Visible to the public Biblio

Found 219 results

Filters: Keyword is Computer architecture  [Clear All Filters]
2020-03-27
Boehm, Barry, Rosenberg, Doug, Siegel, Neil.  2019.  Critical Quality Factors for Rapid, Scalable, Agile Development. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :514–515.
Agile methods frequently have difficulties with qualities, often specifying quality requirements as stories, e.g., "As a user, I need a safe and secure system." Such projects will generally schedule some capability releases followed by safety and security releases, only to discover user-developer misunderstandings and unsecurable agile code, leading to project failure. Very large agile projects also have further difficulties with project velocity and scalability. Examples are trying to use daily standup meetings, 2-week sprints, shared tacit knowledge vs. documents, and dealing with user-developer misunderstandings. At USC, our Parallel Agile, Executable Architecture research project shows some success at mid-scale (50 developers). We also examined several large (hundreds of developers) TRW projects that had succeeded with rapid, high-quality development. The paper elaborates on their common Critical Quality Factors: a concurrent 3-team approach, an empowered Keeper of the Project Vision, and a management approach emphasizing qualities.
2020-03-18
Mei, Lei, Tong, Haojie, Liu, Tong, Tian, Ye.  2019.  PSA: An Architecture for Proactively Securing Protocol-Oblivious SDN Networks. 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC). :1–6.

Up to now, Software-defined network (SDN) has been developing for many years and various controller implementations have appeared. Most of these controllers contain the normal business logic as well as security defense function. This makes the business logic on the controller tightly coupled with the security function, which increases the burden of the controller and is not conducive to the evolution of the controller. To address this problem, we propose a proactive security framework PSA, which decouples the business logic and security function of the controller, and deploys the security function in the proactive security layer which lies between the data plane and the control plane, so as to provide a unified security defense framework for different controller implementations. Based on PSA, we design a security defense application for the data-to-control plane saturation attack, which overloads the infrastructure of SDN networks. We evaluate the prototype implementation of PSA in the software environments. The results show that PSA is effective with adding only minor overhead into the entire SDN infrastructure.

Zkik, Karim, Sebbar, Anass, Baadi, Youssef, Belhadi, Amine, Boulmalf, Mohammed.  2019.  An efficient modular security plane AM-SecP for hybrid distributed SDN. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :354–359.

Software defined networks (SDNs) represent new centralized network architecture that facilitates the deployment of services, applications and policies from the upper layers, relatively the management and control planes to the lower layers the data plane and the end user layer. SDNs give several advantages in terms of agility and flexibility, especially for mobile operators and for internet service providers. However, the implementation of these types of networks faces several technical challenges and security issues. In this paper we will focus on SDN's security issues and we will propose the implementation of a centralized security layer named AM-SecP. The proposed layer is linked vertically to all SDN layers which ease packets inspections and detecting intrusions. The purpose of this architecture is to stop and to detect malware infections, we do this by denying services and tunneling attacks without encumbering the networks by expensive operations and high calculation cost. The implementation of the proposed framework will be also made to demonstrate his feasibility and robustness.

