Visible to the public Biblio

Found 418 results

Filters: Keyword is Monitoring  [Clear All Filters]
Conference Paper
Sanandaji, B.M., Bitar, E., Poolla, K., Vincent, T.L..  2014.  An abrupt change detection heuristic with applications to cyber data attacks on power systems. American Control Conference (ACC), 2014. :5056-5061.

We present an analysis of a heuristic for abrupt change detection of systems with bounded state variations. The proposed analysis is based on the Singular Value Decomposition (SVD) of a history matrix built from system observations. We show that monitoring the largest singular value of the history matrix can be used as a heuristic for detecting abrupt changes in the system outputs. We provide sufficient detectability conditions for the proposed heuristic. As an application, we consider detecting malicious cyber data attacks on power systems and test our proposed heuristic on the IEEE 39-bus testbed.
 

Praveena, A..  2017.  Achieving data security in wireless sensor networks using ultra encryption standard version \#x2014; IV algorithm. 2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT). :1–5.

Nowadays wireless networks are fast, becoming more secure than their wired counterparts. Recent technological advances in wireless networking, IC fabrication and sensor technology have lead to the emergence of millimetre scale devices that collectively form a Wireless Sensor Network (WSN) and are radically changing the way in which we sense, process and transport signals of interest. They are increasingly become viable solutions to many challenging problems and will successively be deployed in many areas in the future such as in environmental monitoring, business, and military applications. However, deploying new technology, without security in mind has often proved to be unreasonably dangerous. This also applies to WSNs, especially those used in applications that monitor sensitive information (e.g., health care applications). There have been significant contributions to overcome many weaknesses in sensor networks like coverage problems, lack in power and making best use of limited network bandwidth, however; work in sensor network security is still in its infancy stage. Security in WSNs presents several well-known challenges stemming from all kinds of resource constraints of individual sensors. The problem of securing these networks emerges more and more as a hot topic. Symmetric key cryptography is commonly seen as infeasible and public key cryptography has its own key distribution problem. In contrast to this prejudice, this paper presents a new symmetric encryption standard algorithm which is an extension of the previous work of the authors i.e. UES version-II and III. Roy et al recently developed few efficient encryption methods such as UES version-I, Modified UES-I, UES version-II, UES version-III. The algorithm is named as Ultra Encryption Standard version — IV algorithm. It is a Symmetric key Cryptosystem which includes multiple encryption, bit-wise reshuffling method and bit-wise columnar transposition method. In the present - ork the authors have performed the encryption process at the bit-level to achieve greater strength of encryption. The proposed method i.e. UES-IV can be used to encrypt short message, password or any confidential key.

Han, K., Li, S., Wang, Z., Yang, X..  2018.  Actuator deception attack detection and estimation for a class of nonlinear systems. 2018 37th Chinese Control Conference (CCC). :5675–5680.
In this paper, an novel active safety monitoring system is constructed for a class of nonlinear discrete-time systems. The considered nonlinear system is subjected to unknown inputs, external disturbances, and possible unknown deception attacks, simultaneously. In order to secure the safety of control systems, an active attack estimator composed of state/output estimator, attack detector and attack/attacker action estimator is constructed to monitor the system running status. The analysis and synthesis of attack estimator is performed in the H∞performance optimization manner. The off-line calculation and on-line application of active attack estimator are summarized simultaneously. The effectiveness of the proposed results is finally verified by an numerical example.
C. H. Hsieh, C. M. Lai, C. H. Mao, T. C. Kao, K. C. Lee.  2015.  "AD2: Anomaly detection on active directory log data for insider threat monitoring". 2015 International Carnahan Conference on Security Technology (ICCST). :287-292.

What you see is not definitely believable is not a rare case in the cyber security monitoring. However, due to various tricks of camouflages, such as packing or virutal private network (VPN), detecting "advanced persistent threat"(APT) by only signature based malware detection system becomes more and more intractable. On the other hand, by carefully modeling users' subsequent behaviors of daily routines, probability for one account to generate certain operations can be estimated and used in anomaly detection. To the best of our knowledge so far, a novel behavioral analytic framework, which is dedicated to analyze Active Directory domain service logs and to monitor potential inside threat, is now first proposed in this project. Experiments on real dataset not only show that the proposed idea indeed explores a new feasible direction for cyber security monitoring, but also gives a guideline on how to deploy this framework to various environments.

