Visible to the public Biblio

Found 427 results

Filters: Keyword is Wireless sensor networks  [Clear All Filters]
2023-03-03
Hkiri, Amal, Karmani, Mouna, Machhout, Mohsen.  2022.  Implementation and Performance Analysis of Lightweight Block Ciphers for IoT applications using the Contiki Operating system. 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT). :50–54.
Recent years have witnessed impressive advances in technology which led to the rapid growth of the Internet of Things (IoT) and Wireless Sensor Networks (WSNs) using numerous low-powered devices with a huge number of actuators and sensors. These devices gather and exchange data over the internet and generate enormous amounts of data needed to be secured. Although traditional cryptography provides an efficient means of addressing device and communication confidentiality, integrity, and authenticity issues, it may not be appropriate for very resource-constrained systems, particularly for end-nodes such as a simply connected sensor. Thus, there is an ascent need to use lightweight cryptography (LWC) providing the needed level of security with less complexity, area and energy overhead. In this paper, four lightweight cryptographic algorithms called PRESENT, LED, Piccolo, and SPARX were implemented over a Contiki-based IoT operating system, dedicated for IoT platforms, and assessed regarding RAM and ROM usage, power and energy consumption, and CPU cycles number. The Cooja network simulator is used in this study to determine the best lightweight algorithms to use in IoT applications utilizing wireless sensor networks technology.
Jallouli, Ons, Chetto, Maryline, Assad, Safwan El.  2022.  Lightweight Stream Ciphers based on Chaos for Time and Energy Constrained IoT Applications. 2022 11th Mediterranean Conference on Embedded Computing (MECO). :1–5.
The design of efficient and secure cryptographic algorithms is a fundamental problem of cryptography. Due to the tight cost and constrained resources devices such as Radio-Frequency IDentification (RFID), wireless sensors, smart cards, health-care devices, lightweight cryptography has received a great deal of attention. Recent research mainly focused on designing optimized cryptographic algorithms which trade offs between security performance, time consuming, energy consumption and cost. In this paper, we present two chaotic stream ciphers based on chaos and we report the results of a comparative performance evaluation study. Compared to other crypto-systems of the literature, we demonstrate that our designed stream ciphers are suitable for practical secure applications of the Internet of Things (IoT) in a constrained resource environment.
Jemin, V M, Kumar, A Senthil, Thirunavukkarasu, V, Kumar, D Ravi, Manikandan, R..  2022.  Dynamic Key Management based ACO Routing for Wireless Sensor Networks. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :194–197.
Ant Colony Optimization is applied to design a suitable and shortest route between the starting node point and the end node point in the Wireless Sensor Network (WSN). In general ant colony algorithm plays a good role in path planning process that can also applied in improving the network security. Therefore to protect the network from the malicious nodes an ACO based Dynamic Key Management (ACO-DKM) scheme is proposed. The routes are diagnosed through ACO method also the actual coverage distance and pheromone updating strategy is updated simultaneously that prevents the node from continuous monitoring. Simulation analysis gives the efficiency of the proposed scheme.
2023-02-24
Sha, Feng, Wei, Ying.  2022.  The Design of Campus Security Early Warning System based on IPv6 Wireless Sensing. 2022 3rd International Conference on Electronic Communication and Artificial Intelligence (IWECAI). :103—106.
Based on the campus wireless IPv6 network system, using WiFi contactless sensing and positioning technology and action recognition technology, this paper designs a new campus security early warning system. The characteristic is that there is no need to add new monitoring equipment. As long as it is the location covered by the wireless IPv6 network, personnel quantity statistics and personnel body action status display can be realized. It plays an effective monitoring supplement to the places that cannot be covered by video surveillance in the past, and can effectively prevent campus violence or other emergencies.
2023-02-17
Jiang, Jie, Long, Pengyu, Xie, Lijia, Zheng, Zhiming.  2022.  A Percolation-Based Secure Routing Protocol for Wireless Sensor Networks. 2022 IEEE International Conference on Agents (ICA). :60–65.
Wireless Sensor Networks (WSN) have assisted applications of multi-agent system. Abundant sensor nodes, densely distributed around a base station (BS), collect data and transmit to BS node for data analysis. The concept of cluster has been emerged as the efficient communication structure in resource-constrained environment. However, the security still remains a major concern due to the vulnerability of sensor nodes. In this paper, we propose a percolation-based secure routing protocol. We leverage the trust score composed of three indexes to select cluster heads (CH) for unevenly distributed clusters. By considering the reliability, centrality and stability, legitimate nodes with social trust and adequate energy are chosen to provide relay service. Moreover, we design a multi-path inter-cluster routing protocol to construct CH chains for directed inter-cluster data transmission based on the percolation. And the measurement of transit score for on-path CH nodes contributes to load balancing and security. Our simulation results show that our protocol is able to guarantee the security to improve the delivery ratio and packets delay.
