Visible to the public Biblio

Found 308 results

Filters: Keyword is Sensors  [Clear All Filters]
Wang, Lei, Manchester, Ian R., Trumpf, Jochen, Shi, Guodong.  2020.  Initial-Value Privacy of Linear Dynamical Systems. 2020 59th IEEE Conference on Decision and Control (CDC). :3108—3113.
This paper studies initial-value privacy problems of linear dynamical systems. We consider a standard linear time-invariant system with random process and measurement noises. For such a system, eavesdroppers having access to system output trajectories may infer the system initial states, leading to initial-value privacy risks. When a finite number of output trajectories are eavesdropped, we consider a requirement that any guess about the initial values can be plausibly denied. When an infinite number of output trajectories are eavesdropped, we consider a requirement that the initial values should not be uniquely recoverable. In view of these two privacy requirements, we define differential initial-value privacy and intrinsic initial-value privacy, respectively, for the system as metrics of privacy risks. First of all, we prove that the intrinsic initial-value privacy is equivalent to unobservability, while the differential initial-value privacy can be achieved for a privacy budget depending on an extended observability matrix of the system and the covariance of the noises. Next, the inherent network nature of the considered linear system is explored, where each individual state corresponds to a node and the state and output matrices induce interaction and sensing graphs, leading to a network system. Under this network system perspective, we allow the initial states at some nodes to be public, and investigate the resulting intrinsic initial- value privacy of each individual node. We establish necessary and sufficient conditions for such individual node initial-value privacy, and also prove that the intrinsic initial-value privacy of individual nodes is generically determined by the network structure.
Chandrasekaran, Selvamani, Ramachandran, K.I., Adarsh, S., Puranik, Ashish Kumar.  2020.  Avoidance of Replay attack in CAN protocol using Authenticated Encryption. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.
Controller Area Network is the prominent communication protocol in automotive systems. Its salient features of arbitration, message filtering, error detection, data consistency and fault confinement provide robust and reliable architecture. Despite of this, it lacks security features and is vulnerable to many attacks. One of the common attacks over the CAN communication is the replay attack. It can happen even after the implementation of encryption or authentication. This paper proposes a methodology of supressing the replay attacks by implementing authenticated encryption embedded with timestamp and pre-shared initialisation vector as a primary key. The major advantage of this system is its flexibility and configurability nature where in each layer can be chosen with the help of cryptographic algorithms to up to the entire size of the keys.
Saigopal, Venkata Venugopal Rao Gudlur, Raju, Valliappan.  2020.  IIoT Digital Forensics and Major Security issues. 2020 International Conference on Computational Intelligence (ICCI). :233–236.
the significant area in the growing field of internet security and IIoT connectivity is the way that forensic investigators will conduct investigation process with devices connected to industrial sensors. This part of process is known as IIoT digital forensics and investigation. The main research on IIoT digital forensic investigation has been done, but the current investigation process has revealed and identified major security issues need to be addressed. In parallel, major security issues faced by traditional forensic investigators dealing with IIoT connectivity and data security. This paper address the issues of the challenges and major security issues identified by review conducted in the prospective and emphasizes on the aforementioned security and challenges.
