied in radiation environment and it is of significance to study the circuit reliability with the radiation effects. In this paper, an intelligent analysis method based on Deep Belief Network (DBN) and Support Vector Method is proposed according to the radiation experiments analysis of the monitoring circuit. The Total Ionizing Dose (TID) of the monitoring circuit is used to identify the circuit degradation trend. Firstly, the output waveforms of the monitoring circuit are obtained by radiating with the different TID. Subsequently, the Deep Belief Network Model is trained to extract the features of the circuit signal. Finally, the Support Vector Machine (SVM) and Support Vector Regression (SVR) are applied to classify and predict the remaining useful life (RUL) of the monitoring circuit. According to the experimental results, the performance of DBN-SVM exceeds DBN method for feature extraction and classification, and SVR is effective for predicting the degradation.

2019-03-04
Lin, F., Beadon, M., Dixit, H. D., Vunnam, G., Desai, A., Sankar, S..  2018.  Hardware Remediation at Scale. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :14–17.
Large scale services have automated hardware remediation to maintain the infrastructure availability at a healthy level. In this paper, we share the current remediation flow at Facebook, and how it is being monitored. We discuss a class of hardware issues that are transient and typically have higher rates during heavy load. We describe how our remediation system was enhanced to be efficient in detecting this class of issues. As hardware and systems change in response to the advancement in technology and scale, we have also utilized machine learning frameworks for hardware remediation to handle the introduction of new hardware failure modes. We present an ML methodology that uses a set of predictive thresholds to monitor remediation efficiency over time. We also deploy a recommendation system based on natural language processing, which is used to recommend repair actions for efficient diagnosis and repair. We also describe current areas of research that will enable us to improve hardware availability further.
Iqbal, A., Mahmood, F., Shalaginov, A., Ekstedt, M..  2018.  Identification of Attack-based Digital Forensic Evidences for WAMPAC Systems. 2018 IEEE International Conference on Big Data (Big Data). :3079–3087.
Power systems domain has generally been very conservative in terms of conducting digital forensic investigations, especially so since the advent of smart grids. This lack of research due to a multitude of challenges has resulted in absence of knowledge base and resources to facilitate such an investigation. Digitalization in the form of smart grids is upon us but in case of cyber-attacks, attribution to such attacks is challenging and difficult if not impossible. In this research, we have identified digital forensic artifacts resulting from a cyber-attack on Wide Area Monitoring, Protection and Control (WAMPAC) systems, which will help an investigator attribute an attack using the identified evidences. The research also shows the usage of sandboxing for digital forensics along with hardware-in-the-loop (HIL) setup. This is first of its kind effort to identify and acquire all the digital forensic evidences for WAMPAC systems which will ultimately help in building a body of knowledge and taxonomy for power system forensics.
2019-02-25
Kuyumani, M., Joseph, M. K., Hassan, S..  2018.  Communication Technologies for Efficient Energy Management in Smart Grid. 2018 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD). :1-8.

The existing radial topology makes the power system less reliable since any part in the system failure will disrupt electrical power delivery in the network. The increasing security concerns, electrical energy theft, and present advancement in Information and Communication Technologies are some factors that led to modernization of power system. In a smart grid, a network of smart sensors offers numerous opportunities that may include monitoring of power, consumer-side energy management, synchronization of dispersed power storage, and integrating sources of renewable energy. Smart sensor networks are low cost and are ease to deploy hence they are favorable contestants for deployment smart power grids at a larger scale. These networks will result in a colossal volume of dissimilar range of data that require an efficient processing and analyzing process in order to realize an efficient smart grid. The existing technology can be used to collect data but dealing with the collected information proficiently as well as mining valuable material out of it remains challenging. The paper investigates communication technologies that maybe deployed in a smart grid. In this paper simulations results for the Additive White Gaussian Noise (AWGN) channel are illustrated. We propose a model and a communication network domain riding on the power system domain. The model was interrogated by simulation in MATLAB.