2023-01-20
G, Emayashri, R, Harini, V, Abirami S, M, Benedict Tephila.  2022.  Electricity-Theft Detection in Smart Grids Using Wireless Sensor Networks. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:2033—2036.
Satisfying the growing demand for electricity is a huge challenge for electricity providers without a robust and good infrastructure. For effective electricity management, the infrastructure has to be strengthened from the generation stage to the transmission and distribution stages. In the current electrical infrastructure, the evolution of smart grids provides a significant solution to the problems that exist in the conventional system. Enhanced management visibility and better monitoring and control are achieved by the integration of wireless sensor network technology in communication systems. However, to implement these solutions in the existing grids, the infrastructural constraints impose a major challenge. Along with the choice of technology, it is also crucial to avoid exorbitant implementation costs. This paper presents a self-stabilizing hierarchical algorithm for the existing electrical network. Neighborhood Area Networks (NAN) and Home Area Networks (HAN) layers are used in the proposed architecture. The Home Node (HN), Simple Node (SN) and Cluster Head (CH) are the three types of nodes used in the model. Fraudulent users in the system are identified efficiently using the proposed model based on the observations made through simulation on OMNeT++ simulator.
Kumar, T. Ch. Anil, Dixit, Ganesh Kumar, Singh, Rajesh, Narukullapati, Bharath Kumar, Chakravarthi, M. Kalyan, Gangodkar, Durgaprasad.  2022.  Wireless Sensor Network using Control Communication and Monitoring of Smart Grid. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1567—1570.
For some countries around the world, meeting demand is a serious concern. Power supply market is increasingly increasing, posing a big challenge for various countries throughout the world. The increasing expansion in the market for power needs upgrading system dependability to increase the smart grid's resilience. This smart electric grid has a sensor that analyses grid power availability and sends regular updates to the organisation. The internet is currently being utilized to monitor processes and place orders for running variables from faraway places. A large number of scanners have been used to activate electrical equipment for domestic robotics for a long period in the last several days. Conversely, if it is not correctly implemented, it will have a negative impact on cost-effectiveness as well as productivity. For something like a long time, home automation has relied on a large number of sensor nodes to control electrical equipment. Since there are so many detectors, this isn't cost-effective. In this article, develop and accept a wireless communication component and a management system suitable for managing independent efficient network units from voltage rises and voltage control technologies in simultaneous analyzing system reliability in this study. This research paper has considered secondary method to collect relevant and in-depth data related to the wireless sensor network and its usage in smart grid monitoring.
Kumar, Santosh, Kumar, N M G, Geetha, B.T., Sangeetha, M., Chakravarthi, M. Kalyan, Tripathi, Vikas.  2022.  Cluster, Cloud, Grid Computing via Network Communication Using Control Communication and Monitoring of Smart Grid. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1220—1224.
Traditional power consumption management systems are not showing enough reliability and thus, smart grid technology has been introduced to reduce the excess power wastages. In the context of smart grid systems, network communication is another term that is used for developing the network between the users and the load profiles. Cloud computing and clustering are also executed for efficient power management. Based on the facts, this research is going to identify wireless network communication systems to monitor and control smart grid power consumption. Primary survey-based research has been carried out with 62 individuals who worked in the smart grid system, tracked, monitored and controlled the power consumptions using WSN technology. The survey was conducted online where the respondents provided their opinions via a google survey form. The responses were collected and analyzed on Microsoft Excel. Results show that hybrid commuting of cloud and edge computing technology is more advantageous than individual computing. Respondents agreed that deep learning techniques will be more beneficial to analyze load profiles than machine learning techniques. Lastly, the study has explained the advantages and challenges of using smart grid network communication systems. Apart from the findings from primary research, secondary journal articles were also observed to emphasize the research findings.
Zhai, Di, Lu, Yang, Shi, Rui, Ji, Yuejie.  2022.  Large-Scale Micro-Power Sensors Access Scheme Based on Hybrid Mode in IoT Enabled Smart Grid. 2022 7th International Conference on Signal and Image Processing (ICSIP). :719—723.