Segovia, Mariana, Rubio-Hernan, Jose, Cavalli, Ana R., Garcia-Alfaro, Joaquin.  2020.  Cyber-Resilience Evaluation of Cyber-Physical Systems. 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). :1—8.
Cyber-Physical Systems (CPS) use computational resources to control physical processes and provide critical services. For this reason, an attack in these systems may have dangerous consequences in the physical world. Hence, cyber- resilience is a fundamental property to ensure the safety of the people, the environment and the controlled physical processes. In this paper, we present metrics to quantify the cyber-resilience level based on the design, structure, stability, and performance under the attack of a given CPS. The metrics provide reference points to evaluate whether the system is better prepared or not to face the adversaries. This way, it is possible to quantify the ability to recover from an adversary using its mathematical model based on actuators saturation. Finally, we validate our approach using a numeric simulation on the Tennessee Eastman control challenge problem.
Dodson, Michael, Beresford, Alastair R., Richardson, Alexander, Clarke, Jessica, Watson, Robert N. M..  2020.  CHERI Macaroons: Efficient, host-based access control for cyber-physical systems. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :688–693.
Cyber-Physical Systems (CPS) often rely on network boundary defence as a primary means of access control; therefore, the compromise of one device threatens the security of all devices within the boundary. Resource and real-time constraints, tight hardware/software coupling, and decades-long service lifetimes complicate efforts for more robust, host-based access control mechanisms. Distributed capability systems provide opportunities for restoring access control to resource-owning devices; however, such a protection model requires a capability-based architecture for CPS devices as well as task compartmentalisation to be effective.This paper demonstrates hardware enforcement of network bearer tokens using an efficient translation between CHERI (Capability Hardware Enhanced RISC Instructions) architectural capabilities and Macaroon network tokens. While this method appears to generalise to any network-based access control problem, we specifically consider CPS, as our method is well-suited for controlling resources in the physical domain. We demonstrate the method in a distributed robotics application and in a hierarchical industrial control application, and discuss our plans to evaluate and extend the method.
[Anonymous].  2020.  B-DCT based Watermarking Algorithm for Patient Data Protection in IoMT. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :1—4.
Internet of Medical Things (IoMT) is the connection between medical devices and information systems to share, collect, process, store, and integrate patient and health data using network technologies. X-Rays, MR, MRI, and CT scans are the most frequently used patient medical image data. These images usually include patient information in one of the corners of the image. In this research work, to protect patient information, a new robust and secure watermarking algorithm developed for a selected region of interest (ROI) of medical images. First ROI selected from the medical image, then selected part divided equal blocks and applied Discrete Cosine Transformation (DCT) algorithm to embed a watermark into the selected coefficients. Several geometric and removal attacks are applied to the watermarked multimedia element such as lossy image compression, the addition of Gaussian noise, denoising, filtering, median filtering, sharpening, contrast enhancement, JPEG compression, and rotation. Experimental results show very promising results in PSNR and similarity ratio (SR) values after blocked DCT (B-DCT) based embedding algorithm against the Discrete Wavelet Transformation (DWT), Least Significant Bits (LSB) and DCT algorithms.
Anubi, Olugbenga Moses, Konstantinou, Charalambos, Wong, Carlos A., Vedula, Satish.  2020.  Multi-Model Resilient Observer under False Data Injection Attacks. 2020 IEEE Conference on Control Technology and Applications (CCTA). :1–8.

