Visible to the public Biblio

Found 1149 results

Filters: Keyword is Internet of Things  [Clear All Filters]
Revathi, K., Tamilselvi, T., Tamilselvi, K., Shanthakumar, P., Samydurai, A..  2022.  Context Aware Fog-Assisted Vital Sign Monitoring System: Design and Implementation. 2022 International Conference on Edge Computing and Applications (ICECAA). :108–112.
The Internet of Things (IoT) aims to introduce pervasive computation into the human environment. The processing on a cloud platform is suggested due to the IoT devices' resource limitations. High latency while transmitting IoT data from its edge network to the cloud is the primary limitation. Modern IoT applications frequently use fog computing, an unique architecture, as a replacement for the cloud since it promises faster reaction times. In this work, a fog layer is introduced in smart vital sign monitor design in order to serve faster. Context aware computing makes use of environmental or situational data around the object to invoke proactive services upon its usable content. Here in this work the fog layer is intended to provide local data storage, data preprocessing, context awareness and timely analysis.
Suzumura, Toyotaro, Sugiki, Akiyoshi, Takizawa, Hiroyuki, Imakura, Akira, Nakamura, Hiroshi, Taura, Kenjiro, Kudoh, Tomohiro, Hanawa, Toshihiro, Sekiya, Yuji, Kobayashi, Hiroki et al..  2022.  mdx: A Cloud Platform for Supporting Data Science and Cross-Disciplinary Research Collaborations. 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :1–7.
The growing amount of data and advances in data science have created a need for a new kind of cloud platform that provides users with flexibility, strong security, and the ability to couple with supercomputers and edge devices through high-performance networks. We have built such a nation-wide cloud platform, called "mdx" to meet this need. The mdx platform's virtualization service, jointly operated by 9 national universities and 2 national research institutes in Japan, launched in 2021, and more features are in development. Currently mdx is used by researchers in a wide variety of domains, including materials informatics, geo-spatial information science, life science, astronomical science, economics, social science, and computer science. This paper provides an overview of the mdx platform, details the motivation for its development, reports its current status, and outlines its future plans.
Halabi, Talal, Abusitta, Adel, Carvalho, Glaucio H.S., Fung, Benjamin C. M..  2022.  Incentivized Security-Aware Computation Offloading for Large-Scale Internet of Things Applications. 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech). :1–6.
With billions of devices already connected to the network's edge, the Internet of Things (IoT) is shaping the future of pervasive computing. Nonetheless, IoT applications still cannot escape the need for the computing resources available at the fog layer. This becomes challenging since the fog nodes are not necessarily secure nor reliable, which widens even further the IoT threat surface. Moreover, the security risk appetite of heterogeneous IoT applications in different domains or deploy-ment contexts should not be assessed similarly. To respond to this challenge, this paper proposes a new approach to optimize the allocation of secure and reliable fog computing resources among IoT applications with varying security risk level. First, the security and reliability levels of fog nodes are quantitatively evaluated, and a security risk assessment methodology is defined for IoT services. Then, an online, incentive-compatible mechanism is designed to allocate secure fog resources to high-risk IoT offloading requests. Compared to the offline Vickrey auction, the proposed mechanism is computationally efficient and yields an acceptable approximation of the social welfare of IoT devices, allowing to attenuate security risk within the edge network.
Doshi, Om B., Bendale, Hitesh N., Chavan, Aarti M., More, Shraddha S..  2022.  A Smart Door Lock Security System using Internet of Things. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :1457–1463.
Security is a key concern across the world, and it has been a common thread for all critical sectors. Nowadays, it may be stated that security is a backbone that is absolutely necessary for personal safety. The most important requirements of security systems for individuals are protection against theft and trespassing. CCTV cameras are often employed for security purposes. The biggest disadvantage of CCTV cameras is their high cost and the need for a trustworthy individual to monitor them. As a result, a solution that is both easy and cost-effective, as well as secure has been devised. The smart door lock is built on Raspberry Pi technology, and it works by capturing a picture through the Pi Camera module, detecting a visitor's face, and then allowing them to enter. Local binary pattern approach is used for Face recognition. Remote picture viewing, notification, on mobile device are all possible with an IOT based application. The proposed system may be installed at front doors, lockers, offices, and other locations where security is required. The proposed system has an accuracy of 89%, with an average processing time is 20 seconds for the overall process.