In order to solve the problem of high data collision probability, high access delay and high-power consumption in random access process of power Internet of Things, an access scheme for large-scale micro-power wireless sensors based on slot-scheduling and hybrid mode is presented. This scheme divides time into different slots and designs a slot-scheduling algorithm according to network workload and power consumption. Sensors with different service priorities are arranged in different time slots for competitive access, using appropriate random-access mechanism. And rationally arrange the number of time slots and competing end-devices in different time slots. This scheme is able to meet the timeliness requirements of different services and reduce the overall network power consumption when dealing with random access scenarios of large-scale micro-power wireless sensor network. Based on the simulation results of actual scenarios, this access scheme can effectively reduce the overall power consumption of the network, and the high priority services can meet the timeliness requirements on the premise of lower power consumption, while the low priority services can further reduce power consumption.
2023-01-13
Mohsin, Ali, Aurangzeb, Sana, Aleem, Muhammad, Khan, Muhammad Taimoor.  2022.  On the Performance and Scalability of Simulators for Improving Security and Safety of Smart Cities. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1–8.
Simulations have gained paramount importance in terms of software development for wireless sensor networks and have been a vital focus of the scientific community in this decade to provide efficient, secure, and safe communication in smart cities. Network Simulators are widely used for the development of safe and secure communication architectures in smart city. Therefore, in this technical survey report, we have conducted experimental comparisons among ten different simulation environments that can be used to simulate smart-city operations. We comprehensively analyze and compare simulators COOJA, NS-2 with framework Mannasim, NS-3, OMNeT++ with framework Castalia, WSNet, TOSSIM, J-Sim, GloMoSim, SENSE, and Avrora. These simulators have been run eight times each and comparison among them is critically scrutinized. The main objective behind this research paper is to assist developers and researchers in selecting the appropriate simulator against the scenario to provide safe and secure wired and wireless networks. In addition, we have discussed the supportive simulation environments, functions, and operating modes, wireless channel models, energy consumption models, physical, MAC, and network-layer protocols in detail. The selection of these simulation frameworks is based on features, literature, and important characteristics. Lastly, we conclude our work by providing a detailed comparison and describing the pros and cons of each simulator.
2023-01-06
Yang, Xuefeng, Liu, Li, Zhang, Yinggang, Li, Yihao, Liu, Pan, Ai, Shili.  2022.  A Privacy-preserving Approach to Distributed Set-membership Estimation over Wireless Sensor Networks. 2022 9th International Conference on Dependable Systems and Their Applications (DSA). :974—979.
This paper focuses on the system on wireless sensor networks. The system is linear and the time of the system is discrete as well as variable, which named discrete-time linear time-varying systems (DLTVS). DLTVS are vulnerable to network attacks when exchanging information between sensors in the network, as well as putting their security at risk. A DLTVS with privacy-preserving is designed for this purpose. A set-membership estimator is designed by adding privacy noise obeying the Laplace distribution to state at the initial moment. Simultaneously, the differential privacy of the system is analyzed. On this basis, the real state of the system and the existence form of the estimator for the desired distribution are analyzed. Finally, simulation examples are given, which prove that the model after adding differential privacy can obtain accurate estimates and ensure the security of the system state.
Guri, Mordechai.  2022.  SATAn: Air-Gap Exfiltration Attack via Radio Signals From SATA Cables. 2022 19th Annual International Conference on Privacy, Security & Trust (PST). :1—10.
This paper introduces a new type of attack on isolated, air-gapped workstations. Although air-gap computers have no wireless connectivity, we show that attackers can use the SATA cable as a wireless antenna to transfer radio signals at the 6 GHz frequency band. The Serial ATA (SATA) is a bus interface widely used in modern computers and connects the host bus to mass storage devices such as hard disk drives, optical drives, and solid-state drives. The prevalence of the SATA interface makes this attack highly available to attackers in a wide range of computer systems and IT environments. We discuss related work on this topic and provide technical background. We show the design of the transmitter and receiver and present the implementation of these components. We also demonstrate the attack on different computers and provide the evaluation. The results show that attackers can use the SATA cable to transfer a brief amount of sensitive information from highly secured, air-gap computers wirelessly to a nearby receiver. Furthermore, we show that the attack can operate from user mode, is effective even from inside a Virtual Machine (VM), and can successfully work with other running workloads in the background. Finally, we discuss defense and mitigation techniques for this new air-gap attack.
2022-12-09
Doebbert, Thomas Robert, Fischer, Florian, Merli, Dominik, Scholl, Gerd.  2022.  On the Security of IO-Link Wireless Communication in the Safety Domain. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1—8.