2020-03-16
Chondamrongkul, Nacha, Sun, Jing, Wei, Bingyang, Warren, Ian.  2019.  Parallel Verification of Software Architecture Design. 2019 IEEE 19th International Symposium on High Assurance Systems Engineering (HASE). :50–57.
In the component-based software system, certain behaviours of components and their composition may affect system reliability at runtime. This problem can be early detected through the automated verification of software architecture design, by which model checking is one of the techniques to achieve this. However, its practicality and performance issue remain challenges. This paper presents a scalable approach for the software architecture verification. The modelling is proposed to manifest the behaviours in the software component, in order to detect problematic behaviours, such as circular dependency and performance bottleneck. The outcome of the verification identifies the problem and the scenarios that cause it. In order to mitigate the verification performance issue, the parallelism is applied to the verification process so that multiple decomposed models can be simultaneously verified on a multi-threaded environment. As some software systems are designed as the monolithic architecture, we present a method that helps to automatically decompose a large monolithic model into a set of smaller sub-models. Our approach was evaluated and proved to enhance the performance of the verification process for the large-scale complex software systems.
Ullah, Faheem, Ali Babar, M..  2019.  QuickAdapt: Scalable Adaptation for Big Data Cyber Security Analytics. 2019 24th International Conference on Engineering of Complex Computer Systems (ICECCS). :81–86.
Big Data Cyber Security Analytics (BDCA) leverages big data technologies for collecting, storing, and analyzing a large volume of security events data to detect cyber-attacks. Accuracy and response time, being the most important quality concerns for BDCA, are impacted by changes in security events data. Whilst it is promising to adapt a BDCA system's architecture to the changes in security events data for optimizing accuracy and response time, it is important to consider large search space of architectural configurations. Searching a large space of configurations for potential adaptation incurs an overwhelming adaptation time, which may cancel the benefits of adaptation. We present an adaptation approach, QuickAdapt, to enable quick adaptation of a BDCA system. QuickAdapt uses descriptive statistics (e.g., mean and variance) of security events data and fuzzy rules to (re) compose a system with a set of components to ensure optimal accuracy and response time. We have evaluated QuickAdapt for a distributed BDCA system using four datasets. Our evaluation shows that on average QuickAdapt reduces adaptation time by 105× with a competitive adaptation accuracy of 70% as compared to an existing solution.
2020-03-09
Salehie, Mazeiar, Pasquale, Liliana, Omoronyia, Inah, Nuseibeh, Bashar.  2012.  Adaptive Security and Privacy in Smart Grids: A Software Engineering Vision. 2012 First International Workshop on Software Engineering Challenges for the Smart Grid (SE-SmartGrids). :46–49.

Despite the benefits offered by smart grids, energy producers, distributors and consumers are increasingly concerned about possible security and privacy threats. These threats typically manifest themselves at runtime as new usage scenarios arise and vulnerabilities are discovered. Adaptive security and privacy promise to address these threats by increasing awareness and automating prevention, detection and recovery from security and privacy requirements' failures at runtime by re-configuring system controls and perhaps even changing requirements. This paper discusses the need for adaptive security and privacy in smart grids by presenting some motivating scenarios. We then outline some research issues that arise in engineering adaptive security. We particularly scrutinize published reports by NIST on smart grid security and privacy as the basis for our discussions.

El Balmany, Chawki, Asimi, Ahmed, Tbatou, Zakariae, Asimi, Younes, Guezzaz, Azidine.  2019.  Openstack: Launch a Secure User Virtual Machine Image into a Trust Public Cloud IaaS Environment. 2019 4th World Conference on Complex Systems (WCCS). :1–6.

Cloud Management Platforms (CMP) have been developed in recent years to set up cloud computing architecture. Infrastructure-as-a-Service (IaaS) is a cloud-delivered model designed by the provider to gather a set of IT resources which are furnished as services for user Virtual Machine Image (VMI) provisioning and management. Openstack is one of the most useful CMP which has been developed for industry and academic researches to simulate IaaS classical processes such as launch and store user VMI instance. In this paper, the main purpose is to adopt a security policy for a secure launch user VMI across a trust cloud environment founded on a combination of enhanced TPM remote attestation and cryptographic techniques to ensure confidentiality and integrity of user VMI requirements.

Alnaim, Abdulrahman K., Alwakeel, Ahmed M., Fernandez, Eduardo B..  2019.  Threats Against the Virtual Machine Environment of NFV. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–5.

