Visible to the public Biblio

Found 362 results

Filters: Keyword is Internet of Things  [Clear All Filters]
2019-11-11
Subahi, Alanoud, Theodorakopoulos, George.  2018.  Ensuring Compliance of IoT Devices with Their Privacy Policy Agreement. 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud). :100–107.
In the past few years, Internet of Things (IoT) devices have emerged and spread everywhere. Many researchers have been motivated to study the security issues of IoT devices due to the sensitive information they carry about their owners. Privacy is not simply about encryption and access authorization, but also about what kind of information is transmitted, how it used and to whom it will be shared with. Thus, IoT manufacturers should be compelled to issue Privacy Policy Agreements for their respective devices as well as ensure that the actual behavior of the IoT device complies with the issued privacy policy. In this paper, we implement a test bed for ensuring compliance of Internet of Things data disclosure to the corresponding privacy policy. The fundamental approach used in the test bed is to capture the data traffic between the IoT device and the cloud, between the IoT device and its application on the smart-phone, and between the IoT application and the cloud and analyze those packets for various features. We test 11 IoT manufacturers and the results reveal that half of those IoT manufacturers do not have an adequate privacy policy specifically for their IoT devices. In addition, we prove that the action of two IoT devices does not comply with what they stated in their privacy policy agreement.
Al-Hasnawi, Abduljaleel, Mohammed, Ihab, Al-Gburi, Ahmed.  2018.  Performance Evaluation of the Policy Enforcement Fog Module for Protecting Privacy of IoT Data. 2018 IEEE International Conference on Electro/Information Technology (EIT). :0951–0957.
The rapid development of the Internet of Things (IoT) results in generating massive amounts of data. Significant portions of these data are sensitive since they reflect (directly or indirectly) peoples' behaviors, interests, lifestyles, etc. Protecting sensitive IoT data from privacy violations is a challenge since these data need to be communicated, processed, analyzed, and stored by public networks, servers, and clouds; most of them are untrusted parties for data owners. We propose a solution for protecting sensitive IoT data called Policy Enforcement Fog Module (PEFM). The major task of the PEFM solution is mandatory enforcement of privacy policies for sensitive IoT data-wherever these data are accessed throughout their entire lifecycle. The key feature of PEFM is its placement within the fog computing infrastructure, which assures that PEFM operates as closely as possible to data sources within the edge. PEFM enforces policies directly for local IoT applications. In contrast, for remote applications, PEFM provides a self-protecting mechanism based on creating and disseminating Active Data Bundles (ADBs). ADBs are software constructs bundling inseparably sensitive data, their privacy policies, and an execution engine able to enforce privacy policies. To prove effectiveness and efficiency of the proposed module, we developed a smart home proof-of-concept scenario. We investigate privacy threats for sensitive IoT data. We run simulation experiments, based on network calculus, for testing performance of the PEFM controls for different network configurations. The results of the simulation show that-even with using from 1 to 5 additional privacy policies for improved data privacy-penalties in terms of execution time and delay are reasonable (approx. 12-15% and 13-19%, respectively). The results also show that PEFM is scalable regarding the number of the real-time constraints for real-time IoT applications.
2019-11-04
Serror, Martin, Henze, Martin, Hack, Sacha, Schuba, Marko, Wehrle, Klaus.  2018.  Towards In-Network Security for Smart Homes. Proceedings of the 13th International Conference on Availability, Reliability and Security. :18:1-18:8.

The proliferation of the Internet of Things (IoT) in the context of smart homes entails new security risks threatening the privacy and safety of end users. In this paper, we explore the design space of in-network security for smart home networks, which automatically complements existing security mechanisms with a rule-based approach, i. e., every IoT device provides a specification of the required communication to fulfill the desired services. In our approach, the home router as the central network component then enforces these communication rules with traffic filtering and anomaly detection to dynamically react to threats. We show that in-network security can be easily integrated into smart home networks based on existing approaches and thus provides additional protection for heterogeneous IoT devices and protocols. Furthermore, in-network security relieves users of difficult home network configurations, since it automatically adapts to the connected devices and services.

