Visible to the public Biblio

Found 393 results

Filters: Keyword is Sensors  [Clear All Filters]
Chandwani, Ashwin, Dey, Saikat, Mallik, Ayan.  2022.  Parameter-Variation-Tolerant Robust Current Sensorless Control of a Single-Phase Boost PFC. IEEE Journal of Emerging and Selected Topics in Industrial Electronics. 3:933—945.

With the objective to eliminate the input current sensor in a totem-pole boost power factor corrector (PFC) for its low-cost design, a novel discretized sampling-based robust control scheme is proposed in this work. The proposed control methodology proves to be beneficial due to its ease of implementation and its ability to support high-frequency operation, while being able to eliminate one sensor and, thus, enhancing reliability and cost-effectiveness. In addition, detailed closed-loop stability analysis is carried out for the controller in discrete domain to ascertain brisk dynamic operation when subjected to sudden load fluctuations. To establish the robustness of the proposed control scheme, a detailed sensitivity analysis of the closed-loop performance metrics with respect to undesired changes and inherent uncertainty in system parameters is presented in this article. A comparison with the state-of-the-art (SOA) methods is provided, and conclusive results in terms of better dynamic performance are also established. To verify and elaborate on the specifics of the proposed scheme, a detailed simulation study is conducted, and the results show 25% reduction in response time as compared to SOA approaches. A 500-W boost PFC prototype is developed and tested with the proposed control scheme to evaluate and benchmark the system steady-state and dynamic performance. A total harmonic distortion of 1.68% is obtained at the rated load with a resultant power factor of 0.998 (lag), which proves the effectiveness and superiority of the proposed control scheme.

Conference Name: IEEE Journal of Emerging and Selected Topics in Industrial Electronics

Andersen, Erik, Chiarandini, Marco, Hassani, Marwan, Jänicke, Stefan, Tampakis, Panagiotis, Zimek, Arthur.  2022.  Evaluation of Probability Distribution Distance Metrics in Traffic Flow Outlier Detection. 2022 23rd IEEE International Conference on Mobile Data Management (MDM). :64—69.

Recent approaches have proven the effectiveness of local outlier factor-based outlier detection when applied over traffic flow probability distributions. However, these approaches used distance metrics based on the Bhattacharyya coefficient when calculating probability distribution similarity. Consequently, the limited expressiveness of the Bhattacharyya coefficient restricted the accuracy of the methods. The crucial deficiency of the Bhattacharyya distance metric is its inability to compare distributions with non-overlapping sample spaces over the domain of natural numbers. Traffic flow intensity varies greatly, which results in numerous non-overlapping sample spaces, rendering metrics based on the Bhattacharyya coefficient inappropriate. In this work, we address this issue by exploring alternative distance metrics and showing their applicability in a massive real-life traffic flow data set from 26 vital intersections in The Hague. The results on these data collected from 272 sensors for more than two years show various advantages of the Earth Mover's distance both in effectiveness and efficiency.

Mode, Gautam Raj, Calyam, Prasad, Hoque, Khaza Anuarul.  2020.  Impact of False Data Injection Attacks on Deep Learning Enabled Predictive Analytics. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1–7.
Industry 4.0 is the latest industrial revolution primarily merging automation with advanced manufacturing to reduce direct human effort and resources. Predictive maintenance (PdM) is an industry 4.0 solution, which facilitates predicting faults in a component or a system powered by state-of-the- art machine learning (ML) algorithms (especially deep learning algorithms) and the Internet-of-Things (IoT) sensors. However, IoT sensors and deep learning (DL) algorithms, both are known for their vulnerabilities to cyber-attacks. In the context of PdM systems, such attacks can have catastrophic consequences as they are hard to detect due to the nature of the attack. To date, the majority of the published literature focuses on the accuracy of DL enabled PdM systems and often ignores the effect of such attacks. In this paper, we demonstrate the effect of IoT sensor attacks (in the form of false data injection attack) on a PdM system. At first, we use three state-of-the-art DL algorithms, specifically, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Convolutional Neural Network (CNN) for predicting the Remaining Useful Life (RUL) of a turbofan engine using NASA's C-MAPSS dataset. The obtained results show that the GRU-based PdM model outperforms some of the recent literature on RUL prediction using the C-MAPSS dataset. Afterward, we model and apply two different types of false data injection attacks (FDIA), specifically, continuous and interim FDIAs on turbofan engine sensor data and evaluate their impact on CNN, LSTM, and GRU-based PdM systems. The obtained results demonstrate that FDI attacks on even a few IoT sensors can strongly defect the RUL prediction in all cases. However, the GRU-based PdM model performs better in terms of accuracy and resiliency to FDIA. Lastly, we perform a study on the GRU-based PdM model using four different GRU networks with different sequence lengths. Our experiments reveal an interesting relationship between the accuracy, resiliency and sequence length for the GRU-based PdM models.