2019-02-22
Vysotska, V., Lytvyn, V., Hrendus, M., Kubinska, S., Brodyak, O..  2018.  Method of Textual Information Authorship Analysis Based on Stylometry. 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). 2:9-16.

The paper dwells on the peculiarities of stylometry technologies usage to determine the style of the author publications. Statistical linguistic analysis of the author's text allows taking advantage of text content monitoring based on Porter stemmer and NLP methods to determine the set of stop words. The latter is used in the methods of stylometry to determine the ownership of the analyzed text to a specific author in percentage points. There is proposed a formal approach to the definition of the author's style of the Ukrainian text in the article. The experimental results of the proposed method for determining the ownership of the analyzed text to a particular author upon the availability of the reference text fragment are obtained. The study was conducted on the basis of the Ukrainian scientific texts of a technical area.

2019-02-14
Narayanan, G., Das, J. K., Rajeswari, M., Kumar, R. S..  2018.  Game Theoretical Approach with Audit Based Misbehavior Detection System. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :1932-1935.
Mobile Ad-hoc Networks are dynamic in nature and do not have fixed infrastructure to govern nodes in the networks. The mission lies ahead in coordinating among such dynamically shifting nodes. The root problem of identifying and isolating misbehaving nodes that refuse to forward packets in multi-hop ad hoc networks is solved by the development of a comprehensive system called Audit-based Misbehavior Detection (AMD) that can efficiently isolates selective and continuous packet droppers. AMD evaluates node behavior on a per-packet basis, without using energy-expensive overhearing techniques or intensive acknowledgment schemes. Moreover, AMD can detect selective dropping attacks even in end-to-end encrypted traffic and can be applied to multi-channel networks. Game theoretical approaches are more suitable in deciding upon the reward mechanisms for which the mobile nodes operate upon. Rewards or penalties have to be decided by ensuring a clean and healthy MANET environment. A non-routine yet surprise alterations are well required in place in deciding suitable and safe reward strategies. This work focuses on integrating a Audit-based Misbehaviour Detection (AMD)scheme and an incentive based reputation scheme with game theoretical approach called Supervisory Game to analyze the selfish behavior of nodes in the MANETs environment. The proposed work GAMD significantly reduces the cost of detecting misbehavior nodes in the network.
2019-02-13
Irmak, E., Erkek, İ.  2018.  An overview of cyber-attack vectors on SCADA systems. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–5.

Most of the countries evaluate their energy networks in terms of national security and define as critical infrastructure. Monitoring and controlling of these systems are generally provided by Industrial Control Systems (ICSs) and/or Supervisory Control and Data Acquisition (SCADA) systems. Therefore, this study focuses on the cyber-attack vectors on SCADA systems to research the threats and risks targeting them. For this purpose, TCP/IP based protocols used in SCADA systems have been determined and analyzed at first. Then, the most common cyber-attacks are handled systematically considering hardware-side threats, software-side ones and the threats for communication infrastructures. Finally, some suggestions are given.

Gevargizian, J., Kulkarni, P..  2018.  MSRR: Measurement Framework For Remote Attestation. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :748–753.
Measurers are critical to a remote attestation (RA) system to verify the integrity of a remote untrusted host. Run-time measurers in a dynamic RA system sample the dynamic program state of the host to form evidence in order to establish trust by a remote system (appraiser). However, existing run-time measurers are tightly integrated with specific software. Such measurers need to be generated anew for each software, which is a manual process that is both challenging and tedious. In this paper we present a novel approach to decouple application-specific measurement policies from the measurers tasked with performing the actual run-time measurement. We describe MSRR (MeaSeReR), a novel general-purpose measurement framework that is agnostic of the target application. We show how measurement policies written per application can use MSRR, eliminating much time and effort spent on reproducing core measurement functionality. We describe MSRR's robust querying language, which allows the appraiser to accurately specify the what, when, and how to measure. We evaluate MSRR's overhead and demonstrate its functionality.
Orosz, P., Nagy, B., Varga, P., Gusat, M..  2018.  Low False Alarm Ratio DDoS Detection for ms-scale Threat Mitigation. 2018 14th International Conference on Network and Service Management (CNSM). :212–218.