2019-10-30
Hong, James, Levy, Amit, Riliskis, Laurynas, Levis, Philip.  2018.  Don't Talk Unless I Say So! Securing the Internet of Things with Default-Off Networking. 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI). :117-128.

The Internet of Things (IoT) is changing the way we interact with everyday objects. "Smart" devices will reduce energy use, keep our homes safe, and improve our health. However, as recent attacks have shown, these devices also create tremendous security vulnerabilities in our computing networks. Securing all of these devices is a daunting task. In this paper, we argue that IoT device communications should be default-off and desired network communications must be explicitly enabled. Unlike traditional networked applications or devices like a web browser or PC, IoT applications and devices serve narrowly defined purposes and do not require access to all services in the network. Our proposal, Bark, a policy language and runtime for specifying and enforcing minimal access permissions in IoT networks, exploits this fact. Bark phrases access control policies in terms of natural questions (who, what, where, when, and how) and transforms them into transparently enforceable rules for IoT application protocols. Bark can express detailed rules such as "Let the lights see the luminosity of the bedroom sensor at any time" and "Let a device at my front door, if I approve it, unlock my smart lock for 30 seconds" in a way that is presentable and explainable to users. We implement Bark for Wi-Fi/IP and Bluetooth Low Energy (BLE) networks and evaluate its efficacy on several example applications and attacks.

Ghose, Nirnimesh, Lazos, Loukas, Li, Ming.  2018.  Secure Device Bootstrapping Without Secrets Resistant to Signal Manipulation Attacks. 2018 IEEE Symposium on Security and Privacy (SP). :819-835.
In this paper, we address the fundamental problem of securely bootstrapping a group of wireless devices to a hub, when none of the devices share prior associations (secrets) with the hub or between them. This scenario aligns with the secure deployment of body area networks, IoT, medical devices, industrial automation sensors, autonomous vehicles, and others. We develop VERSE, a physical-layer group message integrity verification primitive that effectively detects advanced wireless signal manipulations that can be used to launch man-in-the-middle (MitM) attacks over wireless. Without using shared secrets to establish authenticated channels, such attacks are notoriously difficult to thwart and can undermine the authentication and key establishment processes. VERSE exploits the existence of multiple devices to verify the integrity of the messages exchanged within the group. We then use VERSE to build a bootstrapping protocol, which securely introduces new devices to the network. Compared to the state-of-the-art, VERSE achieves in-band message integrity verification during secure pairing using only the RF modality without relying on out-of-band channels or extensive human involvement. It guarantees security even when the adversary is capable of fully controlling the wireless channel by annihilating and injecting wireless signals. We study the limits of such advanced wireless attacks and prove that the introduction of multiple legitimate devices can be leveraged to increase the security of the pairing process. We validate our claims via theoretical analysis and extensive experimentations on the USRP platform. We further discuss various implementation aspects such as the effect of time synchronization between devices and the effects of multipath and interference. Note that the elimination of shared secrets, default passwords, and public key infrastructures effectively addresses the related key management challenges when these are considered at scale.
Borgolte, Kevin, Hao, Shuang, Fiebig, Tobias, Vigna, Giovanni.  2018.  Enumerating Active IPv6 Hosts for Large-Scale Security Scans via DNSSEC-Signed Reverse Zones. 2018 IEEE Symposium on Security and Privacy (SP). :770-784.