Network Function Virtualization (NFV) is an implementation of cloud computing that leverages virtualization technology to provide on-demand network functions such as firewalls, domain name servers, etc., as software services. One of the methods that help us understand the design and implementation process of such a new system in an abstract way is architectural modeling. Architectural modeling can be presented through UML diagrams to show the interaction between different components and its stakeholders. Also, it can be used to analyze the security threats and the possible countermeasures to mitigate the threats. In this paper, we show some of the possible threats that may jeopardize the security of NFV. We use misuse patterns to analyze misuses based on privilege escalation and VM escape threats. The misuse patterns are part of an ongoing catalog, which is the first step toward building a security reference architecture for NFV.

Flores, Denys A., Jhumka, Arshad.  2019.  Hybrid Logical Clocks for Database Forensics: Filling the Gap between Chain of Custody and Database Auditing. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :224–231.
Database audit records are important for investigating suspicious actions against transactional databases. Their admissibility as digital evidence depends on satisfying Chain of Custody (CoC) properties during their generation, collection and preservation in order to prevent their modification, guarantee action accountability, and allow third-party verification. However, their production has relied on auditing capabilities provided by commercial database systems which may not be effective if malicious users (or insiders) misuse their privileges to disable audit controls, and compromise their admissibility. Hence, in this paper, we propose a forensically-aware distributed database architecture that implements CoC properties as functional requirements to produce admissible audit records. The novelty of our proposal is the use of hybrid logical clocks, which compared with a previous centralised vector-clock architecture, has evident advantages as it (i) allows for more accurate provenance and causality tracking of insider actions, (ii) is more scalable in terms of system size, and (iii) although latency is higher (as expected in distributed environments), 70 per cent of user transactions are executed within acceptable latency intervals.
2020-03-04
Yi, Zhuo, Du, Xuehui, Liao, Ying, Lu, Xin.  2019.  An Access Authentication Algorithm Based on a Hierarchical Identity-Based Signature over Lattice for the Space-Ground Integrated Network. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). :1–9.

Access authentication is a key technology to identify the legitimacy of mobile users when accessing the space-ground integrated networks (SGIN). A hierarchical identity-based signature over lattice (L-HIBS) based mobile access authentication mechanism is proposed to settle the insufficiencies of existing access authentication methods in SGIN such as high computational complexity, large authentication delay and no-resistance to quantum attack. Firstly, the idea of hierarchical identity-based cryptography is introduced according to hierarchical distribution of nodes in SGIN, and a hierarchical access authentication architecture is built. Secondly, a new L-HIBS scheme is constructed based on the Small Integer Solution (SIS) problem to support the hierarchical identity-based cryptography. Thirdly, a mobile access authentication protocol that supports bidirectional authentication and shared session key exchange is designed with the aforementioned L-HIBS scheme. Results of theoretical analysis and simulation experiments suggest that the L-HIBS scheme possesses strong unforgeability of selecting identity and adaptive selection messages under the standard security model, and the authentication protocol has smaller computational overhead and shorter private keys and shorter signature compared to given baseline protocols.

2020-03-02
Vatanparvar, Korosh, Al Faruque, Mohammad Abdullah.  2019.  Self-Secured Control with Anomaly Detection and Recovery in Automotive Cyber-Physical Systems. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :788–793.

Cyber-Physical Systems (CPS) are growing with added complexity and functionality. Multidisciplinary interactions with physical systems are the major keys to CPS. However, sensors, actuators, controllers, and wireless communications are prone to attacks that compromise the system. Machine learning models have been utilized in controllers of automotive to learn, estimate, and provide the required intelligence in the control process. However, their estimation is also vulnerable to the attacks from physical or cyber domains. They have shown unreliable predictions against unknown biases resulted from the modeling. In this paper, we propose a novel control design using conditional generative adversarial networks that will enable a self-secured controller to capture the normal behavior of the control loop and the physical system, detect the anomaly, and recover from them. We experimented our novel control design on a self-secured BMS by driving a Nissan Leaf S on standard driving cycles while under various attacks. The performance of the design has been compared to the state-of-the-art; the self-secured BMS could detect the attacks with 83% accuracy and the recovery estimation error of 21% on average, which have improved by 28% and 8%, respectively.

