Visible to the public Biblio

Found 225 results

Filters: Keyword is Sensors  [Clear All Filters]
Moradi, Ashkan, Venkategowda, Naveen K. D., Werner, Stefan.  2019.  Coordinated Data-Falsification Attacks in Consensus-based Distributed Kalman Filtering. 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). :495–499.
This paper considers consensus-based distributed Kalman filtering subject to data-falsification attack, where Byzantine agents share manipulated data with their neighboring agents. The attack is assumed to be coordinated among the Byzantine agents and follows a linear model. The goal of the Byzantine agents is to maximize the network-wide estimation error while evading false-data detectors at honest agents. To that end, we propose a joint selection of Byzantine agents and covariance matrices of attack sequences to maximize the network-wide estimation error subject to constraints on stealthiness and the number of Byzantine agents. The attack strategy is then obtained by employing block-coordinate descent method via Boolean relaxation and backward stepwise based subset selection method. Numerical results show the efficiency of the proposed attack strategy in comparison with other naive and uncoordinated attacks.
Liu, Junqiu, Wang, Fei, Zhao, Shuang, Wang, Xin, Chen, Shuhui.  2019.  iMonitor, An APP-Level Traffic Monitoring and Labeling System for iOS Devices. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :211—218.
In this paper, we propose the first traffic monitoring and labeling system for iOS devices, named iMonitor, which not just captures mobile network traffic in .pcap files, but also provides comprehensive APP-related and user-related information of captured packets. Through further analysis, one can obtain the exact APP or device where each packet comes from. The labeled traffic can be used in many research areas for mobile security, such as privacy leakage detection and user profiling. Given the implementation methodology of NetworkExtension framework of iOS 9+, APP labels of iMonitor are reliable enough so that labeled traffic can be regarded as training data for any traffic classification methods. Evaluations on real iPhones demonstrate that iMonitor has no notable impact upon user experience even with slight packet latency. Also, the experiment result supports our motivation that mobile traffic monitoring for iOS is absolutely necessary, as traffic generated by different OSes like Android and iOS are different and unreplaceable in researches.
Reddy, Vijender Busi, Negi, Atul, Venkataraman, S, Venkataraman, V Raghu.  2019.  A Similarity based Trust Model to Mitigate Badmouthing Attacks in Internet of Things (IoT). 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :278—282.

In Internet of Things (IoT) each object is addressable, trackable and accessible on the Internet. To be useful, objects in IoT co-operate and exchange information. IoT networks are open, anonymous, dynamic in nature so, a malicious object may enter into the network and disrupt the network. Trust models have been proposed to identify malicious objects and to improve the reliability of the network. Recommendations in trust computation are the basis of trust models. Due to this, trust models are vulnerable to bad mouthing and collusion attacks. In this paper, we propose a similarity model to mitigate badmouthing and collusion attacks and show that proposed method efficiently removes the impact of malicious recommendations in trust computation.

Kirupakar, J., Shalinie, S. Mercy.  2019.  Situation Aware Intrusion Detection System Design for Industrial IoT Gateways. 2019 International Conference on Computational Intelligence in Data Science (ICCIDS). :1—6.

In today's IIoT world, most of the IoT platform providers like Microsoft, Amazon and Google are focused towards connecting devices and extract data from the devices and send the data to the Cloud for analytics. Only there are few companies concentrating on Security measures implemented on Edge Node. Gartner estimates that by 2020, more than 25 percent of all enterprise attackers will make use of the Industrial IoT. As Cyber Security Threat is getting more important, it is essential to ensure protection of data both at rest and at motion. The reflex of Cyber Security in the Industrial IoT Domain is much more severe when compared to the Consumer IoT Segment. The new bottleneck in this are security services which employ computationally intensive software operations and system services [1]. Resilient services consume considerable resources in a design. When such measures are added to thwart security attacks, the resource requirements grow even more demanding. Since the standard IIoT Gateways and other sub devices are resource constrained in nature the conventional design for security services will not be applicable in this case. This paper proposes an intelligent architectural paradigm for the Constrained IIoT Gateways that can efficiently identify the Cyber-Attacks in the Industrial IoT domain.

