Visible to the public Biblio

Filters: Keyword is pubcrawl170112  [Clear All Filters]
Degenbaeva, C., Klusch, M..  2015.  Critical Node Detection Problem Solving on GPU and in the Cloud. 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded S. :52–57.

The Critical Node Detection Problem (CNDP) is a well-known NP-complete, graph-theoretical problem with many real-world applications in various fields such as social network analysis, supply-chain network analysis, transport engineering, network immunization, and military strategic planning. We present the first parallel algorithms for CNDP solving in general, and for fast, approximated CND on GPU and in the cloud in particular. Finally, we discuss results of our experimental performance analysis of these solutions.

Boomsma, W., Warnaars, J..  2015.  Blue mining. 2015 IEEE Underwater Technology (UT). :1–4.

Earth provides natural resources, such as fossil fuels and minerals, that are vital for Europe's economy. As the global demand grows, especially for strategic metals, commodity prices rapidly rise and there is an identifiable risk of an increasing supply shortage of some metals, including those identified as critical to Europe's high technology sector. Hence a major element in any economy's long-term strategy must be to respond to the increasing pressure on natural resources to ensure security of supply for these strategic metals. In today's rapidly changing global economic landscape, mining in the deep sea, specifically at extinct hydrothermal vents and the vast areas covered by polymetallic nodules, has gone from a distant possibility to a likely reality within just a decade. The extremely hostile conditions found on the deep-ocean floor pose specific challenges, both technically and environmentally, which are demanding and entirely different from land-based mining. At present, European offshore industries and marine research institutions have significant experience and technology and are well positioned to develop engineering and knowledge-based solutions to resource exploitation in these challenging and sensitive environments. However, to keep this position there is a need to initiate pilot studies to develop breakthrough methodologies for the exploration, assessment and extraction of deep-sea minerals, as well as investigate the implications for economic and environmental sustainability. The Blue Mining project will address all aspects of the entire value chain in this field, from resource discovery to resource assessment, from exploitation technologies to the legal and regulatory framework.

Konstantinou, C., Keliris, A., Maniatakos, M..  2015.  Privacy-preserving functional IP verification utilizing fully homomorphic encryption. 2015 Design, Automation Test in Europe Conference Exhibition (DATE). :333–338.

Intellectual Property (IP) verification is a crucial component of System-on-Chip (SoC) design in the modern IC design business model. Given a globalized supply chain and an increasing demand for IP reuse, IP theft has become a major concern for the IC industry. In this paper, we address the trust issues that arise between IP owners and IP users during the functional verification of an IP core. Our proposed scheme ensures the privacy of IP owners and users, by a) generating a privacy-preserving version of the IP, which is functionally equivalent to the original design, and b) employing homomorphically encrypted input vectors. This allows the functional verification to be securely outsourced to a third-party, or to be executed by either parties, while revealing the least possible information regarding the test vectors and the IP core. Experiments on both combinational and sequential benchmark circuits demonstrate up to three orders of magnitude IP verification slowdown, due to the computationally intensive fully homomorphic operations, for different security parameter sizes.

Nemati, A., Feizi, S., Ahmadi, A., Haghiri, S., Ahmadi, M., Alirezaee, S..  2015.  An efficient hardware implementation of few lightweight block cipher. 2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP). :273–278.

Radio-frequency identification (RFID) are becoming a part of our everyday life with a wide range of applications such as labeling products and supply chain management and etc. These smart and tiny devices have extremely constrained resources in terms of area, computational abilities, memory, and power. At the same time, security and privacy issues remain as an important problem, thus with the large deployment of low resource devices, increasing need to provide security and privacy among such devices, has arisen. Resource-efficient cryptographic incipient become basic for realizing both security and efficiency in constrained environments and embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a significant role as a building block for security systems. In 2014 Manoj Kumar et al proposed a new Lightweight block cipher named as FeW, which are suitable for extremely constrained environments and embedded systems. In this paper, we simulate and synthesize the FeW block cipher. Implementation results of the FeW cryptography algorithm on a FPGA are presented. The design target is efficiency of area and cost.