Security research has made extensive use of exhaustive Internet-wide scans over the recent years, as they can provide significant insights into the overall state of security of the Internet, and ZMap made scanning the entire IPv4 address space practical. However, the IPv4 address space is exhausted, and a switch to IPv6, the only accepted long-term solution, is inevitable. In turn, to better understand the security of devices connected to the Internet, including in particular Internet of Things devices, it is imperative to include IPv6 addresses in security evaluations and scans. Unfortunately, it is practically infeasible to iterate through the entire IPv6 address space, as it is 2ˆ96 times larger than the IPv4 address space. Therefore, enumeration of active hosts prior to scanning is necessary. Without it, we will be unable to investigate the overall security of Internet-connected devices in the future. In this paper, we introduce a novel technique to enumerate an active part of the IPv6 address space by walking DNSSEC-signed IPv6 reverse zones. Subsequently, by scanning the enumerated addresses, we uncover significant security problems: the exposure of sensitive data, and incorrectly controlled access to hosts, such as access to routing infrastructure via administrative interfaces, all of which were accessible via IPv6. Furthermore, from our analysis of the differences between accessing dual-stack hosts via IPv6 and IPv4, we hypothesize that the root cause is that machines automatically and by default take on globally routable IPv6 addresses. This is a practice that the affected system administrators appear unaware of, as the respective services are almost always properly protected from unauthorized access via IPv4. Our findings indicate (i) that enumerating active IPv6 hosts is practical without a preferential network position contrary to common belief, (ii) that the security of active IPv6 hosts is currently still lagging behind the security state of IPv4 hosts, and (iii) that unintended IPv6 connectivity is a major security issue for unaware system administrators.

Lewis, Matt.  2018.  Using Graph Databases to Assess the Security of Thingernets Based on the Thingabilities and Thingertivity of Things. Living in the Internet of Things: Cybersecurity of the IoT - 2018. :1-9.

Security within the IoT is currently below par. Common security issues include IoT device vendors not following security best practices and/or omitting crucial security controls and features within their devices, lack of defined and mandated IoT security standards, default IoT device configurations, missing secure update mechanisms to rectify security flaws discovered in IoT devices and the overall unintended consequence of complexity - the attack surface of networks comprising IoT devices can increase exponentially with the addition of each new device. In this paper we set out an approach using graphs and graph databases to understand IoT network complexity and the impact that different devices and their profiles have on the overall security of the underlying network and its associated data.

Bugeja, Joseph, Vogel, Bahtijar, Jacobsson, Andreas, Varshney, Rimpu.  2019.  IoTSM: An End-to-End Security Model for IoT Ecosystems. 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :267-272.

The Internet of Things (IoT) market is growing rapidly, allowing continuous evolution of new technologies. Alongside this development, most IoT devices are easy to compromise, as security is often not a prioritized characteristic. This paper proposes a novel IoT Security Model (IoTSM) that can be used by organizations to formulate and implement a strategy for developing end-to-end IoT security. IoTSM is grounded by the Software Assurance Maturity Model (SAMM) framework, however it expands it with new security practices and empirical data gathered from IoT practitioners. Moreover, we generalize the model into a conceptual framework. This approach allows the formal analysis for security in general and evaluates an organization's security practices. Overall, our proposed approach can help researchers, practitioners, and IoT organizations, to discourse about IoT security from an end-to-end perspective.

2019-10-08
Rahman, M. S., Hossam-E-Haider, M..  2019.  Quantum IoT: A Quantum Approach in IoT Security Maintenance. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :269–272.

Securing Internet of things is a major concern as it deals with data that are personal, needed to be reliable, can direct and manipulate device decisions in a harmful way. Also regarding data generation process is heterogeneous, data being immense in volume, complex management. Quantum Computing and Internet of Things (IoT) coined as Quantum IoT defines a concept of greater security design which harness the virtue of quantum mechanics laws in Internet of Things (IoT) security management. Also it ensures secured data storage, processing, communication, data dynamics. In this paper, an IoT security infrastructure is introduced which is a hybrid one, with an extra layer, which ensures quantum state. This state prevents any sort of harmful actions from the eavesdroppers in the communication channel and cyber side, by maintaining its state, protecting the key by quantum cryptography BB84 protocol. An adapted version is introduced specific to this IoT scenario. A classical cryptography system `One-Time pad (OTP)' is used in the hybrid management. The novelty of this paper lies with the integration of classical and quantum communication for Internet of Things (IoT) security.

2019-10-02
Sharma, V., Vithalkar, A., Hashmi, M..  2018.  Lightweight Security Protocol for Chipless RFID in Internet of Things (IoT) Applications. 2018 10th International Conference on Communication Systems Networks (COMSNETS). :468–471.