Security is an essential requirement of Industrial Control System (ICS) environments and its underlying communication infrastructure. Especially the lowest communication level within Supervisory Control and Data Acquisition (SCADA) systems - the field level - commonly lacks security measures.Since emerging wireless technologies within field level expose the lowest communication infrastructure towards potential attackers, additional security measures above the prevalent concept of air-gapped communication must be considered.Therefore, this work analyzes security aspects for the wireless communication protocol IO-Link Wireless (IOLW), which is commonly used for sensor and actuator field level communication. A possible architecture for an IOLW safety layer has already been presented recently [1].In this paper, the overall attack surface of IOLW within its typical environment is analyzed and attack preconditions are investigated to assess the effectiveness of different security measures. Additionally, enhanced security measures are evaluated for the communication systems and the results are summarized. Also, interference of security measures and functional safety principles within the communication are investigated, which do not necessarily complement one another but may also have contradictory requirements.This work is intended to discuss and propose enhancements of the IOLW standard with additional security considerations in future implementations.

2022-12-06
Han, May Pyone, Htet, Soe Ye, Wuttisttikulkij, Lunchakorn.  2022.  Hybrid GNS3 and Mininet-WiFi Emulator for SDN Backbone Network Supporting Wireless IoT Traffic. 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :768-771.

In the IoT (Internet of Things) domain, it is still a challenge to modify the routing behavior of IoT traffic at the decentralized backbone network. In this paper, centralized and flexible software-defined networking (SDN) is utilized to route the IoT traffic. The management of IoT data transmission through the SDN core network gives the chance to choose the path with the lowest delay, minimum packet loss, or hops. Therefore, fault-tolerant delay awareness routing is proposed for the emulated SDN-based backbone network to handle delay-sensitive IoT traffic. Besides, the hybrid form of GNS3 and Mininet-WiFi emulation is introduced to collaborate the SDN-based backbone network in GNS3 and the 6LoWPAN (IPv6 over Low Power Personal Area Network) sensor network in Mininet-WiFi.