Ullah, Rehmat, Ur Rehman, Muhammad Atif, Kim, Byung-Seo, Sonkoly, Balázs, Tapolcai, János.  2019.  On Pending Interest Table in Named Data Networking based Edge Computing: The Case of Mobile Augmented Reality. 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN). :263–265.
Future networks require fast information response time, scalable content distribution, security and mobility. In order to enable future Internet many key enabling technologies have been proposed such as Edge computing (EC) and Named Data Networking (NDN). In EC substantial compute and storage resources are placed at the edge of the network, in close proximity to end users. Similarly, NDN provides an alternative to traditional host centric IP architecture which seems a perfect candidate for distributed computation. Although NDN with EC seems a promising approach for enabling future Internet, it can cause various challenges such as expiry time of the Pending Interest Table (PIT) and non-trivial computation of the edge node. In this paper we discuss the expiry time and non-trivial computation in NDN based EC. We argue that if NDN is integrated in EC, then the PIT expiry time will be affected in relation with the processing time on the edge node. Our analysis shows that integrating NDN in EC without considering PIT expiry time may result in the degradation of network performance in terms of Interest Satisfaction Rate.
2020-02-26
Thulasiraman, Preetha, Wang, Yizhong.  2019.  A Lightweight Trust-Based Security Architecture for RPL in Mobile IoT Networks. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–6.

Military communities have come to rely heavily on commercial off the shelf (COTS) standards and technologies for Internet of Things (IoT) operations. One of the major obstacles to military use of COTS IoT devices is the security of data transfer. In this paper, we successfully design and develop a lightweight, trust-based security architecture to support routing in a mobile IoT network. Specifically, we modify the RPL IoT routing algorithm using common security techniques, including a nonce identity value, timestamp, and network whitelist. Our approach allows RPL to select a routing path over a mobile IoT wireless network based on a computed node trust value and average received signal strength indicator (ARSSI) value across network members. We conducted simulations using the Cooja network simulator and Wireshark to validate the algorithm against stipulated threat models. We demonstrate that our algorithm can protect the network against Denial of Service (DoS) and Sybil based identity attacks. We also show that the control overhead required for our algorithm is less than 5% and that the packet delivery rate improves by nearly 10%.

2020-02-24
De, Asmit, Basu, Aditya, Ghosh, Swaroop, Jaeger, Trent.  2019.  FIXER: Flow Integrity Extensions for Embedded RISC-V. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :348–353.
With the recent proliferation of Internet of Things (IoT) and embedded devices, there is a growing need to develop a security framework to protect such devices. RISC-V is a promising open source architecture that targets low-power embedded devices and SoCs. However, there is a dearth of practical and low-overhead security solutions in the RISC-V architecture. Programs compiled using RISC-V toolchains are still vulnerable to code injection and code reuse attacks such as buffer overflow and return-oriented programming (ROP). In this paper, we propose FIXER, a hardware implemented security extension to RISC-V that provides a defense mechanism against such attacks. FIXER enforces fine-grained control-flow integrity (CFI) of running programs on backward edges (returns) and forward edges (calls) without requiring any architectural modifications to the RISC-V processor core. We implement FIXER on RocketChip, a RISC-V SoC platform, by leveraging the integrated Rocket Custom Coprocessor (RoCC) to detect and prevent attacks. Compared to existing software based solutions, FIXER reduces energy overhead by 60% at minimal execution time (1.5%) and area (2.9%) overheads.
2020-02-17
Broomandi, Fateme, Ghasemi, Abdorasoul.  2019.  An Improved Cooperative Cell Outage Detection in Self-Healing Het Nets Using Optimal Cooperative Range. 2019 27th Iranian Conference on Electrical Engineering (ICEE). :1956–1960.
Heterogeneous Networks (Het Nets) are introduced to fulfill the increasing demands of wireless communications. To be manageable, it is expected that these networks are self-organized and in particular, self-healing to detect and relief faults autonomously. In the Cooperative Cell Outage Detection (COD), the Macro-Base Station (MBS) and a group of Femto-Base Stations (FBSs) in a specific range are cooperatively communicating to find out if each FBS is working properly or not. In this paper, we discuss the impacts of the cooperation range on the detection delay and accuracy and then conclude that there is an optimal amount for cooperation range which maximizes detection accuracy. We then derive the optimal cooperative range that improves the detection accuracy by using network parameters such as FBS's transmission power, noise power, shadowing fading factor, and path-loss exponent and investigate the impacts of these parameters on the optimal cooperative range. The simulation results show the optimal cooperative range that we proposed maximizes the detection accuracy.
Roukounaki, Aikaterini, Efremidis, Sofoklis, Soldatos, John, Neises, Juergen, Walloschke, Thomas, Kefalakis, Nikos.  2019.  Scalable and Configurable End-to-End Collection and Analysis of IoT Security Data : Towards End-to-End Security in IoT Systems. 2019 Global IoT Summit (GIoTS). :1–6.