Fan, Renshi, Du, Gaoming, Xu, Pengfei, Li, Zhenmin, Song, Yukun, Zhang, Duoli.  2019.  An Adaptive Routing Scheme Based on Q-learning and Real-time Traffic Monitoring for Network-on-Chip. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :244—248.
In the Network on Chip (NoC), performance optimization has always been a research focus. Compared with the static routing scheme, dynamical routing schemes can better reduce the data of packet transmission latency under network congestion. In this paper, we propose a dynamical Q-learning routing approach with real-time monitoring of NoC. Firstly, we design a real-time monitoring scheme and the corresponding circuits to record the status of traffic congestion for NoC. Secondly, we propose a novel method of Q-learning. This method finds an optimal path based on the lowest traffic congestion. Finally, we dynamically redistribute network tasks to increase the packet transmission speed and balance the traffic load. Compared with the C-XY routing and DyXY routing, our method achieved improvement in terms of 25.6%-49.5% and 22.9%-43.8%.
Salehie, Mazeiar, Pasquale, Liliana, Omoronyia, Inah, Nuseibeh, Bashar.  2012.  Adaptive Security and Privacy in Smart Grids: A Software Engineering Vision. 2012 First International Workshop on Software Engineering Challenges for the Smart Grid (SE-SmartGrids). :46–49.

Despite the benefits offered by smart grids, energy producers, distributors and consumers are increasingly concerned about possible security and privacy threats. These threats typically manifest themselves at runtime as new usage scenarios arise and vulnerabilities are discovered. Adaptive security and privacy promise to address these threats by increasing awareness and automating prevention, detection and recovery from security and privacy requirements' failures at runtime by re-configuring system controls and perhaps even changing requirements. This paper discusses the need for adaptive security and privacy in smart grids by presenting some motivating scenarios. We then outline some research issues that arise in engineering adaptive security. We particularly scrutinize published reports by NIST on smart grid security and privacy as the basis for our discussions.

Tanana, D., Tanana, G..  2020.  Advanced Behavior-Based Technique for Cryptojacking Malware Detection. 2020 14th International Conference on Signal Processing and Communication Systems (ICSPCS). :1—4.
With rising value and popularity of cryptocurrencies, they inevitably attract cybercriminals seeking illicit profits within blockchain ecosystem. Two of the most popular methods are ransomware and cryptojacking. Ransomware, being the first and more obvious threat has been extensively studied in the past. Unlike that, scientists have often neglected cryptojacking, because it’s less obvious and less harmful than ransomware. In this paper, we’d like to propose enhanced detection program to combat cryptojacking, additionally briefly touching history of cryptojacking, also known as malicious mining and reviewing most notable previous attempts to detect and combat cryptojacking. The review would include out previous work on malicious mining detection and our current detection program is based on its previous iteration, which mostly used CPU usage heuristics to detect cryptojacking. However, we will include additional metrics for malicious mining detection, such as network usage and calls to cryptographic libraries, which result in a 93% detection rate against the selected number of cryptojacking samples, compared to 81% rate achieved in previous work. Finally, we’ll discuss generalization of proposed detection technique to include GPU cryptojackers.
Signorello, S., Marchal, S., François, J., Festor, O., State, R..  2017.  Advanced interest flooding attacks in named-data networking. 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA). :1–10.

The Named-Data Networking (NDN) has emerged as a clean-slate Internet proposal on the wave of Information-Centric Networking. Although the NDN's data-plane seems to offer many advantages, e.g., native support for multicast communications and flow balance, it also makes the network infrastructure vulnerable to a specific DDoS attack, the Interest Flooding Attack (IFA). In IFAs, a botnet issuing unsatisfiable content requests can be set up effortlessly to exhaust routers' resources and cause a severe performance drop to legitimate users. So far several countermeasures have addressed this security threat, however, their efficacy was proved by means of simplistic assumptions on the attack model. Therefore, we propose a more complete attack model and design an advanced IFA. We show the efficiency of our novel attack scheme by extensively assessing some of the state-of-the-art countermeasures. Further, we release the software to perform this attack as open source tool to help design future more robust defense mechanisms.