Koosha, Mohammad, Farzaneh, Behnam, Farzaneh, Shahin.  2022.  A Classification of RPL Specific Attacks and Countermeasures in the Internet of Things. 2022 Sixth International Conference on Smart Cities, Internet of Things and Applications (SCIoT). :1-7.

Although 6LoWPAN has brought about a revolutionary leap in networking for Low-power Lossy Networks, challenges still exist, including security concerns that are yet to answer. The most common type of attack on 6LoWPANs is the network layer, especially routing attacks, since the very members of a 6LoWPAN network have to carry out packet forwarding for the whole network. According to the initial purpose of IoT, these nodes are expected to be resource-deficient electronic devices with an utterly stochastic time pattern of attachment or detachment from a network. This issue makes preserving their authenticity or identifying their malignity hard, if not impossible. Since 6LoWPAN is a successor and a hybrid of previously developed wireless technologies, it is inherently prone to cyber-attacks shared with its predecessors, especially Wireless Sensor Networks (WSNs) and WPANs. On the other hand, multiple attacks have been uniquely developed for 6LoWPANs due to the unique design of the network layer protocol of 6LoWPANs known as RPL. While there exist publications about attacks on 6LoWPANs, a comprehensive survey exclusively on RPL-specific attacks is felt missing to bold the discrimination between the RPL-specific and non-specific attacks. Hence, the urge behind this paper is to gather all known attacks unique to RPL in a single volume.

Hkiri, Amal, Karmani, Mouna, Machhout, Mohsen.  2022.  The Routing Protocol for low power and lossy networks (RPL) under Attack: Simulation and Analysis. 2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET). :143-148.

Routing protocol for low power and lossy networks (RPL) is the underlying routing protocol of 6LoWPAN, a core communication standard for the Internet of Things. In terms of quality of service (QoS), device management, and energy efficiency, RPL beats competing wireless sensor and ad hoc routing protocols. However, several attacks could threaten the network due to the problem of unauthenticated or unencrypted control frames, centralized root controllers, compromised or unauthenticated devices. Thus, in this paper, we aim to investigate the effect of topology and Resources attacks on RPL.s efficiency. The Hello Flooding attack, Increase Number attack and Decrease Rank attack are the three forms of Resources attacks and Topology attacks respectively chosen to work on. The simulations were done to understand the impact of the three different attacks on RPL performances metrics including End-to-End Delay (E2ED), throughput, Packet Delivery Ratio (PDR) and average power consumption. The findings show that the three attacks increased the E2ED, decreased the PDR and the network throughput, and degrades the network’, which further raises the power consumption of the network nodes.

Tamburello, Marialaura, Caruso, Giuseppe, Giordano, Stefano, Adami, Davide, Ojo, Mike.  2022.  Edge-AI Platform for Realtime Wildlife Repelling. 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON). :80-84.

In this paper, we present the architecture of a Smart Industry inspired platform designed for Agriculture 4.0 applications and, specifically, to optimize an ecosystem of SW and HW components for animal repelling. The platform implementation aims to obtain reliability and energy efficiency in a system aimed to detect, recognize, identify, and repel wildlife by generating specific ultrasound signals. The wireless sensor network is composed of OpenMote hardware devices coordinated on a mesh network based on the 6LoWPAN protocol, and connected to an FPGA-based board. The system, activated when an animal is detected, elaborates the data received from a video camera connected to FPGA-based hardware devices and then activates different ultrasonic jammers belonging to the OpenMotes network devices. This way, in real-time wildlife will be progressively moved away from the field to be preserved by the activation of specific ultrasonic generators. To monitor the daily behavior of the wildlife, the ecosystem is expanded using a time series database running on a Cloud platform.