Li, Mingxuan, Li, Feng, Yin, Jun, Fei, Jiaxuan, Chen, Jia.  2022.  Research on Security Vulnerability Mining Technology for Terminals of Electric Power Internet of Things. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1638–1642.
Aiming at the specificity and complexity of the power IoT terminal, a method of power IoT terminal firmware vulnerability detection based on memory fuzzing is proposed. Use the method of bypassing the execution to simulate and run the firmware program, dynamically monitor and control the execution of the firmware program, realize the memory fuzzing test of the firmware program, design an automatic vulnerability exploitability judgment plug-in for rules and procedures, and provide power on this basis The method and specific process of the firmware vulnerability detection of the IoT terminal. The effectiveness of the method is verified by an example.
ISSN: 2693-289X
Núñez, Ivonne, Cano, Elia, Rovetto, Carlos, Ojo-Gonzalez, Karina, Smolarz, Andrzej, Saldana-Barrios, Juan Jose.  2022.  Key technologies applied to the optimization of smart grid systems based on the Internet of Things: A Review. 2022 V Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil (AmITIC). :1—8.
This article describes an analysis of the key technologies currently applied to improve the quality, efficiency, safety and sustainability of Smart Grid systems and identifies the tools to optimize them and possible gaps in this area, considering the different energy sources, distributed generation, microgrids and energy consumption and production capacity. The research was conducted with a qualitative methodological approach, where the literature review was carried out with studies published from 2019 to 2022, in five (5) databases following the selection of studies recommended by the PRISMA guide. Of the five hundred and four (504) publications identified, ten (10) studies provided insight into the technological trends that are impacting this scenario, namely: Internet of Things, Big Data, Edge Computing, Artificial Intelligence and Blockchain. It is concluded that to obtain the best performance within Smart Grids, it is necessary to have the maximum synergy between these technologies, since this union will enable the application of advanced smart digital technology solutions to energy generation and distribution operations, thus allowing to conquer a new level of optimization.
Schwaiger, Patrick, Simopoulos, Dimitrios, Wolf, Andreas.  2022.  Automated IoT security testing with SecLab. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. :1–6.
With the growing number of IoT applications and devices, IoT security breaches are a dangerous reality. Cost pressure and complexity of security tests for embedded systems and networked infrastructure are often the excuse for skipping them completely. In our paper we introduce SecLab security test lab to overcome that problem. Based on a flexible and lightweight architecture, SecLab allows developers and IoT security specialists to harden their systems with a low entry hurdle. The open architecture supports the reuse of existing external security test libraries and scalability for the assessment of complex IoT Systems. A reference implementation of security tests in a realistic IoT application scenario proves the approach.
Y, Justindhas., Kumar, G. Anil, Chandrashekhar, A, Raman, R Raghu, Kumar, A. Ravi, S, Ashwini.  2022.  Internet of Things based Data Security Management using Three Level Cyber Security Policies. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1–8.
The Internet of Things devices is rapidly becoming widespread, as are IoT services. Their achievement has not gone unnoticed, as threats as well as attacks towards IoT devices as well as services continue to grow. Cyber attacks are not unique to IoT, however as IoT becomes more ingrained in our lives as well as communities, it is imperative to step up as well as take cyber defense seriously. As a result, there is a genuine need to protect IoT, which necessitates a thorough understanding of the dangers and attacks against IoT infrastructure. The purpose of this study is to define threat types, as well as to assess and characterize intrusions and assaults against IoT devices as well as services
Lavanya, P., Subbareddy, I.V., Selvakumar, V..  2022.  Internet of Things enabled Block Level Security Mechanism to Big Data Environment using Cipher Security Policies. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1–6.