Messaoud, B. I. D., Guennoun, K., Wahbi, M., Sadik, M..  2016.  Advanced Persistent Threat: New analysis driven by life cycle phases and their challenges. 2016 International Conference on Advanced Communication Systems and Information Security (ACOSIS). :1–6.

In a world where highly skilled actors involved in cyber-attacks are constantly increasing and where the associated underground market continues to expand, organizations should adapt their defence strategy and improve consequently their security incident management. In this paper, we give an overview of Advanced Persistent Threats (APT) attacks life cycle as defined by security experts. We introduce our own compiled life cycle model guided by attackers objectives instead of their actions. Challenges and opportunities related to the specific camouflage actions performed at the end of each APT phase of the model are highlighted. We also give an overview of new APT protection technologies and discuss their effectiveness at each one of life cycle phases.

J. Vukalović, D. Delija.  2015.  "Advanced Persistent Threats - detection and defense". 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). :1324-1330.

The term “Advanced Persistent Threat” refers to a well-organized, malicious group of people who launch stealthy attacks against computer systems of specific targets, such as governments, companies or military. The attacks themselves are long-lasting, difficult to expose and often use very advanced hacking techniques. Since they are advanced in nature, prolonged and persistent, the organizations behind them have to possess a high level of knowledge, advanced tools and competent personnel to execute them. The attacks are usually preformed in several phases - reconnaissance, preparation, execution, gaining access, information gathering and connection maintenance. In each of the phases attacks can be detected with different probabilities. There are several ways to increase the level of security of an organization in order to counter these incidents. First and foremost, it is necessary to educate users and system administrators on different attack vectors and provide them with knowledge and protection so that the attacks are unsuccessful. Second, implement strict security policies. That includes access control and restrictions (to information or network), protecting information by encrypting it and installing latest security upgrades. Finally, it is possible to use software IDS tools to detect such anomalies (e.g. Snort, OSSEC, Sguil).

Mali, Y. K., Mohanpurkar, A..  2015.  Advanced pin entry method by resisting shoulder surfing attacks. 2015 International Conference on Information Processing (ICIP). :37–42.

The individual distinguishing proof number or (PIN) and Passwords are the remarkable well known verification strategy used in different gadgets, for example, Atms, cell phones, and electronic gateway locks. Unfortunately, the traditional PIN-entrance technique is helpless vulnerable against shoulder-surfing attacks. However, the security examinations used to support these proposed system are not focused around only quantitative investigation, but instead on the results of experiments and testing performed on proposed system. We propose a new theoretical and experimental technique for quantitative security investigation of PIN-entry method. In this paper we first introduce new security idea know as Grid Based Authentication System and rules for secure PIN-entry method by examining the current routines under the new structure. Thus by consider the existing systems guidelines; we try to develop a new PIN-entry method that definitely avoids human shoulder-surfing attacks by significantly increasing the amount of calculations complexity that required for an attacker to penetrate through the secure system.

Kwiatkowska, M..  2016.  Advances and challenges of quantitative verification and synthesis for cyber-physical systems. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–5.

We are witnessing a huge growth of cyber-physical systems, which are autonomous, mobile, endowed with sensing, controlled by software, and often wirelessly connected and Internet-enabled. They include factory automation systems, robotic assistants, self-driving cars, and wearable and implantable devices. Since they are increasingly often used in safety- or business-critical contexts, to mention invasive treatment or biometric authentication, there is an urgent need for modelling and verification technologies to support the design process, and hence improve the reliability and reduce production costs. This paper gives an overview of quantitative verification and synthesis techniques developed for cyber-physical systems, summarising recent achievements and future challenges in this important field.

Wang, A., Mohaisen, A., Chen, S..  2017.  An Adversary-Centric Behavior Modeling of DDoS Attacks. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). :1126–1136.