In this paper, we present the concept of boosting the resiliency of optimization-based observers for cyber-physical systems (CPS) using auxiliary sources of information. Due to the tight coupling of physics, communication and computation, a malicious agent can exploit multiple inherent vulnerabilities in order to inject stealthy signals into the measurement process. The problem setting considers the scenario in which an attacker strategically corrupts portions of the data in order to force wrong state estimates which could have catastrophic consequences. The goal of the proposed observer is to compute the true states in-spite of the adversarial corruption. In the formulation, we use a measurement prior distribution generated by the auxiliary model to refine the feasible region of a traditional compressive sensing-based regression problem. A constrained optimization-based observer is developed using l1-minimization scheme. Numerical experiments show that the solution of the resulting problem recovers the true states of the system. The developed algorithm is evaluated through a numerical simulation example of the IEEE 14-bus system.

Niu, Yingjiao, Lei, Lingguang, Wang, Yuewu, Chang, Jiang, Jia, Shijie, Kou, Chunjing.  2020.  SASAK: Shrinking the Attack Surface for Android Kernel with Stricter “seccomp” Restrictions. 2020 16th International Conference on Mobility, Sensing and Networking (MSN). :387–394.
The increasing vulnerabilities in Android kernel make it an attractive target to the attackers. Most kernel-targeted attacks are initiated through system calls. For security purpose, Google has introduced a Linux kernel security mechanism named “seccomp” since Android O to constrain the system calls accessible to the Android apps. Unfortunately, existing Android seccomp mechanism provides a fairly coarse-grained restriction by enforcing a unified seccomp policy containing more than 250 system calls for Android apps, which greatly reduces the effectiveness of seccomp. Also, it lacks an approach to profile the unnecessary system calls for a given Android app. In this paper we present a two-level control scheme named SASAK, which can shrink the attack surface of Android kernel by strictly constraining the system calls available to the Android apps with seccomp mechanism. First, instead of leveraging a unified seccomp policy for all Android apps, SASAK introduces an architecture- dedicated system call constraining by enforcing two separate and refined seccomp policies for the 32-bit Android apps and 64-bit Android apps, respectively. Second, we provide a tool to profile the necessary system calls for a given Android app and enforce an app-dedicated seccomp policy to further reduce the allowed system calls for the apps selected by the users. The app-dedicated control could dynamically change the seccomp policy for an app according to its actual needs. We implement a prototype of SASAK and the experiment results show that the architecture-dedicated constraining reduces 39.6% system calls for the 64-bit apps and 42.5% system calls for the 32-bit apps. 33% of the removed system calls for the 64-bit apps are vulnerable, and the number for the 32-bit apps is 18.8%. The app-dedicated restriction reduces about 66.9% and 62.5% system calls on average for the 64-bit apps and 32-bit apps, respectively. In addition, SASAK introduces negligible performance overhead.
Luo, Yukui, Gongye, Cheng, Ren, Shaolei, Fei, Yunsi, Xu, Xiaolin.  2020.  Stealthy-Shutdown: Practical Remote Power Attacks in Multi - Tenant FPGAs. 2020 IEEE 38th International Conference on Computer Design (ICCD). :545–552.
With the deployment of artificial intelligent (AI) algorithms in a large variety of applications, there creates an increasing need for high-performance computing capabilities. As a result, different hardware platforms have been utilized for acceleration purposes. Among these hardware-based accelerators, the field-programmable gate arrays (FPGAs) have gained a lot of attention due to their re-programmable characteristics, which provide customized control logic and computing operators. For example, FPGAs have recently been adopted for on-demand cloud services by the leading cloud providers like Amazon and Microsoft, providing acceleration for various compute-intensive tasks. While the co-residency of multiple tenants on a cloud