Jain, Arpit, Jat, Dharm Singh.  2020.  An Edge Computing Paradigm for Time-Sensitive Applications. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :798—803.
Edge computing (EC) is a new developing computing technology where data are collected, and analysed nearer to the edge or sources of the data. Cloud to the edge, intelligent applications and analytics are part of the IoT applications and technology. Edge computing technology aims to bring cloud computing features near to edge devices. For time-sensitive applications in cloud computing, architecture massive volume of data is generated at the edge and stored and analysed in the cloud. Cloud infrastructure is a composition of data centres and large-scale networks, which provides reliable services to users. Traditional cloud computing is inefficient due to delay in response, network delay and congestion as simultaneous transactions to the cloud, which is a centralised system. This paper presents a literature review on cloud-based edge computing technologies for delay-sensitive applications and suggests a conceptual model of edge computing architecture. Further, the paper also presents the implementation of QoS support edge computing paradigm in Python for further research to improve the latency and throughput for time-sensitive applications.
Al-Haija, Qasem Abu.  2021.  On the Security of Cyber-Physical Systems Against Stochastic Cyber-Attacks Models. 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1—6.
Cyber Physical Systems (CPS) are widely deployed and employed in many recent real applications such as automobiles with sensing technology for crashes to protect passengers, automated homes with various smart appliances and control units, and medical instruments with sensing capability of glucose levels in blood to keep track of normal body function. In spite of their significance, CPS infrastructures are vulnerable to cyberattacks due to the limitations in the computing, processing, memory, power, and transmission capabilities for their endpoint/edge appliances. In this paper, we consider a short systematic investigation for the models and techniques of cyberattacks and threats rate against Cyber Physical Systems with multiple subsystems and redundant elements such as, network of computing devices or storage modules. The cyberattacks are assumed to be externally launched against the Cyber Physical System during a prescribed operational time unit following stochastic distribution models such as Poisson probability distribution, negative-binomial probability distribution and other that have been extensively employed in the literature and proved their efficiency in modeling system attacks and threats.
Yang, Chen, Jia, Zhen, Li, Shundong.  2021.  Privacy-Preserving Proximity Detection Framework for Location-Based Services. 2021 International Conference on Networking and Network Applications (NaNA). :99–106.
With the popularization of mobile communication and sensing equipment, as well as the rapid development of location-aware technology and wireless communication technology, LBSs(Location-based services) bring convenience to people’s lives and enable people to arrange activities more efficiently and reasonably. It can provide more flexible LBS proximity detection query, which has attracted widespread attention in recent years. However, the development of proximity detection query still faces many severe challenges including query information privacy. For example, when users want to ensure their location privacy and data security, they can get more secure location-based services. In this article, we propose an efficient and privacy-protecting proximity detection framework based on location services: PD(Proximity Detection). Through PD, users can query the range of arbitrary polygons and obtain accurate LBS results. Specifically, based on homomorphic encryption technology, an efficient PRQ(polygon range query) algorithm is constructed. With the help of PRQ, PD, you can obtain accurate polygon range query results through the encryption request and the services provided by the LAS(LBS Agent Server) and the CS(Cloud Server). In addition, the query privacy of the queryer and the information of the data provider are protected. The correctness proof and performance analysis show that the scheme is safe and feasible. Therefore, our scheme is suitable for many practical applications.
Hutto, Kevin, Mooney, Vincent J..  2021.  Sensing with Random Encoding for Enhanced Security in Embedded Systems. 2021 10th Mediterranean Conference on Embedded Computing (MECO). :1–6.