Kumar, K. S., Rao, G. H., Sahoo, S., Mahapatra, K. K..  2015.  A Novel PUF Based SST to Prevent Distribution of Rejected ICs from Untrusted Assembly. 2015 IEEE International Symposium on Nanoelectronic and Information Systems. :314–319.

Globalization of semiconductor design, manufacturing, packaging and testing has led to several security issues like over production of chips, shipping of faulty or partially functional chips, intellectual property infringement, cloning, counterfeit chips and insertion of hardware trojans in design house or at foundry etc. Adversaries will extract chips from obsolete PCB's and release used parts as new chips into the supply chain. The faulty chips or partially functioning chips can enter supply chain from untrusted Assembly Packaging and Test (APT) centers. These counterfeit parts are not reliable and cause catastrophic consequences in critical applications. To mitigate the counterfeits entering supply chain, to protect the Intellectual Property (IP) rights of owners and to meter the chip, Secure Split Test (SST) is a promising solution. CSST (Connecticut SST) is an improvement to SST, which simplifies the communication required between ATP center and design house. CSST addresses the scan tests, but it does not address the functional testing of chips. The functional testing of chips during production testing is critical in weeding out faulty chips in recent times. In this paper, we present a method called PUF-SST (Physical Unclonable Function – SST) to perform both scan tests and functional tests without compromising on security features described in CSST.

Xiao, K., Forte, D., Tehranipoor, M. M..  2015.  Efficient and secure split manufacturing via obfuscated built-in self-authentication. 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :14–19.

The threats of reverse-engineering, IP piracy, and hardware Trojan insertion in the semiconductor supply chain are greater today than ever before. Split manufacturing has emerged as a viable approach to protect integrated circuits (ICs) fabricated in untrusted foundries, but has high cost and/or high performance overhead. Furthermore, split manufacturing cannot fully prevent untargeted hardware Trojan insertions. In this paper, we propose to insert additional functional circuitry called obfuscated built-in self-authentication (OBISA) in the chip layout with split manufacturing process, in order to prevent reverse-engineering and further prevent hardware Trojan insertion. Self-tests are performed to authenticate the trustworthiness of the OBISA circuitry. The OBISA circuit is connected to original design in order to increase the strength of obfuscation, thereby allowing a higher layer split and lower overall cost. Additional fan-outs are created in OBISA circuitry to improve obfuscation without losing testability. Our proposed gating mechanism and net selection method can ensure negligible overhead in terms of area, timing, and dynamic power. Experimental results demonstrate the effectiveness of the proposed technique in several benchmark circuits.

Yang, K., Forte, D., Tehranipoor, M..  2015.  An RFID-based technology for electronic component and system Counterfeit detection and Traceability. 2015 IEEE International Symposium on Technologies for Homeland Security (HST). :1–6.

The vulnerabilities in today's supply chain have raised serious concerns about the security and trustworthiness of electronic components and systems. Testing for device provenance, detection of counterfeit integrated circuits/systems, and traceability are challenging issues to address. In this paper, we develop a novel RFID-based system suitable for electronic component and system Counterfeit detection and System Traceability called CST. CST is composed of different types of on-chip sensors and in-system structures that provide the information needed to detect multiple counterfeit IC types (recycled, cloned, etc.), verify the authenticity of the system with some degree of confidence, and track/identify boards. Central to CST is an RFID tag employed as storage and a channel to read the information from different types of chips on the printed circuit board (PCB) in both power-off and power-on scenarios. Simulations and experimental results using Spartan 3E FPGAs demonstrate the effectiveness of this system. The efficiency of the radio frequency (RF) communication has also been verified via a PCB prototype with a printed slot antenna.

Voyiatzis, I., Sgouropoulou, C., Estathiou, C..  2015.  Detecting untestable hardware Trojan with non-intrusive concurrent on line testing. 2015 10th International Conference on Design Technology of Integrated Systems in Nanoscale Era (DTIS). :1–2.