FPGA chip increases the efficiency of resource utilization, it also creates unique attack surfaces that are under-explored. In this paper, we exploit the vulnerability associated with the shared power distribution network on cloud FPGAs. We present a stealthy power attack that can be remotely launched by a malicious tenant, shutting down the entire chip and resulting in denial-of-service for other co-located benign tenants. Specifically, we propose stealthy-shutdown: a well-timed power attack that can be implemented in two steps: (1) an attacker monitors the realtime FPGA power-consumption detected by ring-oscillator-based voltage sensors, and (2) when capturing high power-consuming moments, i.e., the power consumption by other tenants is above a certain threshold, she/he injects a well-timed power load to shut down the FPGA system. Note that in the proposed attack strategy, the power load injected by the attacker only accounts for a small portion of the overall power consumption; therefore, such attack strategy remains stealthy to the cloud FPGA operator. We successfully implement and validate the proposed attack on three FPGA evaluation kits with running real-world applications. The proposed attack results in a stealthy-shutdown, demonstrating severe security concerns of co-tenancy on cloud FPGAs. We also offer two countermeasures that can mitigate such power attacks.
Osaretin, Charles Aimiuwu, Zamanlou, Mohammad, Iqbal, M. Tariq, Butt, Stephen.  2020.  Open Source IoT-Based SCADA System for Remote Oil Facilities Using Node-RED and Arduino Microcontrollers. 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0571—0575.
An open source and low-cost Supervisory Control and Data Acquisition System based on Node-RED and Arduino microcontrollers is presented in this paper. The system is designed for monitoring, supervision, and remotely controlling motors and sensors deployed for oil and gas facilities. The Internet of Things (IoT) based SCADA system consists of a host computer on which a server is deployed using the Node-RED programming tool and two terminal units connected to it: Arduino Uno and Arduino Mega. The Arduino Uno collects and communicates the data acquired from the temperature, flowrate, and water level sensors to the Node-Red on the computer through the serial port. It also uses a local liquid crystal display (LCD) to display the temperature. Node-RED on the computer retrieves the data from the voltage, current, rotary, accelerometer, and distance sensors through the Arduino Mega. Also, a web-based graphical user interface (GUI) is created using Node-RED and hosted on the local server for parsing the collected data. Finally, an HTTP basic access authentication is implemented using Nginx to control the clients' access from the Internet to the local server and to enhance its security and reliability.
Herber, Paula, Liebrenz, Timm.  2020.  Dependence Analysis and Automated Partitioning for Scalable Formal Analysis of SystemC Designs. 2020 18th ACM-IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE). :1–6.
Embedded systems often consist of deeply intertwined hardware and software components. At the same time, they are often used in safety-critical applications, where an error may result in enormous costs or even loss of human lives. Existing verification techniques that show the absence of errors do not scale well for complex integrated HW/SW systems. In this paper, we present a dependence analysis and automated partitioning approach for the formal analysis of HW/SW codesigns that are modeled in SystemC. The key idea of our approach is threefold: first, we partition a given system into loosely coupled submodels. Second, we analyze the dependences between these submodels and compute an abstract verification interface for each of them, which captures all possible influences of all other submodels. Third, we verify global properties of the overall system by verifying them separately for each subsystem. We demonstrate that our approach significantly reduces verification times and increases scalability with results for an anti-lock braking system.
Tahsini, A., Dunstatter, N., Guirguis, M., Ahmed, C. M..  2020.  DeepBLOC: A Framework for Securing CPS through Deep Reinforcement Learning on Stochastic Games. 2020 IEEE Conference on Communications and Network Security (CNS). :1–9.