The proliferation of linked devices in decisive infrastructure fields including health care and the electric grid is transforming public perceptions of critical infrastructure. As the world grows more mobile and connected, as well as as the Internet of Things (IoT) expands, the growing interconnectivity of new critical sectors is being fuelled. Interruptions in any of these areas can have ramifications across numerous sectors and potentially the world. Crucial industries are critical to contemporary civilization. In today's hyper-connected world, critical infrastructure is more vulnerable than ever to cyber assaults, whether they are state-sponsored, carried out by criminal organizations, or carried out by individuals. In a world where more and more gadgets are interconnected, hackers have more and more entry points via which they may damage critical infrastructure. Significant modifications to an organization's main technological systems have created a new threat surface. The study's goal is to raise awareness about the challenges of protecting digital infrastructure in the future while it is still in development. Fog architecture is designed based on functionality once the infrastructure that creates large data has been established. There's also an in-depth look of fog-enabled IoT network security requirements. The next section examines the security issues connected with fog computing, as well as the privacy and trust issues raised by fog-enabled Internet of Things (IoT). Block chain is also examined to see how it may help address IoT security problems, as well as the complimentary interrelationships between block-chain and fog computing. Additionally, Formalizes big data security goal and scope, develops taxonomy for identifying risks to fog-based Internet of Things systems, compares current development contributions to security service standards, and proposes interesting study areas for future studies, all within this framework
Praveen Kumar, K., Sree Ranganayaki, V..  2022.  Energy Saving Using Privacy Data Secure Aggregation Algorithm. 2022 International Conference on Breakthrough in Heuristics And Reciprocation of Advanced Technologies (BHARAT). :99—102.
For the Internet of things (IoT) secure data aggregation issues, data privacy-preserving and limited computation ability and energy of nodes should be tradeoff. Based on analyzing the pros-and-cons of current works, a low energy- consuming secure data aggregation method (LCSDA) was proposed. This method uses shortest path principle to choose neighbor nodes and generates the data aggregation paths in the cluster based on prim minimum spanning tree algorithm. Simulation results show that this method could effectively cut down energy consumption and reduce the probability of cluster head node being captured, in the same time preserving data privacy.
Kapoor, Mehul, Kaur, Puneet Jai.  2022.  Hybridization of Deep Learning & Machine Learning For IoT Based Intrusion Classification. 2022 International Conference on Breakthrough in Heuristics And Reciprocation of Advanced Technologies (BHARAT). :138—143.
With the rise of IoT applications, about 20.4 billion devices will be online in 2020, and that number will rise to 75 billion a month by 2025. Different sensors in IoT devices let them get and process data remotely and in real time. Sensors give them information that helps them make smart decisions and manage IoT environments well. IoT Security is one of the most important things to think about when you're developing, implementing, and deploying IoT platforms. People who use the Internet of Things (IoT) say that it allows people to communicate, monitor, and control automated devices from afar. This paper shows how to use Deep learning and machine learning to make an IDS that can be used on IoT platforms as a service. In the proposed method, a cnn mapped the features, and a random forest classifies normal and attack classes. In the end, the proposed method made a big difference in all performance parameters. Its average performance metrics have gone up 5% to 6%.
Anastasakis, Zacharias, Psychogyios, Konstantinos, Velivassaki, Terpsi, Bourou, Stavroula, Voulkidis, Artemis, Skias, Dimitrios, Gonos, Antonis, Zahariadis, Theodore.  2022.  Enhancing Cyber Security in IoT Systems using FL-based IDS with Differential Privacy. 2022 Global Information Infrastructure and Networking Symposium (GIIS). :30—34.