The dynamically changing landscape of DDoS threats increases the demand for advanced security solutions. The rise of massive IoT botnets enables attackers to mount high-intensity short-duration ”volatile ephemeral” attack waves in quick succession. Therefore the standard human-in-the-loop security center paradigm is becoming obsolete. To battle the new breed of volatile DDoS threats, the intrusion detection system (IDS) needs to improve markedly, at least in reaction times and in automated response (mitigation). Designing such an IDS is a daunting task as network operators are traditionally reluctant to act - at any speed - on potentially false alarms. The primary challenge of a low reaction time detection system is maintaining a consistently low false alarm rate. This paper aims to show how a practical FPGA-based DDoS detection and mitigation system can successfully address this. Besides verifying the model and algorithms with real traffic ”in the wild”, we validate the low false alarm ratio. Accordingly, we describe a methodology for determining the false alarm ratio for each involved threat type, then we categorize the causes of false detection, and provide our measurement results. As shown here, our methods can effectively mitigate the volatile ephemeral DDoS attacks, and accordingly are usable both in human out-of-loop and on-the-loop next-generation security solutions.

2019-01-31
Laurén, Samuel, Leppänen, Ville.  2018.  Virtual Machine Introspection Based Cloud Monitoring Platform. Proceedings of the 19th International Conference on Computer Systems and Technologies. :104–109.

Virtual Machine Introspection (VMI) is an emerging family of techniques for extracting data from virtual machines without the use of active monitoring probes within the target machines themselves. In VMI based systems, the data is collected at the hypervisor-level by analyzing the state of virtual machines. This has the benefit of making collection harder to detect and block by malware as there is nothing in the machine indicating that monitoring is taking place. In this paper we present Nitro Web, a web-based monitoring system for virtual machines that uses virtual machine introspection for data collection. The platform is capable of detecting and visualizing system call activity taking place within virtual machines in real-time. The secondary purpose of this paper is to offer an introduction to Nitro virtual machine introspection framework that we have been involved in developing. In this paper, we reflect on how Nitro Framework can be used for building applications making use of VMI data.

Bak, D., Mazurek, P..  2018.  Air-Gap Data Transmission Using Screen Brightness Modulation. 2018 International Interdisciplinary PhD Workshop (IIPhDW). :147–150.

Air-gap data is important for the security of computer systems. The injection of the computer virus is limited but possible, however data communication channel is necessary for the transmission of stolen data. This paper considers BFSK digital modulation applied to brightness changes of screen for unidirectional transmission of valuable data. Experimental validation and limitations of the proposed technique are provided.

2019-01-21
Hasan, S., Ghafouri, A., Dubey, A., Karsai, G., Koutsoukos, X..  2018.  Vulnerability analysis of power systems based on cyber-attack and defense models. 2018 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Reliable operation of power systems is a primary challenge for the system operators. With the advancement in technology and grid automation, power systems are becoming more vulnerable to cyber-attacks. The main goal of adversaries is to take advantage of these vulnerabilities and destabilize the system. This paper describes a game-theoretic approach to attacker / defender modeling in power systems. In our models, the attacker can strategically identify the subset of substations that maximize damage when compromised. However, the defender can identify the critical subset of substations to protect in order to minimize the damage when an attacker launches a cyber-attack. The algorithms for these models are applied to the standard IEEE-14, 39, and 57 bus examples to identify the critical set of substations given an attacker and a defender budget.