Sachindra, U. G. T., Rajapaksha, U. U. S..  2022.  Security Architecture Development in Internet of Things Operating Systems. 2022 International Research Conference on Smart Computing and Systems Engineering (SCSE). 5:151-156.

Due to the widespread use of the Internet of Things (IoT) in recent years, the need for IoT technologies to handle communications with the rest of the globe has grown dramatically. Wireless sensor networks (WSNs) play a vital role in the operation of the IoT. The creation of Internet of Things operating systems (OS), which can handle the newly constructed IoT hardware, as well as new protocols and procedures for all communication levels, all of which are now in development, will pave the way for the future. When compared to other devices, these gadgets require a comparatively little amount of electricity, memory, and other resources. This has caused the scientific community to become more aware of the relevance of IoT device operating systems as a result of their findings. These devices may be made more versatile and powerful by including an operating system that contains real-time capabilities, kernel, networking, and other features, among other things. IEEE 802.15.4 networks are linked together using IPv6, which has a wide address space and so enables more devices to connect to the internet using the 6LoWPAN protocol. It is necessary to address some privacy and security issues that have arisen as a result of the widespread use of the Internet, notwithstanding the great benefits that have resulted. For the Internet of Things operating systems, this research has provided a network security architecture that ensures secure communication by utilizing the Cooja network simulator in combination with the Contiki operating system and demonstrate and explained how the nodes can protect from the network layer and physical layer attacks. Also, this research has depicted the energy consumption results of each designated node type during the authentication and communication process. Finally, proposed a few further improvements for the architecture which will enhance the network layer protection.

Mbarek, Bacem, Ge, Mouzhi, Pitner, Tomás.  2022.  Precisional Detection Strategy for 6LoWPAN Networks in IoT. 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :1006-1011.

With the rapid development of the Internet of Things (IoT), a large amount of data is exchanged between various communicating devices. Since the data should be communicated securely between the communicating devices, the network security is one of the dominant research areas for the 6LoWPAN IoT applications. Meanwhile, 6LoWPAN devices are vulnerable to attacks inherited from both the wireless sensor networks and the Internet protocols. Thus intrusion detection systems have become more and more critical and play a noteworthy role in improving the 6LoWPAN IoT networks. However, most intrusion detection systems focus on the attacked areas in the IoT networks instead of precisely on certain IoT nodes. This may lead more resources to further detect the compromised nodes or waste resources when detaching the whole attacked area. In this paper, we therefore proposed a new precisional detection strategy for 6LoWPAN Networks, named as PDS-6LoWPAN. In order to validate the strategy, we evaluate the performance and applicability of our solution with a thorough simulation by taking into account the detection accuracy and the detection response time.

Buzura, Sorin, Dadarlat, Vasile, Peculea, Adrian, Bertrand, Hugo, Chevalier, Raphaël.  2022.  Simulation Framework for 6LoWPAN Networks Using Mininet-WiFi. 2022 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). :1-5.

The Internet of Things (IoT) continuously grows as applications require connectivity and sensor networks are being deployed in multiple application domains. With the increased applicability demand, the need for testing and development frameworks also increases. This paper presents a novel simulation framework for testing IPv6 over Low Power Wireless Personal Networks (6LoWPAN) networks using the Mininet-WiFi simulator. The goal of the simulation framework is to allow easier automation testing of large-scale networks and to also allow easy configuration. This framework is a starting point for many development scenarios targeting traffic management, Quality of Service (QoS) or security network features. A basic smart city simulation is presented which demonstrates the working principles of the framework.