Embedded systems in physically insecure environments are subject to additional security risk via capture by an adversary. A captured microchip device can be reverse engineered to recover internal buffer data that would otherwise be inaccessible through standard IO mechanisms. We consider an adversary who has sufficient ability to gain all internal bits and logic from a device at the time of capture as an unsolved threat. In this paper we present a novel sensing architecture that enhances embedded system security by randomly encoding sensed values. We randomly encode data at the time of sensing to minimize the amount of plaintext data present on a device in buffer memory. We encode using techniques that are unintelligible to an adversary even with full internal bit knowledge. The encoding is decipherable by a trusted home server, and we have provided an architecture to perform this decoding. Our experimental results show the proposed architecture meets timing requirements needed to perform communications with a satellite utilizing short-burst data, such as in remote sensing telemetry and tracking applications.
Alsabbagh, Wael, Langendorfer, Peter.  2021.  A Fully-Blind False Data Injection on PROFINET I/O Systems. 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE). :1–8.
This paper presents a fully blind false data injection (FDI) attack against an industrial field-bus i.e. PROFINET that is widely used in Siemens distributed Input/Output (I/O) systems. In contrast to the existing academic efforts in the research community which assume that an attacker is already familiar with the target system, and has a full knowledge of what is being transferred from the sensors or to the actuators in the remote I/O module, our attack overcomes these strong assumptions successfully. For a real scenario, we first sniff and capture real time data packets (PNIO-RT) that are exchanged between the IO-Controller and the IO-Device. Based on the collected data, we create an I/O database that is utilized to replace the correct data with false one automatically and online. Our full attack-chain is implemented on a real industrial setting based on Siemens devices, and tested for two scenarios. In the first one, we manipulate the data that represents the actual sensor readings sent from the IO-Device to the IO-Controller, whereas in the second scenario we aim at manipulating the data that represents the actuator values sent from the IO-Controller to the IO-Device. Our results show that compromising PROFINET I/O systems in the both tested scenarios is feasible, and the physical process to be controlled is affected. Eventually we suggest some possible mitigation solutions to secure our systems from such threats.
Pennekamp, Jan, Alder, Fritz, Matzutt, Roman, Mühlberg, Jan Tobias, Piessens, Frank, Wehrle, Klaus.  2020.  Secure End-to-End Sensing in Supply Chains. 2020 IEEE Conference on Communications and Network Security (CNS). :1—6.
Trust along digitalized supply chains is challenged by the aspect that monitoring equipment may not be trustworthy or unreliable as respective measurements originate from potentially untrusted parties. To allow for dynamic relationships along supply chains, we propose a blockchain-backed supply chain monitoring architecture relying on trusted hardware. Our design provides a notion of secure end-to-end sensing of interactions even when originating from untrusted surroundings. Due to attested checkpointing, we can identify misinformation early on and reliably pinpoint the origin. A blockchain enables long-term verifiability for all (now trustworthy) IoT data within our system even if issues are detected only after the fact. Our feasibility study and cost analysis further show that our design is indeed deployable in and applicable to today’s supply chain settings.
Sun, Zice, Wang, Yingjie, Tong, Xiangrong, Pan, Qingxian, Liu, Wenyi, Zhang, Jiqiu.  2021.  Service Quality Loss-aware Privacy Protection Mechanism in Edge-Cloud IoTs. 2021 13th International Conference on Advanced Computational Intelligence (ICACI). :207—214.
With the continuous development of edge computing, the application scope of mobile crowdsourcing (MCS) is constantly increasing. The distributed nature of edge computing can transmit data at the edge of processing to meet the needs of low latency. The trustworthiness of the third-party platform will affect the level of privacy protection, because managers of the platform may disclose the information of workers. Anonymous servers also belong to third-party platforms. For unreal third-party platforms, this paper recommends that workers first use the localized differential privacy mechanism to interfere with the real location information, and then upload it to an anonymous server to request services, called the localized differential anonymous privacy protection mechanism (LDNP). The two privacy protection mechanisms further enhance privacy protection, but exacerbate the loss of service quality. Therefore, this paper proposes to give corresponding compensation based on the authenticity of the location information uploaded by workers, so as to encourage more workers to upload real location information. Through comparative experiments on real data, the LDNP algorithm not only protects the location privacy of workers, but also maintains the availability of data. The simulation experiment verifies the effectiveness of the incentive mechanism.
Qian, Wenfei, Wang, Pingjian, Lei, Lingguang, Chen, Tianyu, Zhang, Bikuan.  2021.  A Secure And High Concurrency SM2 Cooperative Signature Algorithm For Mobile Network. 2021 17th International Conference on Mobility, Sensing and Networking (MSN). :818—824.