Nicolaou, N., Eliades, D. G., Panayiotou, C., Polycarpou, M. M..  2018.  Reducing Vulnerability to Cyber-Physical Attacks in Water Distribution Networks. 2018 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater). :16–19.

Cyber-Physical Systems (CPS), such as Water Distribution Networks (WDNs), deploy digital devices to monitor and control the behavior of physical processes. These digital devices, however, are susceptible to cyber and physical attacks, that may alter their functionality, and therefore the integrity of their measurements/actions. In practice, industrial control systems utilize simple control laws, which rely on various sensor measurements and algorithms which are expected to operate normally. To reduce the impact of a potential failure, operators may deploy redundant components; this however may not be useful, e.g., when a cyber attack at a PLC component occurs. In this work, we address the problem of reducing vulnerability to cyber-physical attacks in water distribution networks. This is achieved by augmenting the graph which describes the information flow from sensors to actuators, by adding new connections and algorithms, to increase the number of redundant cyber components. These, in turn, increase the \textitcyber-physical security level, which is defined in the present paper as the number of malicious attacks a CPS may sustain before becoming unable to satisfy the control requirements. A proof-of-concept of the approach is demonstrated over a simple WDN, with intuition on how this can be used to increase the cyber-physical security level of the system.

Han, K., Li, S., Wang, Z., Yang, X..  2018.  Actuator deception attack detection and estimation for a class of nonlinear systems. 2018 37th Chinese Control Conference (CCC). :5675–5680.
In this paper, an novel active safety monitoring system is constructed for a class of nonlinear discrete-time systems. The considered nonlinear system is subjected to unknown inputs, external disturbances, and possible unknown deception attacks, simultaneously. In order to secure the safety of control systems, an active attack estimator composed of state/output estimator, attack detector and attack/attacker action estimator is constructed to monitor the system running status. The analysis and synthesis of attack estimator is performed in the H∞performance optimization manner. The off-line calculation and on-line application of active attack estimator are summarized simultaneously. The effectiveness of the proposed results is finally verified by an numerical example.
Nemati, H., Dagenais, M. R..  2018.  VM processes state detection by hypervisor tracing. 2018 Annual IEEE International Systems Conference (SysCon). :1–8.

The diagnosis of performance issues in cloud environments is a challenging problem, due to the different levels of virtualization, the diversity of applications and their interactions on the same physical host. Moreover, because of privacy, security, ease of deployment and execution overhead, an agent-less method, which limits its data collection to the physical host level, is often the only acceptable solution. In this paper, a precise host-based method, to recover wait state for the processes inside a given Virtual Machine (VM), is proposed. The virtual Process State Detection (vPSD) algorithm computes the state of processes through host kernel tracing. The state of a virtual Process (vProcess) is displayed in an interactive trace viewer (Trace Compass) for further inspection. Our proposed VM trace analysis algorithm has been open-sourced for further enhancements and for the benefit of other developers. Experimental evaluations were conducted using a mix of workload types (CPU, Disk, and Network), with different applications like Hadoop, MySQL, and Apache. vPSD, being based on host hypervisor tracing, brings a lower overhead (around 0.03%) as compared to other approaches.

Saeed, A., Garraghan, P., Craggs, B., Linden, D. v d, Rashid, A., Hussain, S. A..  2018.  A Cross-Virtual Machine Network Channel Attack via Mirroring and TAP Impersonation. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). :606–613.

Data privacy and security is a leading concern for providers and customers of cloud computing, where Virtual Machines (VMs) can co-reside within the same underlying physical machine. Side channel attacks within multi-tenant virtualized cloud environments are an established problem, where attackers are able to monitor and exfiltrate data from co-resident VMs. Virtualization services have attempted to mitigate such attacks by preventing VM-to-VM interference on shared hardware by providing logical resource isolation between co-located VMs via an internal virtual network. However, such approaches are also insecure, with attackers capable of performing network channel attacks which bypass mitigation strategies using vectors such as ARP Spoofing, TCP/IP steganography, and DNS poisoning. In this paper we identify a new vulnerability within the internal cloud virtual network, showing that through a combination of TAP impersonation and mirroring, a malicious VM can successfully redirect and monitor network traffic of VMs co-located within the same physical machine. We demonstrate the feasibility of this attack in a prominent cloud platform - OpenStack - under various security requirements and system conditions, and propose countermeasures for mitigation.