Liu, Dongqi.  2018.  A Creditability-based Intrusion Tolerant Method for Protection Equipment in Transformer Substations. 2018 China International Conference on Electricity Distribution (CICED). :1489–1492.
With the development of the interconnection of all things(IoT), a large number of mobile terminal devices with multiple users access the distribution network, and gradually form an open and interconnected network environment, which brings new challenges to the security and protection of the distribution network. In this paper, a method of analyzing the sensing data of the digital substation is proposed, which can prevent the abnormal data from causing the malfunction of the protective relays by calculating the creditability of the sensing data. Creditability calculation algorithm as well as the implementation of the intrusion tolerance strategy are studied throughout the paper. The simulation results show that the proposed creditability-based intrusion-tolerant(CIT) algorithm can ensure that the protective equipment have no protective malfunction from the false instructions or false data attacks, and the proposed intrusion tolerant algorithm has little affect on the real-time performance of the original protection algorithm, hence it has some practical value.
Jiang, Feng, Qi, Buren, Wu, Tianhao, Zhu, Konglin, Zhang, Lin.  2019.  CPSS: CP-ABE based Platoon Secure Sensing Scheme against Cyber-Attacks. 2019 IEEE Intelligent Transportation Systems Conference (ITSC). :3218—3223.

Platoon is one of cooperative driving applications where a set of vehicles can collaboratively sense each other for driving safety and traffic efficiency. However, platoon without security insurance makes the cooperative vehicles vulnerable to cyber-attacks, which may cause life-threatening accidents. In this paper, we introduce malicious attacks in platoon maneuvers. To defend against these attacks, we propose a Cyphertext-Policy Attribute-Based Encryption (CP-ABE) based Platoon Secure Sensing scheme, named CPSS. In the CPSS, platoon key is encapsulated in the access control structure in the key distribution process, so that interference messages sending by attackers without the platoon key could be ignored. Therefore, the sensing data which contains speed and position information can be protected. In this way, speed and distance fluctuations caused by attacks can be mitigated even eliminated thereby avoiding the collisions and ensuring the overall platoon stability. Time complexity analysis shows that the CPSS is more efficient than that of the polynomial time solutions. Finally, to evaluate capabilities of the CPSS, we integrate a LTE-V2X with platoon maneuvers based on Veins platform. The evaluation results show that the CPSS outperforms the baseline algorithm by 25% in terms of distance variations.

Touati, Lyes, Challal, Yacine.  2016.  Collaborative KP-ABE for cloud-based Internet of Things applications. 2016 IEEE International Conference on Communications (ICC). :1—7.
KP-ABE mechanism emerges as one of the most suitable security scheme for asymmetric encryption. It has been widely used to implement access control solutions. However, due to its expensive overhead, it is difficult to consider this cryptographic scheme in resource-limited networks, such as the IoT. As the cloud has become a key infrastructural support for IoT applications, it is interesting to exploit cloud resources to perform heavy operations. In this paper, a collaborative variant of KP-ABE named C-KP-ABE for cloud-based IoT applications is proposed. Our proposal is based on the use of computing power and storage capacities of cloud servers and trusted assistant nodes to run heavy operations. A performance analysis is conducted to show the effectiveness of the proposed solution.
Lekidis, Alexios, Barosan, Ion.  2019.  Model-based simulation and threat analysis of in-vehicle networks. 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS). :1–8.
Automotive systems are currently undergoing a rapid evolution through the integration of the Internet of Things (IoT) and Software Defined Networking (SDN) technologies. The main focus of this evolution is to improve the driving experience, including automated controls, intelligent navigation and safety systems. Moreover, the extremely rapid pace that such technologies are brought into the vehicles, necessitates the presence of adequate testing of new features to avoid operational errors. Apart from testing though, IoT and SDN technologies also widen the threat landscape of cyber-security risks due to the amount of connectivity interfaces that are nowadays exposed in vehicles. In this paper we present a new method, based on OMNET++, for testing new in-vehicle features and assessing security risks through network simulation. The method is demonstrated through a case-study on a Toyota Prius, whose network data are analyzed for the detection of anomalies caused from security threats or operational errors.
Rumez, Marcel, Dürrwang, Jürgen, Brecht, Tim, Steinshorn, Timo, Neugebauer, Peter, Kriesten, Reiner, Sax, Eric.  2019.  CAN Radar: Sensing Physical Devices in CAN Networks based on Time Domain Reflectometry. 2019 IEEE Vehicular Networking Conference (VNC). :1–8.
The presence of security vulnerabilities in automotive networks has already been shown by various publications in recent years. Due to the specification of the Controller Area Network (CAN) as a broadcast medium without security mechanisms, attackers are able to read transmitted messages without being noticed and to inject malicious messages. In order to detect potential attackers within a network or software system as early as possible, Intrusion Detection Systems (IDSs) are prevalent. Many approaches for vehicles are based on techniques which are able to detect deviations from specified CAN network behaviour regarding protocol or payload properties. However, it is challenging to detect attackers who secretly connect to CAN networks and do not actively participate in bus traffic. In this paper, we present an approach that is capable of successfully detecting unknown CAN devices and determining the distance (cable length) between the attacker device and our sensing unit based on Time Domain Reflectometry (TDR) technique. We evaluated our approach on a real vehicle network.
Koumidis, K., Kolios, P., Ellinas, G., Panayiotou, C. G..  2019.  Secure Event Logging Using a Blockchain of Heterogeneous Computing Resources. 2019 IEEE Global Communications Conference (GLOBECOM). :1—6.

