Biblio
We present an analysis of a heuristic for abrupt change detection of systems with bounded state variations. The proposed analysis is based on the Singular Value Decomposition (SVD) of a history matrix built from system observations. We show that monitoring the largest singular value of the history matrix can be used as a heuristic for detecting abrupt changes in the system outputs. We provide sufficient detectability conditions for the proposed heuristic. As an application, we consider detecting malicious cyber data attacks on power systems and test our proposed heuristic on the IEEE 39-bus testbed.
Nowadays wireless networks are fast, becoming more secure than their wired counterparts. Recent technological advances in wireless networking, IC fabrication and sensor technology have lead to the emergence of millimetre scale devices that collectively form a Wireless Sensor Network (WSN) and are radically changing the way in which we sense, process and transport signals of interest. They are increasingly become viable solutions to many challenging problems and will successively be deployed in many areas in the future such as in environmental monitoring, business, and military applications. However, deploying new technology, without security in mind has often proved to be unreasonably dangerous. This also applies to WSNs, especially those used in applications that monitor sensitive information (e.g., health care applications). There have been significant contributions to overcome many weaknesses in sensor networks like coverage problems, lack in power and making best use of limited network bandwidth, however; work in sensor network security is still in its infancy stage. Security in WSNs presents several well-known challenges stemming from all kinds of resource constraints of individual sensors. The problem of securing these networks emerges more and more as a hot topic. Symmetric key cryptography is commonly seen as infeasible and public key cryptography has its own key distribution problem. In contrast to this prejudice, this paper presents a new symmetric encryption standard algorithm which is an extension of the previous work of the authors i.e. UES version-II and III. Roy et al recently developed few efficient encryption methods such as UES version-I, Modified UES-I, UES version-II, UES version-III. The algorithm is named as Ultra Encryption Standard version — IV algorithm. It is a Symmetric key Cryptosystem which includes multiple encryption, bit-wise reshuffling method and bit-wise columnar transposition method. In the present - ork the authors have performed the encryption process at the bit-level to achieve greater strength of encryption. The proposed method i.e. UES-IV can be used to encrypt short message, password or any confidential key.
What you see is not definitely believable is not a rare case in the cyber security monitoring. However, due to various tricks of camouflages, such as packing or virutal private network (VPN), detecting "advanced persistent threat"(APT) by only signature based malware detection system becomes more and more intractable. On the other hand, by carefully modeling users' subsequent behaviors of daily routines, probability for one account to generate certain operations can be estimated and used in anomaly detection. To the best of our knowledge so far, a novel behavioral analytic framework, which is dedicated to analyze Active Directory domain service logs and to monitor potential inside threat, is now first proposed in this project. Experiments on real dataset not only show that the proposed idea indeed explores a new feasible direction for cyber security monitoring, but also gives a guideline on how to deploy this framework to various environments.
Despite the benefits offered by smart grids, energy producers, distributors and consumers are increasingly concerned about possible security and privacy threats. These threats typically manifest themselves at runtime as new usage scenarios arise and vulnerabilities are discovered. Adaptive security and privacy promise to address these threats by increasing awareness and automating prevention, detection and recovery from security and privacy requirements' failures at runtime by re-configuring system controls and perhaps even changing requirements. This paper discusses the need for adaptive security and privacy in smart grids by presenting some motivating scenarios. We then outline some research issues that arise in engineering adaptive security. We particularly scrutinize published reports by NIST on smart grid security and privacy as the basis for our discussions.
The Named-Data Networking (NDN) has emerged as a clean-slate Internet proposal on the wave of Information-Centric Networking. Although the NDN's data-plane seems to offer many advantages, e.g., native support for multicast communications and flow balance, it also makes the network infrastructure vulnerable to a specific DDoS attack, the Interest Flooding Attack (IFA). In IFAs, a botnet issuing unsatisfiable content requests can be set up effortlessly to exhaust routers' resources and cause a severe performance drop to legitimate users. So far several countermeasures have addressed this security threat, however, their efficacy was proved by means of simplistic assumptions on the attack model. Therefore, we propose a more complete attack model and design an advanced IFA. We show the efficiency of our novel attack scheme by extensively assessing some of the state-of-the-art countermeasures. Further, we release the software to perform this attack as open source tool to help design future more robust defense mechanisms.