Hardware Trojans are an emerging threat that intrudes in the design and manufacturing cycle of the chips and has gained much attention lately due to the severity of the problems it draws to the chip supply chain. Hardware Typically, hardware Trojans are not detected during the usual manufacturing testing due to the fact that they are activated as an effect of a rare event. A class of published HTs are based on the geometrical characteristics of the circuit and claim to be undetectable, in the sense that their activation cannot be detected. In this work we study the effect of continuously monitoring the inputs of the module under test with respect to the detection of HTs possibly inserted in the module, either in the design or the manufacturing stage.

Li, Gaochao, Xu, Xiaolin, Li, Qingshan.  2015.  LADP: A lightweight authentication and delegation protocol for RFID tags. 2015 Seventh International Conference on Ubiquitous and Future Networks. :860–865.

In recent years, the issues of RFID security and privacy are a concern. To prevent the tag is cloned, physically unclonable function (PUF) has been proposed. In each PUF-enabled tag, the responses of PUF depend on the structural disorder that cannot be cloned or reproduced. Therefore, many responses need to store in the database in the initial phase of many authentication protocols. In the supply chain, the owners of the PUF-enabled Tags change frequently, many authentication and delegation protocols are proposed. In this paper, a new lightweight authentication and delegation protocol for RFID tags (LADP) is proposed. The new protocol does not require pre-stored many PUF's responses in the database. When the authentication messages are exchanged, the next response of PUF is passed to the reader secretly. In the transfer process of ownership, the new owner will not get the information of the interaction of the original owner. It can protect the privacy of the original owner. Meanwhile, the original owner cannot continue to access or track the tag. It can protect the privacy of the new owner. In terms of efficiency, the new protocol replaces the pseudorandom number generator with the randomness of PUF that suitable for use in the low-cost tags. The cost of computation and communication are reduced and superior to other protocols.

Chen, J., Miyaj, A., Sato, H., Su, C..  2015.  Improved Lightweight Pseudo-Random Number Generators for the Low-Cost RFID Tags. 2015 IEEE Trustcom/BigDataSE/ISPA. 1:17–24.

EPC Gen2 tags are working as international RFID standards for the use in the supply chain worldwide, such tags are computationally weak devices and unable to perform even basic symmetric-key cryptographic operations. For this reason, to implement robust and secure pseudo-random number generators (PRNG) is a challenging issue for low-cost Radio-frequency identification (RFID) tags. In this paper, we study the security of LFSR-based PRNG implemented on EPC Gen2 tags and exploit LFSR-based PRNG to provide a better constructions. We provide a cryptanalysis against the J3Gen which is LFSR-based PRNG and proposed by Sugei et al. [1], [2] for EPC Gen2 tags using distinguish attack and make observations on its input using NIST randomness test. We also test the PRNG in EPC Gen2 RFID Tags by using the NIST SP800-22. As a counter-measure, we propose two modified models based on the security analysis results. We show that our results perform better than J3Gen in terms of computational and statistical property.

Bottazzi, G., Italiano, G. F..  2015.  Fast Mining of Large-Scale Logs for Botnet Detection: A Field Study. 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing. :1989–1996.

Botnets are considered one of the most dangerous species of network-based attack today because they involve the use of very large coordinated groups of hosts simultaneously. The behavioral analysis of computer networks is at the basis of the modern botnet detection methods, in order to intercept traffic generated by malwares for which signatures do not exist yet. Defining a pattern of features to be placed at the basis of behavioral analysis, puts the emphasis on the quantity and quality of information to be caught and used to mark data streams as normal or abnormal. The problem is even more evident if we consider extensive computer networks or clouds. With the present paper we intend to show how heuristics applied to large-scale proxy logs, considering a typical phase of the life cycle of botnets such as the search for C&C Servers through AGDs (Algorithmically Generated Domains), may provide effective and extremely rapid results. The present work will introduce some novel paradigms. The first is that some of the elements of the supply chain of botnets could be completed without any interaction with the Internet, mostly in presence of wide computer networks and/or clouds. The second is that behind a large number of workstations there are usually "human beings" and it is unlikely that their behaviors will cause marked changes in the interaction with the Internet in a fairly narrow time frame. Finally, AGDs can highlight, at the moment, common lexical features, detectable quickly and without using any black/white list.