In recent years, there is a surge of interest in approaches pertaining to security issues of Internet of Things deployments and applications that leverage machine learning and deep learning techniques. A key prerequisite for enabling such approaches is the development of scalable infrastructures for collecting and processing security-related datasets from IoT systems and devices. This paper introduces such a scalable and configurable data collection infrastructure for data-driven IoT security. It emphasizes the collection of (security) data from different elements of IoT systems, including individual devices and smart objects, edge nodes, IoT platforms, and entire clouds. The scalability of the introduced infrastructure stems from the integration of state of the art technologies for large scale data collection, streaming and storage, while its configurability relies on an extensible approach to modelling security data from a variety of IoT systems and devices. The approach enables the instantiation and deployment of security data collection systems over complex IoT deployments, which is a foundation for applying effective security analytics algorithms towards identifying threats, vulnerabilities and related attack patterns.

Aranha, Helder, Masi, Massimiliano, Pavleska, Tanja, Sellitto, Giovanni Paolo.  2019.  Enabling Security-by-Design in Smart Grids: An Architecture-Based Approach. 2019 15th European Dependable Computing Conference (EDCC). :177–179.
Energy Distribution Grids are considered critical infrastructure, hence the Distribution System Operators (DSOs) have developed sophisticated engineering practices to improve their resilience. Over the last years, due to the "Smart Grid" evolution, this infrastructure has become a distributed system where prosumers (the consumers who produce and share surplus energy through the grid) can plug in distributed energy resources (DERs) and manage a bi-directional flow of data and power enabled by an advanced IT and control infrastructure. This introduces new challenges, as the prosumers possess neither the skills nor the knowledge to assess the risk or secure the environment from cyber-threats. We propose a simple and usable approach based on the Reference Model of Information Assurance & Security (RMIAS), to support the prosumers in the selection of cybesecurity measures. The purpose is to reduce the risk of being directly targeted and to establish collective responsibility among prosumers as grid gatekeepers. The framework moves from a simple risk analysis based on security goals to providing guidelines for the users for adoption of adequate security countermeasures. One of the greatest advantages of the approach is that it does not constrain the user to a specific threat model.
2020-02-10
Palacio, David N., McCrystal, Daniel, Moran, Kevin, Bernal-Cárdenas, Carlos, Poshyvanyk, Denys, Shenefiel, Chris.  2019.  Learning to Identify Security-Related Issues Using Convolutional Neural Networks. 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). :140–144.
Software security is becoming a high priority for both large companies and start-ups alike due to the increasing potential for harm that vulnerabilities and breaches carry with them. However, attaining robust security assurance while delivering features requires a precarious balancing act in the context of agile development practices. One path forward to help aid development teams in securing their software products is through the design and development of security-focused automation. Ergo, we present a novel approach, called SecureReqNet, for automatically identifying whether issues in software issue tracking systems describe security-related content. Our approach consists of a two-phase neural net architecture that operates purely on the natural language descriptions of issues. The first phase of our approach learns high dimensional word embeddings from hundreds of thousands of vulnerability descriptions listed in the CVE database and issue descriptions extracted from open source projects. The second phase then utilizes the semantic ontology represented by these embeddings to train a convolutional neural network capable of predicting whether a given issue is security-related. We evaluated SecureReqNet by applying it to identify security-related issues from a dataset of thousands of issues mined from popular projects on GitLab and GitHub. In addition, we also applied our approach to identify security-related requirements from a commercial software project developed by a major telecommunication company. Our preliminary results are encouraging, with SecureReqNet achieving an accuracy of 96% on open source issues and 71.6% on industrial requirements.