Nowadays, IoT networks and devices exist in our everyday life, capturing and carrying unlimited data. However, increasing penetration of connected systems and devices implies rising threats for cybersecurity with IoT systems suffering from network attacks. Artificial Intelligence (AI) and Machine Learning take advantage of huge volumes of IoT network logs to enhance their cybersecurity in IoT. However, these data are often desired to remain private. Federated Learning (FL) provides a potential solution which enables collaborative training of attack detection model among a set of federated nodes, while preserving privacy as data remain local and are never disclosed or processed on central servers. While FL is resilient and resolves, up to a point, data governance and ownership issues, it does not guarantee security and privacy by design. Adversaries could interfere with the communication process, expose network vulnerabilities, and manipulate the training process, thus affecting the performance of the trained model. In this paper, we present a federated learning model which can successfully detect network attacks in IoT systems. Moreover, we evaluate its performance under various settings of differential privacy as a privacy preserving technique and configurations of the participating nodes. We prove that the proposed model protects the privacy without actually compromising performance. Our model realizes a limited performance impact of only ∼ 7% less testing accuracy compared to the baseline while simultaneously guaranteeing security and applicability.
Xu, Huikai, Yu, Miao, Wang, Yanhao, Liu, Yue, Hou, Qinsheng, Ma, Zhenbang, Duan, Haixin, Zhuge, Jianwei, Liu, Baojun.  2022.  Trampoline Over the Air: Breaking in IoT Devices Through MQTT Brokers. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :171—187.
MQTT is widely adopted by IoT devices because it allows for the most efficient data transfer over a variety of communication lines. The security of MQTT has received increasing attention in recent years, and several studies have demonstrated the configurations of many MQTT brokers are insecure. Adversaries are allowed to exploit vulnerable brokers and publish malicious messages to subscribers. However, little has been done to understanding the security issues on the device side when devices handle unauthorized MQTT messages. To fill this research gap, we propose a fuzzing framework named ShadowFuzzer to find client-side vulnerabilities when processing incoming MQTT messages. To avoiding ethical issues, ShadowFuzzer redirects traffic destined for the actual broker to a shadow broker under the control to monitor vulnerabilities. We select 15 IoT devices communicating with vulnerable brokers and leverage ShadowFuzzer to find vulnerabilities when they parse MQTT messages. For these devices, ShadowFuzzer reports 34 zero-day vulnerabilities in 11 devices. We evaluated the exploitability of these vulnerabilities and received a total of 44,000 USD bug bounty rewards. And 16 CVE/CNVD/CN-NVD numbers have been assigned to us.
Ebrahimabadi, Mohammad, Younis, Mohamed, Lalouani, Wassila, Karimi, Naghmeh.  2022.  An Attack Resilient PUF-based Authentication Mechanism for Distributed Systems. 2022 35th International Conference on VLSI Design and 2022 21st International Conference on Embedded Systems (VLSID). :108–113.
In most PUF-based authentication schemes, a central server is usually engaged to verify the response of the device’s PUF to challenge bit-streams. However, the server availability may be intermittent in practice. To tackle such an issue, this paper proposes a new protocol for supporting distributed authentication while avoiding vulnerability to information leakage where CRPs could be retrieved from hacked devices and collectively used to model the PUF. The main idea is to provision for scrambling the challenge bit-stream in a way that is dependent on the verifier. The scrambling pattern varies per authentication round for each device and independently across devices. In essence, the scrambling function becomes node- and packetspecific and the response received by two verifiers of one device for the same challenge bit-stream could vary. Thus, neither the scrambling function can be reverted, nor the PUF can be modeled even by a collusive set of malicious nodes. The validation results using data of an FPGA-based implementation demonstrate the effectiveness of our approach in thwarting PUF modeling attacks by collusive actors. We also discuss the approach resiliency against impersonation, Sybil, and reverse engineering attacks.
Kim, Jae-Dong, Ko, Minseok, Chung, Jong-Moon.  2022.  Novel Analytical Models for Sybil Attack Detection in IPv6-based RPL Wireless IoT Networks. 2022 IEEE International Conference on Consumer Electronics (ICCE). :1–3.