Secure logging is essential for the integrity and accountability of cyber-physical systems (CPS). To prevent modification of log files the integrity of data must be ensured. In this work, we propose a solution for secure event in cyberphysical systems logging based on the blockchain technology, by encapsulating event data in blocks. The proposed solution considers the real-time application constraints that are inherent in CPS monitoring and control functions by optimizing the heterogeneous resources governing blockchain computations. In doing so, the proposed blockchain mechanism manages to deliver events in hard-to-tamper ledger blocks that can be accessed and utilized by the various functions and components of the system. Performance analysis of the proposed solution is conducted through extensive simulation, demonstrating the effectiveness of the proposed approach in delivering blocks of events on time using the minimum computational resources.

Lisova, Elena, El Hachem, Jamal, Causevic, Aida.  2019.  Investigating Attack Propagation in a SoS via a Service Decomposition. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:9—14.

A term systems of systems (SoS) refers to a setup in which a number of independent systems collaborate to create a value that each of them is unable to achieve independently. Complexity of a SoS structure is higher compared to its constitute systems that brings challenges in analyzing its critical properties such as security. An SoS can be seen as a set of connected systems or services that needs to be adequately protected. Communication between such systems or services can be considered as a service itself, and it is the paramount for establishment of a SoS as it enables connections, dependencies, and a cooperation. Given that reliable and predictable communication contributes directly to a correct functioning of an SoS, communication as a service is one of the main assets to consider. Protecting it from malicious adversaries should be one of the highest priorities within SoS design and operation. This study aims to investigate the attack propagation problem in terms of service-guarantees through the decomposition into sub-services enriched with preconditions and postconditions at the service levels. Such analysis is required as a prerequisite for an efficient SoS risk assessment at the design stage of the SoS development life cycle to protect it from possibly high impact attacks capable of affecting safety of systems and humans using the system.

Ahmad, Jawad, Tahir, Ahsen, Khan, Jan Sher, Khan, Muazzam A, Khan, Fadia Ali, Arshad, Habib, Zeeshan.  2019.  A Partial Ligt-weight Image Encryption Scheme. 2019 UK/ China Emerging Technologies (UCET). :1—3.