Cao, B., Wang, Z., Shi, H., Yin, Y..  2015.  Research and practice on Aluminum Industry 4.0. 2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP). :517–521.

This paper presents a six-layer Aluminum Industry 4.0 architecture for the aluminum production and full lifecycle supply chain management. It integrates a series of innovative technologies, including the IoT sensing physical system, industrial cloud platform for data management, model-driven and big data driven analysis & decision making, standardization & securitization intelligent control and management, as well as visual monitoring and backtracking process etc. The main relevant control models are studied. The applications of real-time accurate perception & intelligent decision technology in the aluminum electrolytic industry are introduced.

Yan, Y., Bao, W., Zhang, H., Liu, B., Xin, L..  2015.  Study of the disturbance propagation in the discrete model of power networks. 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). :2436–2441.

The study of the characteristics of disturbance propagation in the interconnected power networks is of great importance to control the spreading of disturbance and improve the security level of power systems. In this paper, the characteristics of disturbance propagation in a one-dimensional chained power network are studied from the electromechanical wave point of view. The electromechanical wave equation is built based on the discrete inertia model of power networks. The wave transfer function which can describe the variations of amplitude and the phase is derived. Then, the propagation characteristics of different frequency disturbances are analyzed. The corner frequency of the discrete inertia model is proposed. Furthermore, the frequency dispersion and local oscillation are considered and their relationships with the corner frequency are revealed as well. Computer simulations for a 50 generators chained network are carried out to verify the propagation characteristics of disturbances with different frequencies.

Varma, P..  2015.  Building an Open Identity Platform for India. 2015 Asia-Pacific Software Engineering Conference (APSEC). :3–3.

Summary form only given. Aadhaar, India's Unique Identity Project, has become the largest biometric identity system in the world, already covering more than 920 million people. Building such a massive system required significant design thinking, aligning to the core strategy, and building a technology platform that is scalable to meet the project's objective. Entire technology architecture behind Aadhaar is based on principles of openness, linear scalability, strong security, and most importantly vendor neutrality. All application components are built using open source components and open standards. Aadhaar system currently runs across two of the data centers within India managed by UIDAI and handles 1 million enrollments a day and at the peak doing about 900 trillion biometric matches a day. Current system has about 8 PB (8000 Terabytes) of raw data. Aadhaar Authentication service, which requires sub-second response time, is already live and can handle more than 100 million authentications a day. In this talk, the speaker, who has been the Chief Architect of Aadhaar since inception, shares his experience of building the system.

Wang, R. T., Chen, C. T..  2015.  Framework Building and Application of the Performance Evaluation in Marine Logistics Information Platform in Taiwan. 2015 2nd International Conference on Information Science and Control Engineering. :245–249.

This paper has conducted a trial in establishing a systematic instrument for evaluating the performance of the marine information systems. Analytic Network Process (ANP) was introduced for determining the relative importance of a set of interdependent criteria concerned by the stakeholders (shipper/consignee, customer broker, forwarder, and container yard). Three major information platforms (MTNet, TradeVan, and Nice Shipping) in Taiwan were evaluated according to the criteria derived from ANP. Results show that the performance of marine information system can be divided into three constructs, namely: Safety and Technology (3 items), Service (3 items), and Charge (3 items). The Safety and Technology is the most important construct of marine information system evaluation, whereas Charger is the least important construct. This study give insights to improve the performance of the existing marine information systems and serve as the useful reference for the future freight information platform.

Ray, B., Howdhury, M., Abawajy, J., Jesmin, M..  2015.  Secure object tracking protocol for Networked RFID Systems. 2015 IEEE/ACIS 16th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). :1–7.