Mobile devices have been widely used to deploy security-sensitive applications such as mobile payments, mobile offices etc. SM2 digital signature technology is critical in these applications to provide the protection including identity authentication, data integrity, action non-repudiation. Since mobile devices are prone to being stolen or lost, several server-aided SM2 cooperative signature schemes have been proposed for the mobile scenario. However, existing solutions could not well fit the high-concurrency scenario which needs lightweight computation and communication complexity, especially for the server sides. In this paper, we propose a SM2 cooperative signature algorithm (SM2-CSA) for the high-concurrency scenario, which involves only one-time client-server interaction and one elliptic curve addition operation on the server side in the signing procedure. Theoretical analysis and practical tests shows that SM2-CSA can provide better computation and communication efficiency compared with existing schemes without compromising the security.
Liu, Cong, Liu, Yunqing, Li, Qi, Wei, Zikang.  2021.  Radar Target MTD 2D-CFAR Algorithm Based on Compressive Detection. 2021 IEEE International Conference on Mechatronics and Automation (ICMA). :83—88.
In order to solve the problem of large data volume brought by the traditional Nyquist sampling theorem in radar signal detection, a compressive detection (CD) model based on compressed sensing (CS) theory is proposed by analyzing the sparsity of the radar target in the range domain. The lower sampling rate completes the compressive sampling of the radar signal on the range field. On this basis, the two-dimensional distribution of the Doppler unit is established by moving target detention moving target detention (MTD), and the detection of the target is achieved with the two-dimensional constant false alarm rate (2D-CFAR) detection algorithm. The simulation experiment results prove that the algorithm can effectively detect the target without the need for reconstruction signals, and has good detection performance.
Ooi, Boon-Yaik, Liew, Soung-Yue, Beh, Woan-Lin, Shirmohammadi, Shervin.  2021.  Inter-Batch Gap Filling Using Compressive Sampling for Low-Cost IoT Vibration Sensors. 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). :1—6.
To measure machinery vibration, a sensor system consisting of a 3-axis accelerometer, ADXL345, attached to a self-contained system-on-a-chip with integrated Wi-Fi capabilities, ESP8266, is a low-cost solution. In this work, we first show that in such a system, the widely used direct-read-and-send method which samples and sends individually acquired vibration data points to the server is not effective, especially using Wi-Fi connection. We show that the micro delays in each individual data transmission will limit the sensor sampling rate and will also affect the time of the acquired data points not evenly spaced. Then, we propose that vibration should be sampled in batches before sending the acquired data out from the sensor node. The vibration for each batch should be acquired continuously without any form of interruption in between the sampling process to ensure the data points are evenly spaced. To fill the data gaps between the batches, we propose the use of compressive sampling technique. Our experimental results show that the maximum sampling rate of the direct-read-and-send method is 350Hz with a standard uncertainty of 12.4, and the method loses more information compared to our proposed solution that can measure the vibration wirelessly and continuously up to 633Hz. The gaps filled using compressive sampling can achieve an accuracy in terms of mean absolute error (MAE) of up to 0.06 with a standard uncertainty of 0.002, making the low-cost vibration sensor node a cost-effective solution.
Killedar, Vinayak, Pokala, Praveen Kumar, Sekhar Seelamantula, Chandra.  2021.  Sparsity Driven Latent Space Sampling for Generative Prior Based Compressive Sensing. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2895—2899.
We address the problem of recovering signals from compressed measurements based on generative priors. Recently, generative-model based compressive sensing (GMCS) methods have shown superior performance over traditional compressive sensing (CS) techniques in recovering signals from fewer measurements. However, it is possible to further improve the performance of GMCS by introducing controlled sparsity in the latent-space. We propose a proximal meta-learning (PML) algorithm to enforce sparsity in the latent-space while training the generator. Enforcing sparsity naturally leads to a union-of-submanifolds model in the solution space. The overall framework is named as sparsity driven latent space sampling (SDLSS). In addition, we derive the sample complexity bounds for the proposed model. Furthermore, we demonstrate the efficacy of the proposed framework over the state-of-the-art techniques with application to CS on standard datasets such as MNIST and CIFAR-10. In particular, we evaluate the performance of the proposed method as a function of the number of measurements and sparsity factor in the latent space using standard objective measures. Our findings show that the sparsity driven latent space sampling approach improves the accuracy and aids in faster recovery of the signal in GMCS.