The RFID based communication between objects within the framework of IoT is potentially very efficient in terms of power requirements and system complexity. The new design incorporating the emerging chipless RFID tags has the potential to make the system more efficient and simple. However, these systems are prone to privacy and security risks and these challenges associated with such systems have not been addressed appropriately in the broader IoT framework. In this context, a lightweight collision free algorithm based on n-bit pseudo random number generator, X-OR hash function, and rotations for chipless RFID system is presented. The algorithm has been implemented on an 8-bit open-loop resonator based chipless RFID tag based system and is validated using BASYS 2 FPGA board based platform. The proposed scheme has been shown to possess security against various attacks such as Denial of Service (DoS), tag/reader anonymity, and tag impersonation.

Santo, Walter E., de B. Salgueiro, Ricardo J. P., Santos, Reneilson, Souza, Danilo, Ribeiro, Admilson, Moreno, Edward.  2018.  Internet of Things: A Survey on Communication Protocol Security. Proceedings of the Euro American Conference on Telematics and Information Systems. :17:1–17:5.

This paper presents a survey on the main security problems that affect the communication protocols in the context of Internet of Things, in order to identify possible threats and vulnerabilities. The protocols RFID, NFC, 6LoWPAN, 6TiSCH, DTSL, CoAP and MQTT, for a better organization, were explored and categorized in layers according to the TCP / IP reference model. At the end, a summary is presented in tabular form with the security modes used for each protocol is used.

McMahon, E., Patton, M., Samtani, S., Chen, H..  2018.  Benchmarking Vulnerability Assessment Tools for Enhanced Cyber-Physical System (CPS) Resiliency. 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). :100–105.

Cyber-Physical Systems (CPSs) are engineered systems seamlessly integrating computational algorithms and physical components. CPS advances offer numerous benefits to domains such as health, transportation, smart homes and manufacturing. Despite these advances, the overall cybersecurity posture of CPS devices remains unclear. In this paper, we provide knowledge on how to improve CPS resiliency by evaluating and comparing the accuracy, and scalability of two popular vulnerability assessment tools, Nessus and OpenVAS. Accuracy and suitability are evaluated with a diverse sample of pre-defined vulnerabilities in Industrial Control Systems (ICS), smart cars, smart home devices, and a smart water system. Scalability is evaluated using a large-scale vulnerability assessment of 1,000 Internet accessible CPS devices found on Shodan, the search engine for the Internet of Things (IoT). Assessment results indicate several CPS devices from major vendors suffer from critical vulnerabilities such as unsupported operating systems, OpenSSH vulnerabilities allowing unauthorized information disclosure, and PHP vulnerabilities susceptible to denial of service attacks.

2019-09-23
Babu, S., Markose, S..  2018.  IoT Enabled Robots with QR Code Based Localization. 2018 International Conference on Emerging Trends and Innovations In Engineering And Technological Research (ICETIETR). :1–5.

Robots are sophisticated form of IoT devices as they are smart devices that scrutinize sensor data from multiple sources and observe events to decide the best procedural actions to supervise and manoeuvre objects in the physical world. In this paper, localization of the robot is addressed by QR code Detection and path optimization is accomplished by Dijkstras algorithm. The robot can navigate automatically in its environment with sensors and shortest path is computed whenever heading measurements are updated with QR code landmark recognition. The proposed approach highly reduces computational burden and deployment complexity as it reflects the use of artificial intelligence to self-correct its course when required. An Encrypted communication channel is established over wireless local area network using SSHv2 protocol to transfer or receive sensor data(or commands) making it an IoT enabled Robot.