Distributed Denial of Service (DDoS) attacks are some of the most persistent threats on the Internet today. The evolution of DDoS attacks calls for an in-depth analysis of those attacks. A better understanding of the attackers' behavior can provide insights to unveil patterns and strategies utilized by attackers. The prior art on the attackers' behavior analysis often falls in two aspects: it assumes that adversaries are static, and makes certain simplifying assumptions on their behavior, which often are not supported by real attack data. In this paper, we take a data-driven approach to designing and validating three DDoS attack models from temporal (e.g., attack magnitudes), spatial (e.g., attacker origin), and spatiotemporal (e.g., attack inter-launching time) perspectives. We design these models based on the analysis of traces consisting of more than 50,000 verified DDoS attacks from industrial mitigation operations. Each model is also validated by testing its effectiveness in accurately predicting future DDoS attacks. Comparisons against simple intuitive models further show that our models can more accurately capture the essential features of DDoS attacks.

Bak, D., Mazurek, P..  2018.  Air-Gap Data Transmission Using Screen Brightness Modulation. 2018 International Interdisciplinary PhD Workshop (IIPhDW). :147–150.

Air-gap data is important for the security of computer systems. The injection of the computer virus is limited but possible, however data communication channel is necessary for the transmission of stolen data. This paper considers BFSK digital modulation applied to brightness changes of screen for unidirectional transmission of valuable data. Experimental validation and limitations of the proposed technique are provided.

Dcruz, Hans John, Kaliaperumal, Baskaran.  2018.  Analysis of Cyber-Physical Security in Electric Smart Grid : Survey and challenges. 2018 6th International Renewable and Sustainable Energy Conference (IRSEC). :1–6.
With the advancement in technology, inclusion of Information and Communication Technology (ICT) in the conventional Electrical Power Grid has become evident. The combination of communication system with physical system makes it cyber-physical system (CPS). Though the advantages of this improvement in technology are numerous, there exist certain issues with the system. Security and privacy concerns of a CPS are a major field and research and the insight of which is content of this paper.
Shropshire, J..  2014.  Analysis of Monolithic and Microkernel Architectures: Towards Secure Hypervisor Design. System Sciences (HICSS), 2014 47th Hawaii International Conference on. :5008-5017.

This research focuses on hyper visor security from holistic perspective. It centers on hyper visor architecture - the organization of the various subsystems which collectively compromise a virtualization platform. It holds that the path to a secure hyper visor begins with a big-picture focus on architecture. Unfortunately, little research has been conducted with this perspective. This study investigates the impact of monolithic and micro kernel hyper visor architectures on the size and scope of the attack surface. Six architectural features are compared: management API, monitoring interface, hyper calls, interrupts, networking, and I/O. These subsystems are core hyper visor components which could be used as attack vectors. Specific examples and three leading hyper visor platforms are referenced (ESXi for monolithic architecture; Xen and Hyper-V for micro architecture). The results describe the relative strengths and vulnerabilities of both types of architectures. It is concluded that neither design is more secure, since both incorporate security tradeoffs in core processes.

Xing, Z., Liu, L., Li, S., Liu, Y..  2018.  Analysis of Radiation Effects for Monitoring Circuit Based on Deep Belief Network and Support Vector Method. 2018 Prognostics and System Health Management Conference (PHM-Chongqing). :511-516.

The monitoring circuit is widely applied in radiation environment and it is of significance to study the circuit reliability with the radiation effects. In this paper, an intelligent analysis method based on Deep Belief Network (DBN) and Support Vector Method is proposed according to the radiation experiments analysis of the monitoring circuit. The Total Ionizing Dose (TID) of the monitoring circuit is used to identify the circuit degradation trend. Firstly, the output waveforms of the monitoring circuit are obtained by radiating with the different TID. Subsequently, the Deep Belief Network Model is trained to extract the features of the circuit signal. Finally, the Support Vector Machine (SVM) and Support Vector Regression (SVR) are applied to classify and predict the remaining useful life (RUL) of the monitoring circuit. According to the experimental results, the performance of DBN-SVM exceeds DBN method for feature extraction and classification, and SVR is effective for predicting the degradation.