Due to greater network capacity and faster data speed, fifth generation (5G) technology is expected to provide a huge improvement in Internet of Things (IoTs) applications, Augmented & Virtual Reality (AR/VR) technologies, and Machine Type Communications (MTC). Consumer will be able to send/receive high quality multimedia data. For the protection of sensitive multimedia data, a large number of encryption algorithms are available, however, these encryption schemes does not provide light-weight encryption solution for real-time application requirements. This paper proposes a new multi-chaos computational efficient encryption for digital images. In the proposed scheme, plaintext image is transformed using Lifting Wavelet Transform (LWT) and only one-fourth part of the transformed image is encrypted using light-weight Chebyshev and Intertwining maps. Both chaotic maps were chaotically coupled for the confusion and diffusion processes which further enhances the image security. Encryption/decryption speed and other security measures such as correlation coefficient, entropy, Number of Pixels Change Rate (NPCR), contrast, energy, homogeneity confirm the superiority of the proposed light-weight encryption scheme.

Beheshti-Atashgah, Mohammad, Aref, Mohammd Reza, Bayat, Majid, Barari, Morteza.  2019.  ID-based Strong Designated Verifier Signature Scheme and its Applications in Internet of Things. 2019 27th Iranian Conference on Electrical Engineering (ICEE). :1486–1491.
Strong designated verifier signature scheme is a concept in which a user (signer) can issue a digital signature for a special receiver; i.e. signature is produced in such way that only intended verifier can check the validity of produced signature. Of course, this type of signature scheme should be such that no third party is able to validate the signature. In other words, the related designated verifier cannot assign the issued signature to another third party. This article proposes a new ID-based strong designated verifier signature scheme which has provable security in the ROM (Random Oracle Model) and BDH assumption. The proposed scheme satisfies the all security requirements of an ID-based strong designated verifier signature scheme. In addition, we propose some usage scenarios for the proposed schemes in different applications in the Internet of Things and Cloud Computing era.
Haefner, Kyle, Ray, Indrakshi.  2019.  ComplexIoT: Behavior-Based Trust For IoT Networks. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :56—65.

This work takes a novel approach to classifying the behavior of devices by exploiting the single-purpose nature of IoT devices and analyzing the complexity and variance of their network traffic. We develop a formalized measurement of complexity for IoT devices, and use this measurement to precisely tune an anomaly detection algorithm for each device. We postulate that IoT devices with low complexity lead to a high confidence in their behavioral model and have a correspondingly more precise decision boundary on their predicted behavior. Conversely, complex general purpose devices have lower confidence and a more generalized decision boundary. We show that there is a positive correlation to our complexity measure and the number of outliers found by an anomaly detection algorithm. By tuning this decision boundary based on device complexity we are able to build a behavioral framework for each device that reduces false positive outliers. Finally, we propose an architecture that can use this tuned behavioral model to rank each flow on the network and calculate a trust score ranking of all traffic to and from a device which allows the network to autonomously make access control decisions on a per-flow basis.

Almeida, L., Lopes, E., Yalçinkaya, B., Martins, R., Lopes, A., Menezes, P., Pires, G..  2019.  Towards natural interaction in immersive reality with a cyber-glove. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). :2653—2658.

Over the past few years, virtual and mixed reality systems have evolved significantly yielding high immersive experiences. Most of the metaphors used for interaction with the virtual environment do not provide the same meaningful feedback, to which the users are used to in the real world. This paper proposes a cyber-glove to improve the immersive sensation and the degree of embodiment in virtual and mixed reality interaction tasks. In particular, we are proposing a cyber-glove system that tracks wrist movements, hand orientation and finger movements. It provides a decoupled position of the wrist and hand, which can contribute to a better embodiment in interaction and manipulation tasks. Additionally, the detection of the curvature of the fingers aims to improve the proprioceptive perception of the grasping/releasing gestures more consistent to visual feedback. The cyber-glove system is being developed for VR applications related to real estate promotion, where users have to go through divisions of the house and interact with objects and furniture. This work aims to assess if glove-based systems can contribute to a higher sense of immersion, embodiment and usability when compared to standard VR hand controller devices (typically button-based). Twenty-two participants tested the cyber-glove system against the HTC Vive controller in a 3D manipulation task, specifically the opening of a virtual door. Metric results showed that 83% of the users performed faster door pushes, and described shorter paths with their hands wearing the cyber-glove. Subjective results showed that all participants rated the cyber-glove based interactions as equally or more natural, and 90% of users experienced an equal or a significant increase in the sense of embodiment.