Mowla, Nishat I, Doh, Inshil, Chae, Kijoon.  2019.  Binarized Multi-Factor Cognitive Detection of Bio-Modality Spoofing in Fog Based Medical Cyber-Physical System. 2019 International Conference on Information Networking (ICOIN). :43–48.
Bio-modalities are ideal for user authentication in Medical Cyber-Physical Systems. Various forms of bio-modalities, such as the face, iris, fingerprint, are commonly used for secure user authentication. Concurrently, various spoofing approaches have also been developed over time which can fail traditional bio-modality detection systems. Image synthesis with play-doh, gelatin, ecoflex etc. are some of the ways used in spoofing bio-identifiable property. Since the bio-modality detection sensors are small and resource constrained, heavy-weight detection mechanisms are not suitable for these sensors. Recently, Fog based architectures are proposed to support sensor management in the Medical Cyber-Physical Systems (MCPS). A thin software client running in these resource-constrained sensors can enable communication with fog nodes for better management and analysis. Therefore, we propose a fog-based security application to detect bio-modality spoofing in a Fog based MCPS. In this regard, we propose a machine learning based security algorithm run as an application at the fog node using a binarized multi-factor boosted ensemble learner algorithm coupled with feature selection. Our proposal is verified on real datasets provided by the Replay Attack, Warsaw and LiveDet 2015 Crossmatch benchmark for face, iris and fingerprint modality spoofing detection used for authentication in an MCPS. The experimental analysis shows that our approach achieves significant performance gain over the state-of-the-art approaches.
Yang, Weiyong, Liu, Wei, Wei, Xingshen, Lv, Xiaoliang, Qi, Yunlong, Sun, Boyan, Liu, Yin.  2019.  Micro-Kernel OS Architecture and its Ecosystem Construction for Ubiquitous Electric Power IoT. 2019 IEEE International Conference on Energy Internet (ICEI). :179–184.

The operating system is extremely important for both "Made in China 2025" and ubiquitous electric power Internet of Things. By investigating of five key requirements for ubiquitous electric power Internet of Things at the OS level (performance, ecosystem, information security, functional security, developer framework), this paper introduces the intelligent NARI microkernel Operating System and its innovative schemes. It is implemented with microkernel architecture based on the trusted computing. Some technologies such as process based fine-grained real-time scheduling algorithm, sigma0 efficient message channel and service process binding in multicore are applied to improve system performance. For better ecological expansion, POSIX standard API is compatible, Linux container, embedded virtualization and intelligent interconnection technology are supported. Native process sandbox and mimicry defense are considered for security mechanism design. Multi-level exception handling and multidimensional partition isolation are adopted to provide High Reliability. Theorem-assisted proof tools based on Isabelle/HOL is used to verify the design and implementation of NARI microkernel OS. Developer framework including tools, kit and specification is discussed when developing both system software and user software on this IoT OS.

Zubov, Ilya G., Lysenko, Nikolai V., Labkov, Gleb M..  2019.  Detection of the Information Hidden in Image by Convolutional Neural Networks. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :393–394.