Ramijak, Dusan, Pal, Amitangshu, Kant, Krishna.  2018.  Pattern Mining Based Compression of IoT Data. Proceedings of the Workshop Program of the 19th International Conference on Distributed Computing and Networking. :12:1–12:6.
The increasing proliferation of the Internet of Things (IoT) devices and systems result in large amounts of highly heterogeneous data to be collected. Although at least some of the collected sensor data is often consumed by the real-time decision making and control of the IoT system, that is not the only use of such data. Invariably, the collected data is stored, perhaps in some filtered or downselected fashion, so that it can be used for a variety of lower-frequency operations. It is expected that in a smart city environment with numerous IoT deployments, the volume of such data can become enormous. Therefore, mechanisms for lossy data compression that provide a trade-off between compression ratio and data usefulness for offline statistical analysis becomes necessary. In this paper, we discuss several simple pattern mining based compression strategies for multi-attribute IoT data streams. For each method, we evaluate the compressibility of the method vs. the level of similarity between original and compressed time series in the context of the home energy management system.
Moon, J., Lee, Y., Yang, H., Song, T., Won, D..  2018.  Cryptanalysis of a privacy-preserving and provable user authentication scheme for wireless sensor networks based on Internet of Things security. 2018 International Conference on Information Networking (ICOIN). :432–437.
User authentication in wireless sensor networks is more complex than normal networks due to sensor network characteristics such as unmanned operation, limited resources, and unreliable communication. For this reason, various authentication protocols have been presented to provide secure and efficient communication. In 2017, Wu et al. presented a provable and privacy-preserving user authentication protocol for wireless sensor networks. Unfortunately, we found that Wu et al.'s protocol was still vulnerable against user impersonation attack, and had a problem in the password change phase. We show how an attacker can impersonate an other user and why the password change phase is ineffective.
2019-09-11
Mbiriki, A., Katar, C., Badreddine, A..  2018.  Improvement of Security System Level in the Cyber-Physical Systems (CPS) Architecture. 2018 30th International Conference on Microelectronics (ICM). :40–43.

Industry 4.0 is based on the CPS architecture since it is the next generation in the industry. The CPS architecture is a system based on Cloud Computing technology and Internet of Things where computer elements collaborate for the control of physical entities. The security framework in this architecture is necessary for the protection of two parts (physical and information) so basically, security in CPS is classified into two main parts: information security (data) and security of control. In this work, we propose two models to solve the two problems detected in the security framework. The first proposal SCCAF (Smart Cloud Computing Adoption Framework) treats the nature of information that serves for the detection and the blocking of the threats our basic architecture CPS. The second model is a modeled detector related to the physical nature for detecting node information.

2019-09-09
Karlsson, J., Dooley, L. S., Pulkkis, G..  2018.  Secure Routing for MANET Connected Internet of Things Systems. 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud). :114-119.

This paper presents a contemporary review of communication architectures and topographies for MANET-connected Internet-of-Things (IoT) systems. Routing protocols for multi-hop MANETs are analyzed with a focus on the standardized Routing Protocol for Low-power and Lossy Networks. Various security threats and vulnerabilities in current MANET routing are described and security enhanced routing protocols and trust models presented as methodologies for supporting secure routing. Finally, the paper identifies some key research challenges in the emerging domain of MANET-IoT connectivity.

2019-09-04
Maltitz, M. von, Smarzly, S., Kinkelin, H., Carle, G..  2018.  A management framework for secure multiparty computation in dynamic environments. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–7.
Secure multiparty computation (SMC) is a promising technology for privacy-preserving collaborative computation. In the last years several feasibility studies have shown its practical applicability in different fields. However, it is recognized that administration, and management overhead of SMC solutions are still a problem. A vital next step is the incorporation of SMC in the emerging fields of the Internet of Things and (smart) dynamic environments. In these settings, the properties of these contexts make utilization of SMC even more challenging since some vital premises for its application regarding environmental stability and preliminary configuration are not initially fulfilled. We bridge this gap by providing FlexSMC, a management and orchestration framework for SMC which supports the discovery of nodes, supports a trust establishment between them and realizes robustness of SMC session by handling nodes failures and communication interruptions. The practical evaluation of FlexSMC shows that it enables the application of SMC in dynamic environments with reasonable performance penalties and computation durations allowing soft real-time and interactive use cases.
2019-08-26
Asati, V. K., Pilli, E. S., Vipparthi, S. K., Garg, S., Singhal, S., Pancholi, S..  2018.  RMDD: Cross Layer Attack in Internet of Things. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :172-178.