Metaverse technologies depend on various advanced human-computer interaction (HCI) devices to be supported by extended reality (XR) technology. Many new HCI devices are supported by wireless Internet of Things (IoT) networks, where a reliable routing scheme is essential for seamless data trans-mission. Routing Protocol for Low power and Lossy networks (RPL) is a key routing technology used in IPv6-based low power and lossy networks (LLNs). However, in the networks that are configured, such as small wireless devices applying the IEEE 802.15.4 standards, due to the lack of a system that manages the identity (ID) at the center, the maliciously compromised nodes can make fabricated IDs and pretend to be a legitimate node. This behavior is called Sybil attack, which is very difficult to respond to since attackers use multiple fabricated IDs which are legally disguised. In this paper, Sybil attack countermeasures on RPL-based networks published in recent studies are compared and limitations are analyzed through simulation performance analysis.
Jovanovic, Dijana, Marjanovic, Marina, Antonijevic, Milos, Zivkovic, Miodrag, Budimirovic, Nebojsa, Bacanin, Nebojsa.  2022.  Feature Selection by Improved Sand Cat Swarm Optimizer for Intrusion Detection. 2022 International Conference on Artificial Intelligence in Everything (AIE). :685–690.
The rapid growth of number of devices that are connected to internet of things (IoT) networks, increases the severity of security problems that need to be solved in order to provide safe environment for network data exchange. The discovery of new vulnerabilities is everyday challenge for security experts and many novel methods for detection and prevention of intrusions are being developed for dealing with this issue. To overcome these shortcomings, artificial intelligence (AI) can be used in development of advanced intrusion detection systems (IDS). This allows such system to adapt to emerging threats, react in real-time and adjust its behavior based on previous experiences. On the other hand, the traffic classification task becomes more difficult because of the large amount of data generated by network systems and high processing demands. For this reason, feature selection (FS) process is applied to reduce data complexity by removing less relevant data for the active classification task and therefore improving algorithm's accuracy. In this work, hybrid version of recently proposed sand cat swarm optimizer algorithm is proposed for feature selection with the goal of increasing performance of extreme learning machine classifier. The performance improvements are demonstrated by validating the proposed method on two well-known datasets - UNSW-NB15 and CICIDS-2017, and comparing the results with those reported for other cutting-edge algorithms that are dealing with the same problems and work in a similar configuration.
Rodríguez, Elsa, Fukkink, Max, Parkin, Simon, van Eeten, Michel, Gañán, Carlos.  2022.  Difficult for Thee, But Not for Me: Measuring the Difficulty and User Experience of Remediating Persistent IoT Malware. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :392–409.
Consumer IoT devices may suffer malware attacks, and be recruited into botnets or worse. There is evidence that generic advice to device owners to address IoT malware can be successful, but this does not account for emerging forms of persistent IoT malware. Less is known about persistent malware, which resides on persistent storage, requiring targeted manual effort to remove it. This paper presents a field study on the removal of persistent IoT malware by consumers. We partnered with an ISP to contrast remediation times of 760 customers across three malware categories: Windows malware, non-persistent IoT malware, and persistent IoT malware. We also contacted ISP customers identified as having persistent IoT malware on their network-attached storage devices, specifically QSnatch. We found that persistent IoT malware exhibits a mean infection duration many times higher than Windows or Mirai malware; QSnatch has a survival probability of 30% after 180 days, whereby most if not all other observed malware types have been removed. For interviewed device users, QSnatch infections lasted longer, so are apparently more difficult to get rid of, yet participants did not report experiencing difficulty in following notification instructions. We see two factors driving this paradoxical finding: First, most users reported having high technical competency. Also, we found evidence of planning behavior for these tasks and the need for multiple notifications. Our findings demonstrate the critical nature of interventions from outside for persistent malware, since automatic scan of an AV tool or a power cycle, like we are used to for Windows malware and Mirai infections, will not solve persistent IoT malware infections.
Miao, Weiwei, Jin, Chao, Zeng, Zeng, Bao, Zhejing, Wei, Xiaogang, Zhang, Rui.  2022.  A White-Box SM4 Implementation by Introducing Pseudo States Applied to Edge IoT Agents. 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES). :154–160.