This article shows the possibility of detection of the hidden information in images. This is the approach to steganalysis than the basic data about the image and the information about the hiding method of the information are unknown. The architecture of the convolutional neural network makes it possible to detect small changes in the image with high probability.

2020-01-21
Liang, Xiao, Chen, Heyao.  2019.  A SDN-Based Hierarchical Authentication Mechanism for IPv6 Address. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :225–225.
The emergence of IPv6 protocol extends the address pool, but it also exposes all the Internet-connected devices to danger. Currently, there are some traditional schemes on security management of network addresses, such as prevention, traceability and encryption authentication, but few studies work on IPv6 protocol. In this paper, we propose a hierarchical authentication mechanism for the IPv6 source address with the technology of software defined network (SDN). This mechanism combines the authentication of three parts, namely the access network, the intra-domain and the inter-domain. And it can provide a fine-grained security protection for the devices using IPv6 addresses.
Gao, Peng, Yang, Ruxia, Shi, Congcong, Zhang, Xiaojian.  2019.  Research on Security Protection Technology System of Power Internet of Things. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :1772–1776.

With the rapid development of Internet of Things applications, the power Internet of Things technologies and applications covering the various production links of the power grid "transmission, transmission, transformation, distribution and use" are becoming more and more popular, and the terminal, network and application security risks brought by them are receiving more and more attention. Combined with the architecture and risk of power Internet of Things, this paper first proposes the overall security protection technology system and strategy for power Internet of Things; then analyzes terminal identity authentication and authority control, edge area autonomy and data transmission protection, and application layer cloud fog security management. And the whole process real-time security monitoring; Finally, through the analysis of security risks and protection, the technical difficulties and directions for the security protection of the Internet of Things are proposed.

Caprolu, Maurantonio, Di Pietro, Roberto, Lombardi, Flavio, Raponi, Simone.  2019.  Edge Computing Perspectives: Architectures, Technologies, and Open Security Issues. 2019 IEEE International Conference on Edge Computing (EDGE). :116–123.
Edge and Fog Computing will be increasingly pervasive in the years to come due to the benefits they bring in many specific use-case scenarios over traditional Cloud Computing. Nevertheless, the security concerns Fog and Edge Computing bring in have not been fully considered and addressed so far, especially when considering the underlying technologies (e.g. virtualization) instrumental to reap the benefits of the adoption of the Edge paradigm. In particular, these virtualization technologies (i.e. Containers, Real Time Operating Systems, and Unikernels), are far from being adequately resilient and secure. Aiming at shedding some light on current technology limitations, and providing hints on future research security issues and technology development, in this paper we introduce the main technologies supporting the Edge paradigm, survey existing issues, introduce relevant scenarios, and discusses benefits and caveats of the different existing solutions in the above introduced scenarios. Finally, we provide a discussion on the current security issues in the introduced context, and strive to outline future research directions in both security and technology development in a number of Edge/Fog scenarios.
Saadeh, Huda, Almobaideen, Wesam, Sabri, Khair Eddin, Saadeh, Maha.  2019.  Hybrid SDN-ICN Architecture Design for the Internet of Things. 2019 Sixth International Conference on Software Defined Systems (SDS). :96–101.
Internet of Things (IoT) impacts the current network with many challenges due to the variation, heterogeneity of its devices and running technologies. For those reasons, monitoring and controlling network efficiently can rise the performance of the network and adapts network techniques according to environment measurements. This paper proposes a new privacy aware-IoT architecture that combines the benefits of both Information Centric Network (ICN) and Software Defined Network (SDN) paradigms. In this architecture controlling functionalities are distributed over multiple planes: operational plane which is considered as smart ICN data plane with Controllers that control local clusters, tactical plane which is an Edge environment to take controlling decisions based on small number of clusters, and strategic plane which is a cloud controlling environment to make long-term decision that affects the whole network. Deployment options of this architecture is discussed and SDN enhancement due to in-network caching is evaluated.