2018-12-10
Versluis, L., Neacsu, M., Iosup, A..  2018.  A Trace-Based Performance Study of Autoscaling Workloads of Workflows in Datacenters. 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). :223–232.
To improve customer experience, datacenter operators offer support for simplifying application and resource management. For example, running workloads of workflows on behalf of customers is desirable, but requires increasingly more sophisticated autoscaling policies, that is, policies that dynamically provision resources for the customer. Although selecting and tuning autoscaling policies is a challenging task for datacenter operators, so far relatively few studies investigate the performance of autoscaling for workloads of workflows. Complementing previous knowledge, in this work we propose the first comprehensive performance study in the field. Using trace-based simulation, we compare state-of-the-art autoscaling policies across multiple application domains, workload arrival patterns (e.g., burstiness), and system utilization levels. We further investigate the interplay between autoscaling and regular allocation policies, and the complexity cost of autoscaling. Our quantitative study focuses not only on traditional performance metrics and on state-of-the-art elasticity metrics, but also on time-and memory-related autoscaling-complexity metrics. Our main results give strong and quantitative evidence about previously unreported operational behavior, for example, that autoscaling policies perform differently across application domains and allocation and provisioning policies should be co-designed.
2018-12-03
Molka-Danielsen, J., Engelseth, P., Olešnaníková, V., Šarafín, P., Žalman, R..  2017.  Big Data Analytics for Air Quality Monitoring at a Logistics Shipping Base via Autonomous Wireless Sensor Network Technologies. 2017 5th International Conference on Enterprise Systems (ES). :38–45.
The indoor air quality in industrial workplace buildings, e.g. air temperature, humidity and levels of carbon dioxide (CO2), play a critical role in the perceived levels of workers' comfort and in reported medical health. CO2 can act as an oxygen displacer, and in confined spaces humans can have, for example, reactions of dizziness, increased heart rate and blood pressure, headaches, and in more serious cases loss of consciousness. Specialized organizations can be brought in to monitor the work environment for limited periods. However, new low cost wireless sensor network (WSN) technologies offer potential for more continuous and autonomous assessment of industrial workplace air quality. Central to effective decision making is the data analytics approach and visualization of what is potentially, big data (BD) in monitoring the air quality in industrial workplaces. This paper presents a case study that monitors air quality that is collected with WSN technologies. We discuss the potential BD problems. The case trials are from two workshops that are part of a large on-shore logistics base a regional shipping industry in Norway. This small case study demonstrates a monitoring and visualization approach for facilitating BD in decision making for health and safety in the shipping industry. We also identify other potential applications of WSN technologies and visualization of BD in the workplace environments; for example, for monitoring of other substances for worker safety in high risk industries and for quality of goods in supply chain management.
2018-11-19
Dhunna, G. S., Al-Anbagi, I..  2017.  A Low Power Cybersecurity Mechanism for WSNs in a Smart Grid Environment. 2017 IEEE Electrical Power and Energy Conference (EPEC). :1–6.