With the widespread application of power Internet of Things (IoT), the edge IoT agents are often threatened by various attacks, among which the white-box attack is the most serious. The white-box implementation of the cryptography algorithm can hide key information even in the white-box attack context by means of obfuscation. However, under the specially designed attack, there is still a risk of the information being recovered within a certain time complexity. In this paper, by introducing pseudo states, a new white-box implementation of SM4 algorithm is proposed. The encryption and decryption processes are implemented in the form of matrices and lookup tables, which are obfuscated by scrambling encodings. The introduction of pseudo states could complicate the obfuscation, leading to the great improvement in the security. The number of pseudo states can be changed according to the requirements of security. Through several quantitative indicators, including diversity, ambiguity, the time complexity required to extract the key and the value space of the key and external encodings, it is proved that the security of the proposed implementation could been enhanced significantly, compared with the existing schemes under similar memory occupation.
Xu, Zheng.  2022.  The application of white-box encryption algorithms for distributed devices on the Internet of Things. 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA). :298–301.
With the rapid development of the Internet of Things and the exploration of its application scenarios, embedded devices are deployed in various environments to collect information and data. In such environments, the security of embedded devices cannot be guaranteed and are vulnerable to various attacks, even device capture attacks. When embedded devices are attacked, the attacker can obtain the information transmitted by the channel during the encryption process and the internal operation of the encryption. In this paper, we analyze various existing white-box schemes and show whether they are suitable for application in IoT. We propose an application of WBEAs for distributed devices in IoT scenarios and conduct experiments on several devices in IoT scenarios.
Reynvoet, Maxim, Gheibi, Omid, Quin, Federico, Weyns, Danny.  2022.  Detecting and Mitigating Jamming Attacks in IoT Networks Using Self-Adaptation. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :7—12.
Internet of Things (IoT) networks consist of small devices that use a wireless communication to monitor and possibly control the physical world. A common threat to such networks are jamming attacks, a particular type of denial of service attack. Current research highlights the need for the design of more effective and efficient anti-jamming techniques that can handle different types of attacks in IoT networks. In this paper, we propose DeMiJA, short for Detection and Mitigation of Jamming Attacks in IoT, a novel approach to deal with different jamming attacks in IoT networks. DeMiJA leverages architecture-based adaptation and the MAPE-K reference model (Monitor-Analyze-Plan-Execute that share Knowledge). We present the general architecture of DeMiJA and instantiate the architecture to deal with jamming attacks in the DeltaIoT exemplar. The evaluation shows that DeMiJA can handle different types of jamming attacks effectively and efficiently, with neglectable overhead.
Moualla, Ghada, Bolle, Sebastien, Douet, Marc, Rutten, Eric.  2022.  Self-adaptive Device Management for the IoT Using Constraint Solving. 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS). :641—650.
In the context of IoT (Internet of Things), Device Management (DM), i.e., remote administration of IoT devices, becomes essential to keep them connected, updated and secure, thus increasing their lifespan through firmware and configuration updates and security patches. Legacy DM solutions are adequate when dealing with home devices (such as Television set-top boxes) but need to be extended to adapt to new IoT requirements. Indeed, their manual operation by system administrators requires advanced knowledge and skills. Further, the static DM platform — a component above IoT platforms that offers advanced features such as campaign updates / massive operation management — is unable to scale and adapt to IoT dynamicity. To cope with this, this work, performed in an industrial context at Orange, proposes a self-adaptive architecture with runtime horizontal scaling of DM servers, with an autonomic Auto-Scaling Manager, integrating in the loop constraint programming for decision-making, validated with a meaningful industrial use-case.
Nisansala, Sewwandi, Chandrasiri, Gayal Laksara, Prasadika, Sonali, Jayasinghe, Upul.  2022.  Microservice Based Edge Computing Architecture for Internet of Things. 2022 2nd International Conference on Advanced Research in Computing (ICARC). :332—337.