The existing research on the Internet of Things(IoT) security mainly focuses on attack and defense on a single protocol layer. Increasing and ubiquitous use of loT also makes it vulnerable to many attacks. An attacker try to performs the intelligent, brutal and stealthy attack that can reduce the risk of being detected. In these kinds of attacks, the attackers not only restrict themselves to a single layer of protocol stack but they also try to decrease the network performance and throughput by a simultaneous and coordinated attack on different layers. A new class of attacks, termed as cross-layer attack became prominent due to lack of interaction between MAC, routing and upper layers. These attacks achieve the better effect with reduced cost. Research has been done on cross-layer attacks in other domains like Cognitive Radio Network(CRN), Wireless Sensor Networks(WSN) and ad-hoc networks. However, our proposed scheme of cross-layer attack in IoT is the first paper to the best of our knowledge. In this paper, we have proposed Rank Manipulation and Drop Delay(RMDD) cross-layer attack in loT, we have investigated how small intensity attack on Routing protocol for low power lossy networks (RPL) degrades the overall application throughput. We have exploited the Rank system of the RPL protocol to implement the attacks. Rank is given to each node in the graph, and it shows its position in the network. If the rank could be manipulated in some manner, then the network topology can be modified. Simulation results demonstrate that the proposed attacks degrade network performance very much in terms of the throughput, latency, and connectivity.

Markakis, E., Nikoloudakis, Y., Pallis, E., Manso, M..  2019.  Security Assessment as a Service Cross-Layered System for the Adoption of Digital, Personalised and Trusted Healthcare. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :91-94.

The healthcare sector is exploring the incorporation of digital solutions in order to improve access, reduce costs, increase quality and enhance their capacity in reaching a higher number of citizens. However, this opens healthcare organisations' systems to external elements used within or beyond their premises, new risks and vulnerabilities in what regards cyber threats and incidents. We propose the creation of a Security Assessment as a Service (SAaaS) crosslayered system that is able to identify vulnerabilities and proactively assess and mitigate threats in an IT healthcare ecosystem exposed to external devices and interfaces, considering that most users are not experts (even technologically illiterate") in cyber security and, thus, unaware of security tactics or policies whatsoever. The SAaaS can be integrated in an IT healthcare environment allowing the monitoring of existing and new devices, the limitation of connectivity and privileges to new devices, assess a device's cybersecurity risk and - based on the device's behaviour - the assignment and revoking of privileges. The SAaaS brings a controlled cyber aware environment that assures security, confidentiality and trust, even in the presence of non-trusted devices and environments.

Chakraborty, Saurav, Thomas, Drew, DeHart, Joanathan, Saralaya, Kishan, Tadepalli, Prabhakar, Narendra, Siva G..  2018.  Solving Internet's Weak Link for Blockchain and IoT Applications. Proceedings of the 1st ACM/EIGSCC Symposium on Smart Cities and Communities. :6:1–6:5.
Blockchain normalizes applications that run on the internet through the standardization of decentralized data structure, computational requirements and trust in transactions. This new standard has now spawned hundreds of legitimate internet applications in addition to the cryptocurrency revolution. This next frontier that standardizes internet applications will dramatically increase productivity to levels never seen before, especially when applied to Internet of Things (IoT) applications. The blockchain framework relies on cryptographic private keys to sign digital data as its foundational principle. Without the security of private keys to sign data blocks, there can be no trust in blockchain. Central storage of these keys for managing IoT machines and users, while convenient to implement, will be highly detrimental to the assumed safety and security of this next frontier. In this paper, we will introduce decentralized and device agnostic cryptographic signing solutions suitable for securing users and machines in blockchain and IoT applications.
Mohammad, Z., Qattam, T. A., Saleh, K..  2019.  Security Weaknesses and Attacks on the Internet of Things Applications. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :431–436.