Networked systems have adapted Radio Frequency identification technology (RFID) to automate their business process. The Networked RFID Systems (NRS) has some unique characteristics which raise new privacy and security concerns for organizations and their NRS systems. The businesses are always having new realization of business needs using NRS. One of the most recent business realization of NRS implementation on large scale distributed systems (such as Internet of Things (IoT), supply chain) is to ensure visibility and traceability of the object throughout the chain. However, this requires assurance of security and privacy to ensure lawful business operation. In this paper, we are proposing a secure tracker protocol that will ensure not only visibility and traceability of the object but also genuineness of the object and its travel path on-site. The proposed protocol is using Physically Unclonable Function (PUF), Diffie-Hellman algorithm and simple cryptographic primitives to protect privacy of the partners, injection of fake objects, non-repudiation, and unclonability. The tag only performs a simple mathematical computation (such as combination, PUF and division) that makes the proposed protocol suitable to passive tags. To verify our security claims, we performed experiment on Security Protocol Description Language (SPDL) model of the proposed protocol using automated claim verification tool Scyther. Our experiment not only verified our claims but also helped us to eliminate possible attacks identified by Scyther.

Kjølle, G. H., Gjerde, O..  2015.  Vulnerability analysis related to extraordinary events in power systems. 2015 IEEE Eindhoven PowerTech. :1–6.

A novel approach is developed for analyzing power system vulnerability related to extraordinary events. Vulnerability analyses are necessary for identification of barriers to prevent such events and as a basis for the emergency preparedness. Identification of cause and effect relationships to reveal vulnerabilities related to extraordinary events is a complex and difficult task. In the proposed approach, the analysis starts by identifying the critical consequences. Then the critical contingencies and operating states, and which external threats and causes that may result in such severe consequences, are identified. This is opposed to the traditional risk and vulnerability analysis which starts by analyzing threats and what can happen as a chain of events. The vulnerability analysis methodology is tested and demonstrated on real systems.

Bass, L., Holz, R., Rimba, P., Tran, A. B., Zhu, L..  2015.  Securing a Deployment Pipeline. 2015 IEEE/ACM 3rd International Workshop on Release Engineering. :4–7.

At the RELENG 2014 Q&A, the question was asked, “What is your greatest concern?” and the response was “someone subverting our deployment pipeline”. That is the motivation for this paper. We explore what it means to subvert a pipeline and provide several different scenarios of subversion. We then focus on the issue of securing a pipeline. As a result, we provide an engineering process that is based on having trusted components mediate access to sensitive portions of the pipeline from other components, which can remain untrusted. Applying our process to a pipeline we constructed involving Chef, Jenkins, Docker, Github, and AWS, we find that some aspects of our process result in easy to make changes to the pipeline, whereas others are more difficult. Consequently, we have developed a design that hardens the pipeline, although it does not yet completely secure it.

Castro, J. A. O., G, W. A. Casilimas, Ramírez, M. M. H..  2015.  Impact analysis of transport capacity and food safety in Bogota. 2015 Workshop on Engineering Applications - International Congress on Engineering (WEA). :1–7.

Food safety policies have aim to promote and develop feeding and nutrition in society. This paper presents a system dynamics model that studies the dynamic behavior between transport infrastructure and the food supply chain in the city of Bogotá. The results show that an adequate transport infrastructure is more effective to improve the service to the customer in the food supply chain. The system dynamics model allows analyze the behavior of transport infrastructure and supply chains of fruits and vegetables, groceries, meat and dairy. The study has gone some way towards enhancing our understanding of food security impact, food supply chain and transport infrastructure.

Tonder, J. van, Poll, J. A. van der.  2015.  Cloud-based technologies for addressing long vehicle turnaround times at recycling mills. 2015 International Conference on Computing, Communication and Security (ICCCS). :1–8.