Distributed computation and AI processing at the edge has been identified as an efficient solution to deliver real-time IoT services and applications compared to cloud-based paradigms. These solutions are expected to support the delay-sensitive IoT applications, autonomic decision making, and smart service creation at the edge in comparison to traditional IoT solutions. However, existing solutions have limitations concerning distributed and simultaneous resource management for AI computation and data processing at the edge; concurrent and real-time application execution; and platform-independent deployment. Hence, first, we propose a novel three-layer architecture that facilitates the above service requirements. Then we have developed a novel platform and relevant modules with integrated AI processing and edge computer paradigms considering issues related to scalability, heterogeneity, security, and interoperability of IoT services. Further, each component is designed to handle the control signals, data flows, microservice orchestration, and resource composition to match with the IoT application requirements. Finally, the effectiveness of the proposed platform is tested and have been verified.
Sagar, Maloth, C, Vanmathi.  2022.  Network Cluster Reliability with Enhanced Security and Privacy of IoT Data for Anomaly Detection Using a Deep Learning Model. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). :1670—1677.
Cyber Physical Systems (CPS), which contain devices to aid with physical infrastructure activities, comprise sensors, actuators, control units, and physical objects. CPS sends messages to physical devices to carry out computational operations. CPS mainly deals with the interplay among cyber and physical environments. The real-time network data acquired and collected in physical space is stored there, and the connection becomes sophisticated. CPS incorporates cyber and physical technologies at all phases. Cyber Physical Systems are a crucial component of Internet of Things (IoT) technology. The CPS is a traditional concept that brings together the physical and digital worlds inhabit. Nevertheless, CPS has several difficulties that are likely to jeopardise our lives immediately, while the CPS's numerous levels are all tied to an immediate threat, therefore necessitating a look at CPS security. Due to the inclusion of IoT devices in a wide variety of applications, the security and privacy of users are key considerations. The rising level of cyber threats has left current security and privacy procedures insufficient. As a result, hackers can treat every person on the Internet as a product. Deep Learning (DL) methods are therefore utilised to provide accurate outputs from big complex databases where the outputs generated can be used to forecast and discover vulnerabilities in IoT systems that handles medical data. Cyber-physical systems need anomaly detection to be secure. However, the rising sophistication of CPSs and more complex attacks means that typical anomaly detection approaches are unsuitable for addressing these difficulties since they are simply overwhelmed by the volume of data and the necessity for domain-specific knowledge. The various attacks like DoS, DDoS need to be avoided that impact the network performance. In this paper, an effective Network Cluster Reliability Model with enhanced security and privacy levels for the data in IoT for Anomaly Detection (NSRM-AD) using deep learning model is proposed. The security levels of the proposed model are contrasted with the proposed model and the results represent that the proposed model performance is accurate
Urien, Pascal.  2022.  Demonstrating Virtual IO For Internet Of Things Devices Secured By TLS Server In Secure Element. 2022 IEEE/ACM Seventh International Conference on Internet-of-Things Design and Implementation (IoTDI). :111—112.
This demonstration presents an internet of things device (thermostat), whose security is enforced by a secure element (smartcard) running TLS server, and using Virtual Input/Ouput technology. The board comprises a Wi-Fi system on chip (SoC), a micro-controller managing sensor (temperature probe) and actuator (relay), and a javacard. All device messages are sent/received over TLS, and processed by the secure element. Some of them are exported to micro-controller in clear form, which returns a response, sent over TLS by the smartcard.
Thiagarajan, K., Dixit, Chandra Kumar, Panneerselvam, M., Madhuvappan, C.Arunkumar, Gadde, Samata, Shrote, Jyoti N.  2022.  Analysis on the Growth of Artificial Intelligence for Application Security in Internet of Things. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :6—12.
Artificial intelligence is a subfield of computer science that refers to the intelligence displayed by machines or software. The research has influenced the rapid development of smart devices that have a significant impact on our daily lives. Science, engineering, business, and medicine have all improved their prediction powers in order to make our lives easier in our daily tasks. The quality and efficiency of regions that use artificial intelligence has improved, as shown in this study. It successfully handles data organisation and environment difficulties, allowing for the development of a more solid and rigorous model. The pace of life is quickening in the digital age, and the PC Internet falls well short of meeting people’s needs. Users want to be able to get convenient network information services at any time and from any location