Internet of Things (IoT) is a contemporary concept for connecting the existing things in our environment with the Internet for a sake of making the objects information are accessible from anywhere and anytime to support a modern life style based on the Internet. With the rapid development of the IoT technologies and widely spreading in most of the fields such as buildings, health, education, transportation and agriculture. Thus, the IoT applications require increasing data collection from the IoT devices to send these data to the applications or servers which collect or analyze the data, so it is a very important to secure the data and ensure that do not reach a malicious adversary. This paper reviews some attacks in the IoT applications and the security weaknesses in the IoT environment. In addition, this study presents the challenges of IoT in terms of hardware, network and software. Moreover, this paper summarizes and points to some attacks on the smart car, smart home, smart campus, smart farm and healthcare.

2019-08-05
Samaniego, M., Deters, R..  2018.  Zero-Trust Hierarchical Management in IoT. 2018 IEEE International Congress on Internet of Things (ICIOT). :88-95.

Internet of Things (IoT) is experiencing exponential scalability. This scalability introduces new challenges regarding management of IoT networks. The question that emerges is how we can trust the constrained infrastructure that shortly is expected to be formed by millions of 'things.' The answer is not to trust. This research introduces Amatista, a blockchain-based middleware for management in IoT. Amatista presents a novel zero-trust hierarchical mining process that allows validating the infrastructure and transactions at different levels of trust. This research evaluates Amatista on Edison Arduino Boards.

Vanickis, R., Jacob, P., Dehghanzadeh, S., Lee, B..  2018.  Access Control Policy Enforcement for Zero-Trust-Networking. 2018 29th Irish Signals and Systems Conference (ISSC). :1-6.

The evolution of the enterprise computing landscape towards emerging trends such as fog/edge computing and the Industrial Internet of Things (IIoT) are leading to a change of approach to securing computer networks to deal with challenges such as mobility, virtualized infrastructures, dynamic and heterogeneous user contexts and transaction-based interactions. The uncertainty introduced by such dynamicity introduces greater uncertainty into the access control process and motivates the need for risk-based access control decision making. Thus, the traditional perimeter-based security paradigm is increasingly being abandoned in favour of a so called "zero trust networking" (ZTN). In ZTN networks are partitioned into zones with different levels of trust required to access the zone resources depending on the assets protected by the zone. All accesses to sensitive information is subject to rigorous access control based on user and device profile and context. In this paper we outline a policy enforcement framework to address many of open challenges for risk-based access control for ZTN. We specify the design of required policy languages including a generic firewall policy language to express firewall rules. We design a mechanism to map these rules to specific firewall syntax and to install the rules on the firewall. We show the viability of our design with a small proof-of-concept.

Ahmad, F., Adnane, A., KURUGOLLU, F., Hussain, R..  2019.  A Comparative Analysis of Trust Models for Safety Applications in IoT-Enabled Vehicular Networks. 2019 Wireless Days (WD). :1-8.
Vehicular Ad-hoc NETwork (VANET) is a vital transportation technology that facilitates the vehicles to share sensitive information (such as steep-curve warnings and black ice on the road) with each other and with the surrounding infrastructure in real-time to avoid accidents and enable comfortable driving experience.To achieve these goals, VANET requires a secure environment for authentic, reliable and trusted information dissemination among the network entities. However, VANET is prone to different attacks resulting in the dissemination of compromised/false information among network nodes. One way to manage a secure and trusted network is to introduce trust among the vehicular nodes. To this end, various Trust Models (TMs) are developed for VANET and can be broadly categorized into three classes, Entity-oriented Trust Models (ETM), Data oriented Trust Models (DTM) and Hybrid Trust Models (HTM). These TMs evaluate trust based on the received information (data), the vehicle (entity) or both through different mechanisms. In this paper, we present a comparative study of the three TMs. Furthermore, we evaluate these TMs against the different trust, security and quality-of-service related benchmarks. Simulation results revealed that all these TMs have deficiencies in terms of end-to-end delays, event detection probabilities and false positive rates. This study can be used as a guideline for researchers to design new efficient and effective TMs for VANET.