Transportation costs for road transport companies may be intensified by rising fuel prices, levies, traffic congestion, etc. Of particular concern to the Mpact group of companies is the long waiting times in the queues at loading and offloading points at three processing mills in the KZN (KwaZulu-Natal) province in South Africa. Following a survey among the drivers who regularly deliver at these sites, recommendations for alleviating the lengthy waiting times are put forward. On the strength of one of these recommendations, namely the innovative use of ICTs, suggestions on how cloud-based technologies may be embraced by the company are explored. In the process, the value added by a cloud-based supply chain, enterprise systems, CRM (Customer Relationship Management) and knowledge management is examined.

Chen, S., Wang, T., Ai, J..  2015.  A fair exchange and track system for RFID-tagged logistic chains. 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI). :661–666.

RFID (Radio-Frequency IDentification) is attractive for the strong visibility it provides into logistics operations. In this paper, we explore fair-exchange techniques to encourage honest reporting of item receipt in RFID-tagged supply chains and present a fair ownership transfer system for RFID-tagged supply chains. In our system, a receiver can only access the data and/or functions of the RFID tag by providing the sender with a cryptographic attestation of successful receipt; cheating results in a defunct tag. Conversely, the sender can only obtain the receiver's attestation by providing the secret keys required to access the tag.

Bertino, E., Hartman, N. W..  2015.  Cybersecurity for product lifecycle management a research roadmap. 2015 IEEE International Conference on Intelligence and Security Informatics (ISI). :114–119.

This paper introduces a research agenda focusing on cybersecurity in the context of product lifecycle management. The paper discusses research directions on critical protection techniques, including protection techniques from insider threat, access control systems, secure supply chains and remote 3D printing, compliance techniques, and secure collaboration techniques. The paper then presents an overview of DBSAFE, a system for protecting data from insider threat.

Numan-Al-Mobin, A. M., Cross, W. M., Kellar, J. J., Anagnostou, D. E..  2015.  RFID integrated QR code tag antenna. 2015 IEEE MTT-S International Microwave Symposium. :1–3.

This paper presents an entirely new RFID tag antenna design that incorporates the QR (Quick Response) code for security purposes. The tag antenna is designed to work at 2.45 GHz frequency. The RFID integrated QR code tag antenna is printed with an additive material deposition system that enables to produce a low cost tag antenna with extended security.

Jin, Y., Zhu, H., Shi, Z., Lu, X., Sun, L..  2015.  Cryptanalysis and improvement of two RFID-OT protocols based on quadratic residues. 2015 IEEE International Conference on Communications (ICC). :7234–7239.

The ownership transfer of RFID tag means a tagged product changes control over the supply chain. Recently, Doss et al. proposed two secure RFID tag ownership transfer (RFID-OT) protocols based on quadratic residues. However, we find that they are vulnerable to the desynchronization attack. The attack is probabilistic. As the parameters in the protocols are adopted, the successful probability is 93.75%. We also show that the use of the pseudonym of the tag h(TID) and the new secret key KTID are not feasible. In order to solve these problems, we propose the improved schemes. Security analysis shows that the new protocols can resist in the desynchronization attack and other attacks. By optimizing the performance of the new protocols, it is more practical and feasible in the large-scale deployment of RFID tags.

Ma, T., Zhang, H., Qian, J., Liu, S., Zhang, X., Ma, X..  2015.  The Design of Brand Cosmetics Anti-counterfeiting System Based on RFID Technology. 2015 International Conference on Network and Information Systems for Computers. :184–189.

The digital authentication security technology is widely used in the current brand cosmetics as key anti-counterfeiting technology, yet this technology is prone to "false security", "hard security" and "non-security" phenomena. This paper researches the current cosmetics brand distribution channels and sales methods also analyses the cosmetics brands' demand for RFID technology anti-counterfeiting security system, then proposes a security system based on RFID technology for brand cosmetics. The system is based on a typical distributed RFID tracking and tracing system which is the most widely used system-EPC system. This security system based on RFID technology for brand cosmetics in the paper is a visual information management system for luxury cosmetics brand. It can determine the source of the product timely and effectively, track and trace products' logistics information and prevent fake goods and gray goods getting into the normal supply chain channels.