2022-12-02
Sebestyén, Gergely, Kopják, József.  2022.  Battery Life Prediction Model of Sensor Nodes using Merged Data Collecting methods. 2022 IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics (SAMI). :000031—000034.
The aim of this paper is to describe the battery lifetime estimation and energy consumption model of the sensor nodes in TDMA wireless mesh sensor using merged data collecting (MDC) methods based on lithium thionyl chloride batteries. Defining the energy consumption of the nodes in wireless mesh networks is crucial for battery lifetime estimation. In this paper, we describe the timing, energy consumption, and battery lifetime estimation of the MDC method in the TDMA mesh sensor networks using flooding routing. For the battery life estimation, we made a semiempirical model that describes the energy consumption of the nodes with a real battery model. In this model, the low-level constraints are based on the measured energy consumption of the sensor nodes in different operation phases.
Kopják, József, Sebestyén, Gergely.  2022.  Energy Consumption Model of Sensor Nodes using Merged Data Collecting Methods. 2022 IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics (SAMI). :000027—000030.
This paper presents an energy consumption model of the sensor nodes in TDMA wireless mesh sensor network using merged data collecting (MDC) methods. Defining the energy consumption of the nodes in wireless mesh networks is crucial for battery lifetime estimation. In this paper, we describe the semiempirical model of the energy consumption of MDC method in the TDMA mesh sensor networks using flooding routing. In the model the low-level constraints are based on the measured energy consumption of the sensor nodes in the different operation phases.
Macabale, Nemesio A..  2022.  On the Stability of Load Adaptive Routing Over Wireless Community Mesh and Sensor Networks. 2022 24th International Conference on Advanced Communication Technology (ICACT). :21—26.
Wireless mesh networks are increasingly deployed as a flexible and low-cost alternative for providing wireless services for a variety of applications including community mesh networking, medical applications, and disaster ad hoc communications, sensor and IoT applications. However, challenges remain such as interference, contention, load imbalance, and congestion. To address these issues, previous work employ load adaptive routing based on load sensitive routing metrics. On the other hand, such approach does not immediately improve network performance because the load estimates used to choose routes are themselves affected by the resulting routing changes in a cyclical manner resulting to oscillation. Although this is not a new phenomenon and has been studied in wired networks, it has not been investigated extensively in wireless mesh and/or sensor networks. We present these instabilities and how they pose performance, security, and energy issues to these networks. Accordingly, we present a feedback-aware mapping system called FARM that handles these instabilities in a manner analogous to a control system with feedback control. Results show that FARM stabilizes routes that improves network performance in throughput, delay, energy efficiency, and security.
2022-10-12
Musthyala, Harish, Reddy, P. Nagarjuna.  2021.  Hacking wireless network credentials by performing phishing attack using Python Scripting. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS). :248—253.
The availability of number of open-source hacking tools over the internet and many hacking tools in-built with the Kali Linux operating system led to easy understanding and performing hacking by individuals. Even though, hacking the Wi-Fi passwords is considered a tedious task with open-source tools, they can be hacked easily with phishing. Phishing involves tricking the users with malicious emails and obtaining sensitive information from them. This paper describes the different wireless security protocols and tools for hacking wireless networks. A python script is developed which can be sent as phishing to get all the SSID's and passwords to which the system has been connected. The script has been executed and the results are presented.
2022-10-03
Hu, Lingling, Liu, Liang, Liu, Yulei, Zhai, Wenbin, Wang, Xinmeng.  2021.  A robust fixed path-based routing scheme for protecting the source location privacy in WSNs. 2021 17th International Conference on Mobility, Sensing and Networking (MSN). :48–55.
With the development of wireless sensor networks (WSNs), WSNs have been widely used in various fields such as animal habitat detection, military surveillance, etc. This paper focuses on protecting the source location privacy (SLP) in WSNs. Existing algorithms perform poorly in non-uniform networks which are common in reality. In order to address the performance degradation problem of existing algorithms in non-uniform networks, this paper proposes a robust fixed path-based random routing scheme (RFRR), which guarantees the path diversity with certainty in non-uniform networks. In RFRR, the data packets are sent by selecting a routing path that is highly differentiated from each other, which effectively protects SLP and resists the backtracking attack. The experimental results show that RFRR increases the difficulty of the backtracking attack while safekeeping the balance between security and energy consumption.