One important aspect in protecting Cyber Physical System (CPS) is ensuring that the proper control and measurement signals are propagated within the control loop. The CPS research community has been developing a large set of check blocks that can be integrated within the control loop to check signals against various types of attacks (e.g., false data injection attacks). Unfortunately, it is not possible to integrate all these “checks” within the control loop as the overhead introduced when checking signals may violate the delay constraints of the control loop. Moreover, these blocks do not completely operate in isolation of each other as dependencies exist among them in terms of their effectiveness against detecting a subset of attacks. Thus, it becomes a challenging and complex problem to assign the proper checks, especially with the presence of a rational adversary who can observe the check blocks assigned and optimizes her own attack strategies accordingly. This paper tackles the inherent state-action space explosion that arises in securing CPS through developing DeepBLOC (DB)-a framework in which Deep Reinforcement Learning algorithms are utilized to provide optimal/sub-optimal assignments of check blocks to signals. The framework models stochastic games between the adversary and the CPS defender and derives mixed strategies for assigning check blocks to ensure the integrity of the propagated signals while abiding to the real-time constraints dictated by the control loop. Through extensive simulation experiments and a real implementation on a water purification system, we show that DB achieves assignment strategies that outperform other strategies and heuristics.

H, R. M., Shet, U. Harshitha, Shetty, R. D., Shrinivasa, J, A. N., S, K. R. N..  2020.  Triggering and Auditing the Event During Intrusion Detections in WSN’s Defence Application. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1328–1332.
WSNs are extensively used in defence application for monitoring militant activities in various ways in large unknown territories. Here WSNs has to have large set of distributed systems in the form as sensors nodes. Along with security concerns, False Alarming is also a factor which may interrupt the service and downgrade the application further. Thus in our work we have made sure that when a trigger is raised to an event, images can be captured from the connected cameras so that it will be helpful for both auditing the event as well as capturing the scene which led to the triggering of the event.
Chen, Q., Chen, D., Gong, J..  2020.  Weighted Predictive Coding Methods for Block-Based Compressive Sensing of Images. 2020 3rd International Conference on Unmanned Systems (ICUS). :587–591.
Compressive sensing (CS) is beneficial for unmanned reconnaissance systems to obtain high-quality images with limited resources. The existing prediction methods for block-based compressive sensing of images can be regarded as the particular coefficients of weighted predictive coding. To find better prediction coefficients for BCS, this paper proposes two weighted prediction methods. The first method converts the prediction model of measurements into a prediction model of image blocks. The prediction weights are obtained by training the prediction model of image blocks offline, which avoiding the influence of the sampling rates on the prediction model of measurements. Another method is to calculate the prediction coefficients adaptively based on the average energy of measurements, which can adjust the weights based on the measurements. Compared with existing methods, the proposed prediction methods for BCS of images can further improve the reconstruction image quality.
Ding, K., Meng, Z., Yu, Z., Ju, Z., Zhao, Z., Xu, K..  2020.  Photonic Compressive Sampling of Sparse Broadband RF Signals using a Multimode Fiber. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). :1–3.
We propose a photonic compressive sampling scheme based on multimode fiber for radio spectrum sensing, which shows high accuracy and stability, and low complexity and cost. Pulse overlapping is utilized for a fast detection. © 2020 The Author(s).
Foroughi, F., Hadipour, H., Shafiee, A. M..  2020.  High-Performance Monitoring Sensors for Home Computer Users Security Profiling. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1—7.

Recognising user's risky behaviours in real-time is an important element of providing appropriate solutions and recommending suitable actions for responding to cybersecurity threats. Employing user modelling and machine learning can make this process automated by requires high-performance intelligent agent to create the user security profile. User profiling is the process of producing a profile of the user from historical information and past details. This research tries to identify the monitoring factors and suggests a novel observation solution to create high-performance sensors to generate the user security profile for a home user concerning the user's privacy. This observer agent helps to create a decision-making model that influences the user's decision following real-time threats or risky behaviours.

Elnour, M., Meskin, N., Khan, K. M..  2020.  Hybrid Attack Detection Framework for Industrial Control Systems using 1D-Convolutional Neural Network and Isolation Forest. 2020 IEEE Conference on Control Technology and Applications (CCTA). :877—884.

Industrial control systems (ICSs) are used in various infrastructures and industrial plants for realizing their control operation and ensuring their safety. Concerns about the cybersecurity of industrial control systems have raised due to the increased number of cyber-attack incidents on critical infrastructures in the light of the advancement in the cyber activity of ICSs. Nevertheless, the operation of the industrial control systems is bind to vital aspects in life, which are safety, economy, and security. This paper presents a semi-supervised, hybrid attack detection approach for industrial control systems by combining Isolation Forest and Convolutional Neural Network (CNN) models. The proposed framework is developed using the normal operational data, and it is composed of a feature extraction model implemented using a One-Dimensional Convolutional Neural Network (1D-CNN) and an isolation forest model for the detection. The two models are trained independently such that the feature extraction model aims to extract useful features from the continuous-time signals that are then used along with the binary actuator signals to train the isolation forest-based detection model. The proposed approach is applied to a down-scaled industrial control system, which is a water treatment plant known as the Secure Water Treatment (SWaT) testbed. The performance of the proposed method is compared with the other works using the same testbed, and it shows an improvement in terms of the detection capability.

Luecking, M., Fries, C., Lamberti, R., Stork, W..  2020.  Decentralized Identity and Trust Management Framework for Internet of Things. 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1—9.