In a world where highly skilled actors involved in cyber-attacks are constantly increasing and where the associated underground market continues to expand, organizations should adapt their defence strategy and improve consequently their security incident management. In this paper, we give an overview of Advanced Persistent Threats (APT) attacks life cycle as defined by security experts. We introduce our own compiled life cycle model guided by attackers objectives instead of their actions. Challenges and opportunities related to the specific camouflage actions performed at the end of each APT phase of the model are highlighted. We also give an overview of new APT protection technologies and discuss their effectiveness at each one of life cycle phases.
The term “Advanced Persistent Threat” refers to a well-organized, malicious group of people who launch stealthy attacks against computer systems of specific targets, such as governments, companies or military. The attacks themselves are long-lasting, difficult to expose and often use very advanced hacking techniques. Since they are advanced in nature, prolonged and persistent, the organizations behind them have to possess a high level of knowledge, advanced tools and competent personnel to execute them. The attacks are usually preformed in several phases - reconnaissance, preparation, execution, gaining access, information gathering and connection maintenance. In each of the phases attacks can be detected with different probabilities. There are several ways to increase the level of security of an organization in order to counter these incidents. First and foremost, it is necessary to educate users and system administrators on different attack vectors and provide them with knowledge and protection so that the attacks are unsuccessful. Second, implement strict security policies. That includes access control and restrictions (to information or network), protecting information by encrypting it and installing latest security upgrades. Finally, it is possible to use software IDS tools to detect such anomalies (e.g. Snort, OSSEC, Sguil).
The individual distinguishing proof number or (PIN) and Passwords are the remarkable well known verification strategy used in different gadgets, for example, Atms, cell phones, and electronic gateway locks. Unfortunately, the traditional PIN-entrance technique is helpless vulnerable against shoulder-surfing attacks. However, the security examinations used to support these proposed system are not focused around only quantitative investigation, but instead on the results of experiments and testing performed on proposed system. We propose a new theoretical and experimental technique for quantitative security investigation of PIN-entry method. In this paper we first introduce new security idea know as Grid Based Authentication System and rules for secure PIN-entry method by examining the current routines under the new structure. Thus by consider the existing systems guidelines; we try to develop a new PIN-entry method that definitely avoids human shoulder-surfing attacks by significantly increasing the amount of calculations complexity that required for an attacker to penetrate through the secure system.
We are witnessing a huge growth of cyber-physical systems, which are autonomous, mobile, endowed with sensing, controlled by software, and often wirelessly connected and Internet-enabled. They include factory automation systems, robotic assistants, self-driving cars, and wearable and implantable devices. Since they are increasingly often used in safety- or business-critical contexts, to mention invasive treatment or biometric authentication, there is an urgent need for modelling and verification technologies to support the design process, and hence improve the reliability and reduce production costs. This paper gives an overview of quantitative verification and synthesis techniques developed for cyber-physical systems, summarising recent achievements and future challenges in this important field.
Distributed Denial of Service (DDoS) attacks are some of the most persistent threats on the Internet today. The evolution of DDoS attacks calls for an in-depth analysis of those attacks. A better understanding of the attackers' behavior can provide insights to unveil patterns and strategies utilized by attackers. The prior art on the attackers' behavior analysis often falls in two aspects: it assumes that adversaries are static, and makes certain simplifying assumptions on their behavior, which often are not supported by real attack data. In this paper, we take a data-driven approach to designing and validating three DDoS attack models from temporal (e.g., attack magnitudes), spatial (e.g., attacker origin), and spatiotemporal (e.g., attack inter-launching time) perspectives. We design these models based on the analysis of traces consisting of more than 50,000 verified DDoS attacks from industrial mitigation operations. Each model is also validated by testing its effectiveness in accurately predicting future DDoS attacks. Comparisons against simple intuitive models further show that our models can more accurately capture the essential features of DDoS attacks.
Air-gap data is important for the security of computer systems. The injection of the computer virus is limited but possible, however data communication channel is necessary for the transmission of stolen data. This paper considers BFSK digital modulation applied to brightness changes of screen for unidirectional transmission of valuable data. Experimental validation and limitations of the proposed technique are provided.
This research focuses on hyper visor security from holistic perspective. It centers on hyper visor architecture - the organization of the various subsystems which collectively compromise a virtualization platform. It holds that the path to a secure hyper visor begins with a big-picture focus on architecture. Unfortunately, little research has been conducted with this perspective. This study investigates the impact of monolithic and micro kernel hyper visor architectures on the size and scope of the attack surface. Six architectural features are compared: management API, monitoring interface, hyper calls, interrupts, networking, and I/O. These subsystems are core hyper visor components which could be used as attack vectors. Specific examples and three leading hyper visor platforms are referenced (ESXi for monolithic architecture; Xen and Hyper-V for micro architecture). The results describe the relative strengths and vulnerabilities of both types of architectures. It is concluded that neither design is more secure, since both incorporate security tradeoffs in core processes.