Gao, Hongxia, Yu, Zhenhua, Cong, Xuya, Wang, Jing.  2021.  Trustworthiness Evaluation of Smart Grids Using GSPN. 2021 IEEE International Conference on Networking, Sensing and Control (ICNSC). 1:1—7.
Smart grids are one of the most important applications of cyber-physical systems. They intelligently transmit energy to customers by information technology, and have replaced the traditional power grid and are widely used. However, smart grids are vulnerable to cyber-attacks. Once attacked, it will cause great losses and lose the trust of customers. Therefore, it is important to evaluate the trustworthiness of smart grids. In order to evaluate the trustworthiness of smart grids, this paper uses a generalized stochastic Petri net (GSPN) to model smart grids. Considering various security threats that smart grids may face, we propose a general GSPN model for smart grids, which evaluates trustworthiness from three metrics of reliability, availability, and integrity by analyzing steady-state and transient probabilities. Finally, we obtain the value of system trustworthiness and simulation results show that the feasibility and effectiveness of our model for smart grids trustworthiness.
Ruderman, Michael.  2021.  Robust output feedback control of non-collocated low-damped oscillating load. 2021 29th Mediterranean Conference on Control and Automation (MED). :639–644.
For systems with order of dynamics higher than two and oscillating loads with low damping, a non-collocation of the sensing and control can deteriorate robustness of the feedback and, in worst case, even bring it to instability. Furthermore, for a contactless sensing of the oscillating mechanical load, like in the system under investigation, the control structure is often restricted to the single proportional feedback only. This paper proposes a novel robust feedback control scheme for a low-damped fourth-order system using solely the measured load displacement. For reference tracking, the loop shaping design relies on a band reject filter, while the plant uncertainties are used as robustness measure for determining the feedback gain. Since prime uncertainties are due to the stiffness of elastic link, correspondingly connecting spring, and due to the gain of actuator transducer, the loop sensitivity function with additive plant variation is used for robustness measure. In order to deal with unknown disturbances, which are inherently exciting the load oscillations independently of the loop shaping performance, an output delay-based compensator is proposed as a second control-degree-of-freedom. That one requires an estimate of the load oscillation frequency only and does not affect the shaped open-loop behavior, correspondingly sensitivity function. An extensive numerical setup of the modeled system, a two-mass oscillator with contactless sensing of the load under gravity and low damping of the connecting spring, is used for the control evaluation and assessment of its robustness.
Obata, Sho, Kobayashi, Koichi, Yamashita, Yuh.  2021.  Sensor Scheduling-Based Detection of False Data Injection Attacks in Power System State Estimation. 2021 IEEE International Conference on Consumer Electronics (ICCE). :1—4.
In state estimation of steady-state power networks, a cyber attack that cannot be detected from the residual (i.e., the estimation error) is called a false data injection attack. In this paper, to enforce security of power networks, we propose a method of detecting a false data injection attack. In the proposed method, a false data injection attack is detected by randomly choosing sensors used in state estimation. The effectiveness of the proposed method is presented by two numerical examples including the IEEE 14-bus system.
He, Xufeng, Li, Xi, Ji, Hong, Zhang, Heli.  2021.  Resource Allocation for Secrecy Rate Optimization in UAV-assisted Cognitive Radio Network. 2021 IEEE Wireless Communications and Networking Conference (WCNC). :1—6.
Cognitive radio (CR) as a key technology of solving the problem of low spectrum utilization has attracted wide attention in recent years. However, due to the open nature of the radio, the communication links can be eavesdropped by illegal user, resulting to severe security threat. Unmanned aerial vehicle (UAV) equipped with signal sensing and data transmission module, can access to the unoccupied channel to improve network security performance by transmitting artificial noise (AN) in CR networks. In this paper, we propose a resource allocation scheme for UAV-assisted overlay CR network. Based on the result of spectrum sensing, the UAV decides to play the role of jammer or secondary transmitter. The power splitting ratio for transmitting secondary signal and AN is introduced to allocate the UAV's transmission power. Particularly, we jointly optimize the spectrum sensing time, the power splitting ratio and the hovering position of the UAV to maximize the total secrecy rate of primary and secondary users. The optimization problem is highly intractable, and we adopt an adaptive inertia coefficient particle swarm optimization (A-PSO) algorithm to solve this problem. Simulation results show that the proposed scheme can significantly improve the total secrecy rate in CR network.