Tsiota, Anastasia, Xenakis, Dionysis, Passas, Nikos, Merakos, Lazaros.  2019.  Multi-Tier and Multi-Band Heterogeneous Wireless Networks with Black Hole Attacks. 2019 IEEE Global Communications Conference (GLOBECOM). :1—6.

Wireless networks are currently proliferated by multiple tiers and heterogeneous networking equipment that aims to support multifarious services ranging from distant monitoring and control of wireless sensors to immersive virtual reality services. The vast collection of heterogeneous network equipment with divergent radio capabilities (e.g. multi-GHz operation) is vulnerable to wireless network attacks, raising questions on the service availability and coverage performance of future multi-tier wireless networks. In this paper, we study the impact of black hole attacks on service coverage of multi-tier heterogeneous wireless networks and derive closed form expressions when network nodes are unable to identify and avoid black hole nodes. Assuming access to multiple bands, the derived expressions can be readily used to assess the performance gains following from the employment of different association policies and the impact of black hole attacks in multi-tier wireless networks.

Asiri, Somayah, Alzahrani, Ahmad A..  2019.  The Effectiveness of Mixed Reality Environment-Based Hand Gestures in Distributed Collaboration. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1—6.

Mixed reality (MR) technologies are widely used in distributed collaborative learning scenarios and have made learning and training more flexible and intuitive. However, there are many challenges in the use of MR due to the difficulty in creating a physical presence, particularly when a physical task is being performed collaboratively. We therefore developed a novel MR system to overcomes these limitations and enhance the distributed collaboration user experience. The primary objective of this paper is to explore the potential of a MR-based hand gestures system to enhance the conceptual architecture of MR in terms of both visualization and interaction in distributed collaboration. We propose a synchronous prototype named MRCollab as an immersive collaborative approach that allows two or more users to communicate with a peer based on the integration of several technologies such as video, audio, and hand gestures.