Teoh, T. T., Zhang, Y., Nguwi, Y. Y., Elovici, Y., Ng, W. L..  2017.  Analyst Intuition Inspired High Velocity Big Data Analysis Using PCA Ranked Fuzzy K-Means Clustering with Multi-Layer Perceptron (MLP) to Obviate Cyber Security Risk. 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :1790–1793.
The growing prevalence of cyber threats in the world are affecting every network user. Numerous security monitoring systems are being employed to protect computer networks and resources from falling victim to cyber-attacks. There is a pressing need to have an efficient security monitoring system to monitor the large network datasets generated in this process. A large network datasets representing Malware attacks have been used in this work to establish an expert system. The characteristics of attacker's IP addresses can be extracted from our integrated datasets to generate statistical data. The cyber security expert provides to the weight of each attribute and forms a scoring system by annotating the log history. We adopted a special semi supervise method to classify cyber security log into attack, unsure and no attack by first breaking the data into 3 cluster using Fuzzy K mean (FKM), then manually label a small data (Analyst Intuition) and finally train the neural network classifier multilayer perceptron (MLP) base on the manually labelled data. By doing so, our results is very encouraging as compare to finding anomaly in a cyber security log, which generally results in creating huge amount of false detection. The method of including Artificial Intelligence (AI) and Analyst Intuition (AI) is also known as AI2. The classification results are encouraging in segregating the types of attacks.
Jaiswal, M., Malik, Y., Jaafar, F..  2018.  Android gaming malware detection using system call analysis. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1—5.
Android operating systems have become a prime target for attackers as most of the market is currently dominated by Android users. The situation gets worse when users unknowingly download or sideload cloning applications, especially gaming applications that look like benign games. In this paper, we present, a dynamic Android gaming malware detection system based on system call analysis to classify malicious and legitimate games. We performed the dynamic system call analysis on normal and malicious gaming applications while applications are in execution state. Our analysis reveals the similarities and differences between benign and malware game system calls and shows how dynamically analyzing the behavior of malicious activity through system calls during runtime makes it easier and is more effective to detect malicious applications. Experimental analysis and results shows the efficiency and effectiveness of our approach.
Ramapatruni, S., Narayanan, S. N., Mittal, S., Joshi, A., Joshi, K..  2019.  Anomaly Detection Models for Smart Home Security. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :19–24.
Recent years have seen significant growth in the adoption of smart homes devices. These devices provide convenience, security, and energy efficiency to users. For example, smart security cameras can detect unauthorized movements, and smoke sensors can detect potential fire accidents. However, many recent examples have shown that they open up a new cyber threat surface. There have been several recent examples of smart devices being hacked for privacy violations and also misused so as to perform DDoS attacks. In this paper, we explore the application of big data and machine learning to identify anomalous activities that can occur in a smart home environment. A Hidden Markov Model (HMM) is trained on network level sensor data, created from a test bed with multiple sensors and smart devices. The generated HMM model is shown to achieve an accuracy of 97% in identifying potential anomalies that indicate attacks. We present our approach to build this model and compare with other techniques available in the literature.
Farzaneh, Behnam, Montazeri, Mohammad Ali, Jamali, Shahram.  2019.  An Anomaly-Based IDS for Detecting Attacks in RPL-Based Internet of Things. 2019 5th International Conference on Web Research (ICWR). :61–66.
The Internet of Things (IoT) is a concept that allows the networking of various objects of everyday life and communications on the Internet without human interaction. The IoT consists of Low-Power and Lossy Networks (LLN) which for routing use a special protocol called Routing over Low-Power and Lossy Networks (RPL). Due to the resource-constrained nature of RPL networks, they may be exposed to a variety of internal attacks. Neighbor attack and DIS attack are the specific internal attacks at this protocol. This paper presents an anomaly-based lightweight Intrusion Detection System (IDS) based on threshold values for detecting attacks on the RPL protocol. The results of the simulation using Cooja show that the proposed model has a very high True Positive Rate (TPR) and in some cases, it can be 100%, while the False Positive Rate (FPR) is very low. The results show that the proposed model is fully effective in detecting attacks and applicable to large-scale networks.
August, M. A., Diallo, M. H., Graves, C. T., Slayback, S. M., Glasser, D..  2017.  AnomalyDetect: Anomaly Detection for Preserving Availability of Virtualized Cloud Services. 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W). :334–340.