Today, Internet of Things (IoT) devices mostly operate in enclosed, proprietary environments. To unfold the full potential of IoT applications, a unifying and permissionless environment is crucial. All IoT devices, even unknown to each other, would be able to trade services and assets across various domains. In order to realize those applications, uniquely resolvable identities are essential. However, quantifiable trust in identities and their authentication are not trivially provided in such an environment due to the absence of a trusted authority. This research presents a new identity and trust framework for IoT devices, based on Distributed Ledger Technology (DLT). IoT devices assign identities to themselves, which are managed publicly and decentralized on the DLT's network as Self Sovereign Identities (SSI). In addition to the Identity Management System (IdMS), the framework provides a Web of Trust (WoT) approach to enable automatic trust rating of arbitrary identities. For the framework we used the IOTA Tangle to access and store data, achieving high scalability and low computational overhead. To demonstrate the feasibility of our framework, we provide a proof-of-concept implementation and evaluate the set objectives for real world applicability as well as the vulnerability against common threats in IdMSs and WoTs.

Bogdan-Iulian, C., Vasilică-Gabriel, S., Alexandru, M. D., Nicolae, G., Andrei, V..  2020.  Improved Secure Internet of Things System using Web Services and Low Power Single-board Computers. 2020 International Conference on e-Health and Bioengineering (EHB). :1—5.

Internet of Things (IoT) systems are becoming widely used, which makes them to be a high-value target for both hackers and crackers. From gaining access to sensitive information to using them as bots for complex attacks, the variety of advantages after exploiting different security vulnerabilities makes the security of IoT devices to be one of the most challenging desideratum for cyber security experts. In this paper, we will propose a new IoT system, designed to ensure five data principles: confidentiality, integrity, availability, authentication and authorization. The innovative aspects are both the usage of a web-based communication and a custom dynamic data request structure.

Shahkar, S., Khorasani, K..  2020.  A Resilient Control Against Time-Delay Switch and Denial of Service Cyber Attacks on Load Frequency Control of Distributed Power Systems. 2020 IEEE Conference on Control Technology and Applications (CCTA). :718—725.

A time-delay switch (TDS) cyber attack is a deliberate attempt by malicious adversaries aiming at destabilizing a power system by impeding the communication signals to/from the centralized controller from/to the network sensors and generating stations that participate in the load frequency control (LFC). A TDS cyber attack can be targeting the sensing loops (transmitting network measurements to the centralized controller) or the control signals dispatched from the centralized controller to the governor valves of the generating stations. A resilient TDS control strategy is proposed and developed in this work that thwarts network instabilities that are caused by delays in the sensing loops, and control commands, and guarantees normal operation of the LFC mechanism. This will be achieved by augmenting the telemetered control commands with locally generated feedback control laws (i.e., “decentralized” control commands) taking measurements that are available and accessible at the power generating stations (locally) independent from all the telemetered signals to/from the centralized controller. Our objective is to devise a controller that is capable of circumventing all types of TDS and DoS (Denial of Service) cyber attacks as well as a broad class of False Data Injection (FDI) cyber attacks.