Halba, Khalid, Griffor, Edward, Kamongi, Patrick, Roth, Thomas.  2019.  Using Statistical Methods and Co-Simulation to Evaluate ADS-Equipped Vehicle Trustworthiness. 2019 Electric Vehicles International Conference (EV). :1–5.
With the increasing interest in studying Automated Driving System (ADS)-equipped vehicles through simulation, there is a growing need for comprehensive and agile middleware to provide novel Virtual Analysis (VA) functions of ADS-equipped vehicles towards enabling a reliable representation for pre-deployment test. The National Institute of Standards and Technology (NIST) Universal Cyber-physical systems Environment for Federation (UCEF) is such a VA environment. It provides Application Programming Interfaces (APIs) capable of ensuring synchronized interactions across multiple simulation platforms such as LabVIEW, OMNeT++, Ricardo IGNITE, and Internet of Things (IoT) platforms. UCEF can aid engineers and researchers in understanding the impact of different constraints associated with complex cyber-physical systems (CPS). In this work UCEF is used to produce a simulated Operational Domain Design (ODD) for ADS-equipped vehicles where control (drive cycle/speed pattern), sensing (obstacle detection, traffic signs and lights), and threats (unusual signals, hacked sources) are represented as UCEF federates to simulate a drive cycle and to feed it to vehicle dynamics simulators (e.g. OpenModelica or Ricardo IGNITE) through the Functional Mock-up Interface (FMI). In this way we can subject the vehicle to a wide range of scenarios, collect data on the resulting interactions, and analyze those interactions using metrics to understand trustworthiness impact. Trustworthiness is defined here as in the NIST Framework for Cyber-Physical Systems, and is comprised of system reliability, resiliency, safety, security, and privacy. The goal of this work is to provide an example of an experimental design strategy using Fractional Factorial Design for statistically assessing the most important safety metrics in ADS-equipped vehicles.
Xiao, Litian, Xiao, Nan, Li, Mengyuan, Liu, Zhanqing, Wang, Fei, Li, Yuliang, Hou, Kewen.  2019.  Intelligent Architecture and Hybrid Model of Ground and Launch System for Advanced Launch Site. 2019 IEEE Aerospace Conference. :1–12.
This paper proposes an intelligent functional architecture for an advanced launch site system that is composed of five parts: the intelligent technical area, the intelligent launching region, the intelligent flight and landing area, the intelligent command and control system, and the intelligent analysis assessment system. The five parts consist of the infrastructure, facilities, equipment, hardware and software and thus include the whole mission processes of ground and launch systems from flight articles' entry to launch. The architectural framework is designed for the intelligent elements of the parts. The framework is also defined as the interrelationship and the interface of the elements, including the launch vehicle and flight payloads. Based on the Internet of Things (IoT), the framework is integrated on four levels: the physical layer, the perception layer, the network layer, and the application layer. The physical layer includes the physical objects and actuators of the launch site. The perception layer consists of the sensors and data processing system. The network layer supplies the access gateways and backbone network. The application layer serves application systems through the middleware platform. The core of the intelligent system is the controller of the automatic control system crossing the four layers. This study builds the models of the IoT, cloud platform, middleware, integrated access gateway, and automatic control system for actual ground and launch systems. A formal approach describes and defines the architecture, models and autonomous control flows in the paper. The defined models describe the physical objects, intelligent elements, interface relations, status transformation functions, etc. The test operation and launch processes are connected with the intelligent system model. This study has been applied to an individual mission project and achieved good results. The architecture and the models of this study regulate the relationship between the elements of the intelligent system. The study lays a foundation for the architectural construction, the simulation and the verification of the intelligent systems at the launch site.
Talusan, Jose Paolo, Tiausas, Francis, Yasumoto, Keiichi, Wilbur, Michael, Pettet, Geoffrey, Dubey, Abhishek, Bhattacharjee, Shameek.  2019.  Smart Transportation Delay and Resiliency Testbed Based on Information Flow of Things Middleware. 2019 IEEE International Conference on Smart Computing (SMARTCOMP). :13–18.
Edge and Fog computing paradigms are used to process big data generated by the increasing number of IoT devices. These paradigms have enabled cities to become smarter in various aspects via real-time data-driven applications. While these have addressed some flaws of cloud computing some challenges remain particularly in terms of privacy and security. We create a testbed based on a distributed processing platform called the Information flow of Things (IFoT) middleware. We briefly describe a decentralized traffic speed query and routing service implemented on this framework testbed. We configure the testbed to test countermeasure systems that aim to address the security challenges faced by prior paradigms. Using this testbed, we investigate a novel decentralized anomaly detection approach for time-sensitive distributed smart transportation systems.
Alshinina, Remah, Elleithy, Khaled.  2018.  A highly accurate machine learning approach for developing wireless sensor network middleware. 2018 Wireless Telecommunications Symposium (WTS). :1–7.