The monitoring circuit is widely applied in radiation environment and it is of significance to study the circuit reliability with the radiation effects. In this paper, an intelligent analysis method based on Deep Belief Network (DBN) and Support Vector Method is proposed according to the radiation experiments analysis of the monitoring circuit. The Total Ionizing Dose (TID) of the monitoring circuit is used to identify the circuit degradation trend. Firstly, the output waveforms of the monitoring circuit are obtained by radiating with the different TID. Subsequently, the Deep Belief Network Model is trained to extract the features of the circuit signal. Finally, the Support Vector Machine (SVM) and Support Vector Regression (SVR) are applied to classify and predict the remaining useful life (RUL) of the monitoring circuit. According to the experimental results, the performance of DBN-SVM exceeds DBN method for feature extraction and classification, and SVR is effective for predicting the degradation.
In this paper, we present AnomalyDetect, an approach for detecting anomalies in cloud services. A cloud service consists of a set of interacting applications/processes running on one or more interconnected virtual machines. AnomalyDetect uses the Kalman Filter as the basis for predicting the states of virtual machines running cloud services. It uses the cloud service's virtual machine historical data to forecast potential anomalies. AnomalyDetect has been integrated with the AutoMigrate framework and serves as the means for detecting anomalies to automatically trigger live migration of cloud services to preserve their availability. AutoMigrate is a framework for developing intelligent systems that can monitor and migrate cloud services to maximize their availability in case of cloud disruption. We conducted a number of experiments to analyze the performance of the proposed AnomalyDetect approach. The experimental results highlight the feasibility of AnomalyDetect as an approach to autonomic cloud availability.
Continued advances in IoT technology have prompted new investigation into its usage for military operations, both to augment and complement existing military sensing assets and support next-generation artificial intelligence and machine learning systems. Under the emerging Internet of Battlefield Things (IoBT) paradigm, current operational conditions necessitate the development of novel security techniques, centered on establishment of trust for individual assets and supporting resilience of broader systems. To advance current IoBT efforts, a collection of prior-developed cybersecurity techniques is reviewed for applicability to conditions presented by IoBT operational environments (e.g., diverse asset ownership, degraded networking infrastructure, adversary activities) through use of supporting case study examples. The research techniques covered focus on two themes: (1) Supporting trust assessment for known/unknown IoT assets; (2) ensuring continued trust of known IoT assets and IoBT systems.
In VLSI industry the design cycle is categorized into Front End Design and Back End Design. Front End Design flow is from Specifications to functional verification of RTL design. Back End Design is from logic synthesis to fabrication of chip. Handheld devices like Mobile SOC's is an amalgamation of many components like GPU, camera, sensor, display etc. on one single chip. In order to integrate these components protocols are needed. One such protocol in the emerging trend is I3C protocol. I3C is abbreviated as Improved Inter Integrated Circuit developed by Mobile Industry Processor Interface (MIPI) alliance. Most probably used for the interconnection of sensors in Mobile SOC's. The main motivation of adapting the standard is for the increase speed and low pin count in most of the hardware chips. The bus protocol is backward compatible with I2C devices. The paper includes detailed study I3C bus protocol and developing verification environment for the protocol. The test bench environment is written and verified using system Verilog and UVM. The Universal Verification Methodology (UVM) is base class library built using System Verilog which provides the fundamental blocks needed to quickly develop reusable and well-constructed verification components and test environments. The Functional Coverage of around 93.55 % and Code Coverage of around 98.89 % is achieved by verification closure.
In this paper we propose an architecture for fully-reconfigurable, plug-and-play wireless sensor network testbed. The proposed architecture is able to reconfigure and support easy experimentation and testing of standard protocol stacks (i.e. uIPv4 and uIPv6) as well as non-standardized clean-slate protocol stacks (e.g. configured using RIME). The parameters of the protocol stacks can be remotely reconfigured through an easy to use RESTful API. Additionally, we are able to fully reconfigure clean-slate protocol stacks at run-time. The architecture enables easy set-up of the network - plug - by using a protocol that automatically sets up a multi-hop network (i.e. RPL protocol) and it enables reconfiguration and experimentation - play - by using a simple, RESTful interaction with each node individually. The reference implementation of the architecture uses a dual-stack Contiki OS with the ProtoStack tool for dynamic composition of services.