Bouzegag, Y., Teguig, D., Maali, A., Sadoudi, S..  2020.  On the Impact of SSDF Attacks in Hard Combination Schemes in Cognitive Radio Networks. 020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP). :19–24.
One of the critical threats menacing the Cooperative Spectrum Sensing (CSS) in Cognitive Radio Networks (CRNs) is the Spectrum Sensing Data Falsification (SSDF) reports, which can deceive the decision of Fusion Center (FC) about the Primary User (PU) spectrum accessibility. In CSS, each CR user performs Energy Detection (ED) technique to detect the status of licensed frequency bands of the PU. This paper investigates the performance of different hard-decision fusion schemes (OR-rule, AND-rule, and MAJORITY-rule) in the presence of Always Yes and Always No Malicious User (AYMU and ANMU) over Rayleigh and Gaussian channels. More precisely, comparative study is conducted to evaluate the impact of such malicious users in CSS on the performance of various hard data combining rules in terms of miss detection and false alarm probabilities. Furthermore, computer simulations are carried out to show that the hard-decision fusion scheme with MAJORITY-rule is the best among hard-decision combination under AYMU attacks, OR-rule has the best detection performance under ANMU.
Joykutty, A. M., Baranidharan, B..  2020.  Cognitive Radio Networks: Recent Advances in Spectrum Sensing Techniques and Security. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :878–884.
Wireless networks are very significant in the present world owing to their widespread use and its application in domains like disaster management, smart cities, IoT etc. A wireless network is made up of a group of wireless nodes that communicate with each other without using any formal infrastructure. The topology of the wireless network is not fixed and it can vary. The huge increase in the number of wireless devices is a challenge owing to the limited availability of wireless spectrum. Opportunistic spectrum access by Cognitive radio enables the efficient usage of limited spectrum resources. The unused channels assigned to the primary users may go waste in idle time. Cognitive radio systems will sense the unused channel space and assigns it temporarily for secondary users. This paper discusses about the recent trends in the two most important aspects of Cognitive radio namely spectrum sensing and security.
Thanuja, T. C., Daman, K. A., Patil, A. S..  2020.  Optimized Spectrum sensing Techniques for Enhanced Throughput in Cognitive Radio Network. 2020 International Conference on Emerging Smart Computing and Informatics (ESCI). :137–141.
The wireless communication is a backbone for a development of a nation. But spectrum is finite resource and issues like spectrum scarcity, loss of signal quality, transmission delay, raised in wireless communication system due to growth of wireless applications and exponentially increased number of users. Secondary use of a spectrum using Software Defined Radio (SDR) is one of the solutions which is also supported by TRAI. The spectrum sensing is key process in communication based on secondary use of spectrum. But energy consumption, added delay, primary users security are some threats in this system. Here in this paper we mainly focused on throughput optimization in secondary use of spectrum based on optimal sensing time and number of Secondary users during cooperative spectrum sensing in Cognitive radio networks.
Shekhawat, G. K., Yadav, R. P..  2020.  Sparse Code Multiple Access based Cooperative Spectrum Sensing in 5G Cognitive Radio Networks. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1–6.
Fifth-generation (5G) network demands of higher data rate, massive user connectivity and large spectrum can be achieve using Sparse Code Multiple Access (SCMA) scheme. The integration of cognitive feature spectrum sensing with SCMA can enhance the spectrum efficiency in a heavily dense 5G wireless network. In this paper, we have investigated the primary user detection performance using SCMA in Centralized Cooperative Spectrum Sensing (CCSS). The developed model can support massive user connectivity, lower latency and higher spectrum utilization for future 5G networks. The simulation study is performed for AWGN and Rayleigh fading channel. Log-MPA iterative receiver based Log-Likelihood Ratio (LLR) soft test statistic is passed to Fusion Center (FC). The Wald-hypothesis test is used at FC to finalize the PU decision.
Yamaguchi, S..  2020.  Botnet Defense System and Its Basic Strategy Against Malicious Botnet. 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan). :1—2.

This paper proposes a basic strategy for Botnet Defense System (BDS). BDS is a cybersecurity system that utilizes white-hat botnets to defend IoT systems against malicious botnets. Once a BDS detects a malicious botnet, it launches white-hat worms in order to drive out the malicious botnet. The proposed strategy aims at the proper use of the worms based on the worms' capability such as lifespan and secondary infectivity. If the worms have high secondary infectivity or a long lifespan, the BDS only has to launch a few worms. Otherwise, it should launch as many worms as possible. The effectiveness of the strategy was confirmed through the simulation evaluation using agent-oriented Petri nets.