Clement, J. Christopher, Sriharipriya, K. C..  2021.  Robust Spectrum Sensing Scheme against Malicious Users Attack in a Cognitive Radio Network. 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1—4.
In this paper, we introduce cooperative spectrum sensing (CSS) scheme for detection of primary user (PU) in a cognitive radio network. Our scheme is based on a separating-hyperplane that discriminates between ellipsoids corresponding to two hypotheses. Additionally, we present a method to eliminate malicious cognitive radio users (MCRUs) that send false sensing data to the fusion center (FC) and degrade the system's detection performance. Simulation results verify the outperformance of the proposed method for the elimination of MCRUs and detection of PU.
Fang, Shiwei, Huang, Jin, Samplawski, Colin, Ganesan, Deepak, Marlin, Benjamin, Abdelzaher, Tarek, Wigness, Maggie B..  2021.  Optimizing Intelligent Edge-clouds with Partitioning, Compression and Speculative Inference. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :892–896.
Internet of Battlefield Things (IoBTs) are well positioned to take advantage of recent technology trends that have led to the development of low-power neural accelerators and low-cost high-performance sensors. However, a key challenge that needs to be dealt with is that despite all the advancements, edge devices remain resource-constrained, thus prohibiting complex deep neural networks from deploying and deriving actionable insights from various sensors. Furthermore, deploying sophisticated sensors in a distributed manner to improve decision-making also poses an extra challenge of coordinating and exchanging data between the nodes and server. We propose an architecture that abstracts away these thorny deployment considerations from an end-user (such as a commander or warfighter). Our architecture can automatically compile and deploy the inference model into a set of distributed nodes and server while taking into consideration of the resource availability, variation, and uncertainties.
Jawad, Sidra, Munsif, Hadeera, Azam, Arsal, Ilahi, Arham Hasib, Zafar, Saima.  2021.  Internet of Things-based Vehicle Tracking and Monitoring System. 2021 15th International Conference on Open Source Systems and Technologies (ICOSST). :1–5.
Vehicles play an integral part in the life of a human being by facilitating in everyday tasks. The major concern that arises with this fact is that the rate of vehicle thefts have increased exponentially and retrieving them becomes almost impossible as the responsible party completely alters the stolen vehicles, leaving them untraceable. Ultimately, tracking and monitoring of vehicles using on-vehicle sensors is a promising and an efficient solution. The Internet of Things (IoT) is expected to play a vital role in revolutionizing the Security and Safety industry through a system of sensor networks by periodically sending the data from the sensors to the cloud for storage, from where it can be accessed to view or take any necessary actions (if required). The main contributions of this paper are the implementation and results of the prototype of a vehicle tracking and monitoring system. The system comprises of an Arduino UNO board connected to the Global Positioning System (GPS) module, Neo-6M, which senses the exact location of the vehicle in the form of latitude and longitude, and the ESP8266 Wi-Fi module, which sends the data to the Application Programming Interface (API) Cloud service, ThingSpeak, for storage and analyzing. An Android based mobile application is developed that utilizes the stored data from the Cloud and presents the user with the findings. Results show that the prototype is not only simple and cost effective, but also efficient and can be readily used by everyone from all walks of life to protect their vehicles.
Silva, J. Sá, Saldanha, Ruben, Pereira, Vasco, Raposo, Duarte, Boavida, Fernando, Rodrigues, André, Abreu, Madalena.  2019.  WeDoCare: A System for Vulnerable Social Groups. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :1053–1059.
One of the biggest problems in the current society is people's safety. Safety measures and mechanisms are especially important in the case of vulnerable social groups, such as migrants, homeless, and victims of domestic and/or sexual violence. In order to cope with this problem, we witness an increasing number of personal alarm systems in the market, most of them based on panic buttons. Nevertheless, none of them has got widespread acceptance mainly because of limited Human-Computer Interaction. In the context of this work, we developed an innovative mobile application that recognizes an attack through speech and gesture recognition. This paper describes such a system and presents its features, some of them based on the emerging concept of Human-in-the-Loop Cyber-physical Systems and new concepts of Human-Computer Interaction.