Smart Grid cybersecurity is one of the key ingredients for successful and wide scale adaptation of the Smart Grid by utilities and governments around the world. The implementation of the Smart Grid relies mainly on the highly distributed sensing and communication functionalities of its components such as Wireless Sensor Networks (WSNs), Phasor Measurement Units (PMUs) and other protection devices. This distributed nature and the high number of connected devices are the main challenges for implementing cybersecurity in the smart grid. As an example, the North American Electric Reliability Corporation (NERC) issued the Critical Infrastructure Protection (CIP) standards (CIP-002 through CIP-009) to define cybersecurity requirements for critical power grid infrastructure. However, NERC CIP standards do not specify cybersecurity for different communication technologies such as WSNs, fiber networks and other network types. Implementing security mechanisms in WSNs is a challenging task due to the limited resources of the sensor devices. WSN security mechanisms should not only focus on reducing the power consumption of the sensor devices, but they should also maintain high reliability and throughput needed by Smart Grid applications. In this paper, we present a WSN cybersecurity mechanism suitable for smart grid monitoring application. Our mechanism can detect and isolate various attacks in a smart grid environment, such as denial of sleep, forge and replay attacks in an energy efficient way. Simulation results show that our mechanism can outperform existing techniques while meeting the NERC CIP requirements.

Lee, K., Reardon, C., Fink, J..  2018.  Augmented Reality in Human-Robot Cooperative Search. 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :1–1.

Robots operating alongside humans in field environments have the potential to greatly increase the situational awareness of their human teammates. A significant challenge, however, is the efficient conveyance of what the robot perceives to the human in order to achieve improved situational awareness. We believe augmented reality (AR), which allows a human to simultaneously perceive the real world and digital information situated virtually in the real world, has the potential to address this issue. We propose to demonstrate that augmented reality can be used to enable human-robot cooperative search, where the robot can both share search results and assist the human teammate in navigating to a search target.

2018-11-14
Teoh, T. T., Zhang, Y., Nguwi, Y. Y., Elovici, Y., Ng, W. L..  2017.  Analyst Intuition Inspired High Velocity Big Data Analysis Using PCA Ranked Fuzzy K-Means Clustering with Multi-Layer Perceptron (MLP) to Obviate Cyber Security Risk. 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :1790–1793.
The growing prevalence of cyber threats in the world are affecting every network user. Numerous security monitoring systems are being employed to protect computer networks and resources from falling victim to cyber-attacks. There is a pressing need to have an efficient security monitoring system to monitor the large network datasets generated in this process. A large network datasets representing Malware attacks have been used in this work to establish an expert system. The characteristics of attacker's IP addresses can be extracted from our integrated datasets to generate statistical data. The cyber security expert provides to the weight of each attribute and forms a scoring system by annotating the log history. We adopted a special semi supervise method to classify cyber security log into attack, unsure and no attack by first breaking the data into 3 cluster using Fuzzy K mean (FKM), then manually label a small data (Analyst Intuition) and finally train the neural network classifier multilayer perceptron (MLP) base on the manually labelled data. By doing so, our results is very encouraging as compare to finding anomaly in a cyber security log, which generally results in creating huge amount of false detection. The method of including Artificial Intelligence (AI) and Analyst Intuition (AI) is also known as AI2. The classification results are encouraging in segregating the types of attacks.
Zhang, J., Zheng, L., Gong, L., Gu, Z..  2018.  A Survey on Security of Cloud Environment: Threats, Solutions, and Innovation. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :910–916.

With the extensive application of cloud computing technology developing, security is of paramount importance in Cloud Computing. In the cloud computing environment, surveys have been provided on several intrusion detection techniques for detecting intrusions. We will summarize some literature surveys of various attack taxonomy, which might cause various threats in cloud environment. Such as attacks in virtual machines, attacks on virtual machine monitor, and attacks in tenant network. Besides, we review massive existing solutions proposed in the literature, such as misuse detection techniques, behavior analysis of network traffic, behavior analysis of programs, virtual machine introspection (VMI) techniques, etc. In addition, we have summarized some innovations in the field of cloud security, such as CloudVMI, data mining techniques, artificial intelligence, and block chain technology, etc. At the same time, our team designed and implemented the prototype system of CloudI (Cloud Introspection). CloudI has characteristics of high security, high performance, high expandability and multiple functions.