Despite the popularity of wireless sensor networks (WSNs) in a wide range of applications, security problems associated with them have not been completely resolved. Middleware is generally introduced as an intermediate layer between WSNs and the end user to resolve some limitations, but most of the existing middleware is unable to protect data from malicious and unknown attacks during transmission. This paper introduces an intelligent middleware based on an unsupervised learning technique called Generative Adversarial Networks (GANs) algorithm. GANs contain two networks: a generator (G) network and a detector (D) network. The G creates fake data similar to the real samples and combines it with real data from the sensors to confuse the attacker. The D contains multi-layers that have the ability to differentiate between real and fake data. The output intended for this algorithm shows an actual interpretation of the data that is securely communicated through the WSN. The framework is implemented in Python with experiments performed using Keras. Results illustrate that the suggested algorithm not only improves the accuracy of the data but also enhances its security by protecting data from adversaries. Data transmission from the WSN to the end user then becomes much more secure and accurate compared to conventional techniques.
Kosmyna, Nataliya.  2019.  Brain-Computer Interfaces in the Wild: Lessons Learned from a Large-Scale Deployment. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). :4161–4168.
We present data from detailed observations of a “controlled in-the-wild” study of Brain-Computer Interface (BCI) system. During 10 days of demonstration at seven nonspecialized public events, 1563 people learned about the system in various social configurations. Observations of audience behavior revealed recurring behavioral patterns. From these observations a framework of interaction with BCI systems was deduced. It describes the phases of passing by an installation, viewing and reacting, passive and active interaction, group interactions, and follow-up actions. We also conducted semi-structured interviews with the people who interacted with the system. The interviews revealed the barriers and several directions for further research on BCIs. Our findings can be useful for designing the BCIs foxr everyday adoption by a wide range of people.
Sahay, Rashmi, Geethakumari, G., Mitra, Barsha, Thejas, V..  2018.  Exponential Smoothing based Approach for Detection of Blackhole Attacks in IoT. 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–6.
Low power and lossy network (LLN) comprising of constrained devices like sensors and RFIDs, is a major component in the Internet of Things (IoT) environment as these devices provide global connectivity to physical devices or “Things”. LLNs are tied to the Internet or any High Performance Computing environment via an adaptation layer called 6LoWPAN (IPv6 over Low power Personal Area Network). The routing protocol used by 6LoWPAN is RPL (IPv6 Routing Protocol over LLN). Like many other routing protocols, RPL is susceptible to blackhole attacks which cause topological isolation for a subset of nodes in the LLN. A malicious node instigating the blackhole attack drops received packets from nodes in its subtree which it is supposed to forward. Thus, the malicious node successfully isolates nodes in its subtree from the rest of the network. In this paper, we propose an algorithm based on the concept of exponential smoothing to detect the topological isolation of nodes due to blackhole attack. Exponential smoothing is a technique for smoothing time series data using the exponential window function and is used for short, medium and long term forecasting. In our proposed algorithm, exponential smoothing is used to estimate the next arrival time of packets at the sink node from every other node in the LLN. Using this estimation, the algorithm is designed to identify the malicious nodes instigating blackhole attack in real time.
Kenarangi, Farid, Partin-Vaisband, Inna.  2019.  Security Network On-Chip for Mitigating Side-Channel Attacks. 2019 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP). :1–6.
Hardware security is a critical concern in design and fabrication of integrated circuits (ICs). Contemporary hardware threats comprise tens of advance invasive and non-invasive attacks for compromising security of modern ICs. Numerous attack-specific countermeasures against the individual threats have been proposed, trading power, area, speed, and design complexity of a system for security. These typical overheads combined with strict performance requirements in advanced technology nodes and high complexity of modern ICs often make the codesign of multiple countermeasures impractical. In this paper, on-chip distribution networks are exploited for detecting those hardware security threats that require non-invasive, yet physical interaction with an operating device-under-attack (e.g., measuring equipment for collecting sensitive information in side-channel attacks). With the proposed approach, the effect of the malicious physical interference with the device-under-attack is captured in the form of on-chip voltage variations and utilized for detecting malicious activity in the compromised device. A machine learning (ML) security IC is trained to predict system security based on sensed variations of signals within on-chip distribution networks. The trained ML ICs are distributed on-chip, yielding a robust and high-confidence security network on-chip. To halt an active attack, a variety of desired counteractions can be executed in a cost-effective manner upon the attack detection. The applicability and effectiveness of these security networks is demonstrated in this paper with respect to power, timing, and electromagnetic analysis attacks.
Su, Yu, Wu, Jing, Long, Chengnian, Li, Shaoyuan.  2018.  Event-triggered Control for Networked Control Systems Under Replay Attacks. 2018 Chinese Automation Congress (CAC). :2636—2641.
With wide application of networked control systems(N CSs), NCSs security have encountered severe challenges. In this paper, we propose a robust event-triggered controller design method under replay attacks, and the control signal on the plant is updated only when the event-triggering condition is satisfied. We develop a general random replay attack model rather than predetermined specific patterns for the occurrences of replay attacks, which allows to obtain random states to replay. We show that the proposed event-triggered control (ETC) scheme, if well designed, can tolerate some consecutive replay attacks, without affecting the corresponding closed-loop system stability and performance. A numerical examples is finally given to illustrate the effectiveness of our method.