Fang, Yuan, Li, Lixiang, Li, Yixiao, Peng, Haipeng.  2021.  High Efficient and Secure Chaos-Based Compressed Spectrum Sensing in Cognitive Radio IoT Network. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). :670–676.
In recent years, with the rapid update of wireless communication technologies such as 5G and the Internet of Things, as well as the explosive growth of wireless intelligent devices, people's demand for radio spectrum resources is increasing, which leads spectrum scarcity is becoming more serious. To address the scarcity of spectrum, the Internet of Things based on cognitive radio (CR-IoT) has become an effective technique to enable IoT devices to reuse the spectrum that has been fully utilized. The frequency band information is transmitted through wireless communication in the CR-IoT network, so the node is easily to be eavesdropped or tampered with by attackers in the process of transmitting data, which leads to information leakage and wrong perception results. To deal with the security problem of channel data transmission, this paper proposes a chaotic compressed spectrum sensing algorithm. In this algorithm, the chaotic parameter package is utilized to generate the measurement matrix, which makes good use of the sensitivity of the initial value of chaotic system to improve the transmission security. And the introduction of the semi-tensor theory significantly reduces the dimension of the matrix that the secondary user needs to store. In addition, the semi-tensor compressed sensing is used in the fusion center for parallel reconstruction process, which effectively reduces the sensing time delay. The simulation results show that the chaotic compressed spectrum sensing algorithm can achieve faster, high-quality, and low-energy channel energy transmission.
Abdul Manaf, Marlina Bt, Bt Sulaiman, Suziah, Bt Awang Rambli, Dayang Rohaya.  2021.  Immersive and Non-Immersive VR Display using Nature Theme as Therapy in Reducing Work Stress. 2021 International Conference on Computer Information Sciences (ICCOINS). :276–281.
Stress-related disorders are increasing because of work load, forces in teamwork, surroundings pressures and health related conditions. Thus, to avoid people living under heavy stress and develop more severe stress-related disorders, different internet and applications of stress management interventions are offered. Mobile applications with self-assessed health, burnout-scores and well-being are commonly used as outcome measures. Few studies have used sickleave to compare effects of stress interventions. A new approach is to use nature and garden in a multimodal stress management context. This study aimed to explore the effects of immersive and non-immersive games application by using nature theme virtual stress therapy in reducing stress level. Two weeks’ of experiments had involved 18 participants. Nine (9) of them were invited to join the first experiment which focused on immersive virtual reality (VR) experience. Their Blood Volume Pulse with Heart Rate (BVP+HR) and Skin Conductance (SC) were recorded using BioGraph Infiniti Biofeedback System that comes with three (3) sensors attached to the fingers. The second experiment were joined by another nine (9) participants. This experiment was testing on non-immersive desktop control experience. The same protocol measurements were taken which are BVP+HR and SC. Participants were given the experience to feel and get carried into the virtual nature as a therapy so that they will reduce stress. The result of this study points to whether immersive or non-immersive VR display using nature theme virtual therapy would reduce individuals stress level. After conducted series of experiments, results showed that both immersive and non-immersive VR display reduced stress level. However, participants were satisfied of using the immersive version as it provided a 360 degree of viewing, immersed experiences and feeling engaged. Thus, this showed and proved that applications developed with nature theme affect successfully reduce stress level no matter it is put in immersive or non-immersive display.
Chen, Jian, Shu, Tao.  2021.  Spoofing Detection for Indoor Visible Light Systems with Redundant Orthogonal Encoding. ICC 2021 - IEEE International Conference on Communications. :1–6.
As more and more visible light communication (VLC) and visible light sensing (VLS) systems are mounted on today’s light fixtures, how to guarantee the authenticity of the visible light (VL) signal in these systems becomes an urgent problem. This is because almost all of today’s light fixtures are unprotected and can be openly accessed by almost anyone, and hence are subject to tampering and substitution attacks. In this paper, by exploiting the intrinsic linear superposition characteristics of visible light, we propose VL-Watchdog, a scalable and always-on signal-level spoofing detection framework that is applicable to both VLC and VLS systems. VL-Watchdog is based on redundant orthogonal encoding of the transmitted visible light, and can be implemented as a small hardware add-on to an existing VL system. The effectiveness of the proposed framework was validated through extensive numerical evaluations against a comprehensive set of factors.