In this paper, we present AnomalyDetect, an approach for detecting anomalies in cloud services. A cloud service consists of a set of interacting applications/processes running on one or more interconnected virtual machines. AnomalyDetect uses the Kalman Filter as the basis for predicting the states of virtual machines running cloud services. It uses the cloud service's virtual machine historical data to forecast potential anomalies. AnomalyDetect has been integrated with the AutoMigrate framework and serves as the means for detecting anomalies to automatically trigger live migration of cloud services to preserve their availability. AutoMigrate is a framework for developing intelligent systems that can monitor and migrate cloud services to maximize their availability in case of cloud disruption. We conducted a number of experiments to analyze the performance of the proposed AnomalyDetect approach. The experimental results highlight the feasibility of AnomalyDetect as an approach to autonomic cloud availability.

Agadakos, I., Ciocarlie, G. F., Copos, B., Emmi, M., George, J., Leslie, N., Michaelis, J..  2019.  Application of Trust Assessment Techniques to IoBT Systems. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :833—840.

Continued advances in IoT technology have prompted new investigation into its usage for military operations, both to augment and complement existing military sensing assets and support next-generation artificial intelligence and machine learning systems. Under the emerging Internet of Battlefield Things (IoBT) paradigm, current operational conditions necessitate the development of novel security techniques, centered on establishment of trust for individual assets and supporting resilience of broader systems. To advance current IoBT efforts, a collection of prior-developed cybersecurity techniques is reviewed for applicability to conditions presented by IoBT operational environments (e.g., diverse asset ownership, degraded networking infrastructure, adversary activities) through use of supporting case study examples. The research techniques covered focus on two themes: (1) Supporting trust assessment for known/unknown IoT assets; (2) ensuring continued trust of known IoT assets and IoBT systems.

Mahale, Anusha, B.S., Kariyappa.  2019.  Architecture Analysis and Verification of I3C Protocol. 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA). :930-935.

In VLSI industry the design cycle is categorized into Front End Design and Back End Design. Front End Design flow is from Specifications to functional verification of RTL design. Back End Design is from logic synthesis to fabrication of chip. Handheld devices like Mobile SOC's is an amalgamation of many components like GPU, camera, sensor, display etc. on one single chip. In order to integrate these components protocols are needed. One such protocol in the emerging trend is I3C protocol. I3C is abbreviated as Improved Inter Integrated Circuit developed by Mobile Industry Processor Interface (MIPI) alliance. Most probably used for the interconnection of sensors in Mobile SOC's. The main motivation of adapting the standard is for the increase speed and low pin count in most of the hardware chips. The bus protocol is backward compatible with I2C devices. The paper includes detailed study I3C bus protocol and developing verification environment for the protocol. The test bench environment is written and verified using system Verilog and UVM. The Universal Verification Methodology (UVM) is base class library built using System Verilog which provides the fundamental blocks needed to quickly develop reusable and well-constructed verification components and test environments. The Functional Coverage of around 93.55 % and Code Coverage of around 98.89 % is achieved by verification closure.

A. Bekan, M. Mohorcic, J. Cinkelj, C. Fortuna.  2015.  "An Architecture for Fully Reconfigurable Plug-and-Play Wireless Sensor Network Testbed". 2015 IEEE Global Communications Conference (GLOBECOM). :1-7.

In this paper we propose an architecture for fully-reconfigurable, plug-and-play wireless sensor network testbed. The proposed architecture is able to reconfigure and support easy experimentation and testing of standard protocol stacks (i.e. uIPv4 and uIPv6) as well as non-standardized clean-slate protocol stacks (e.g. configured using RIME). The parameters of the protocol stacks can be remotely reconfigured through an easy to use RESTful API. Additionally, we are able to fully reconfigure clean-slate protocol stacks at run-time. The architecture enables easy set-up of the network - plug - by using a protocol that automatically sets up a multi-hop network (i.e. RPL protocol) and it enables reconfiguration and experimentation - play - by using a simple, RESTful interaction with each node individually. The reference implementation of the architecture uses a dual-stack Contiki OS with the ProtoStack tool for dynamic composition of services.