Visible to the public Biblio

Found 165 results

Filters: Keyword is IoT  [Clear All Filters]
2019-10-08
Bellini, Emanuele, Caullery, Florian, Hasikos, Alexandros, Manzano, Marc, Mateu, Victor.  2018.  You Shall Not Pass! (Once Again): An IoT Application of Post-Quantum Stateful Signature Schemes. Proceedings of the 5th ACM on ASIA Public-Key Cryptography Workshop. :19–24.

This paper presents an authentication protocol specifically tailored for IoT devices that inherently limits the number of times that an entity can authenticate itself with a given key pair. The protocol we propose is based on a stateful hash-based digital signature system called eXtended Merkle Signature Scheme (XMSS), which has increased its popularity of late due to its resistance to quantum-computer-aided attacks. We propose a 1-pass authentication protocol that can be customized according to the server capabilities to keep track of the key pair state. In addition, we present results when ported to ARM Cortex-M3 and M0 processors.

2019-10-02
Alkadi, A., Chi, H., Prodanoff, Z. G., Kreidl, P..  2018.  Evaluation of Two RFID Traffic Models with Potential in Anomaly Detection. SoutheastCon 2018. :1–5.

The use of Knuth's Rule and Bayesian Blocks constant piecewise models for characterization of RFID traffic has been proposed already. This study presents an evaluation of the application of those two modeling techniques for various RFID traffic patterns. The data sets used in this study consist of time series of binned RFID command counts. More specifically., we compare the shape of several empirical plots of raw data sets we obtained from experimental RIFD readings., against the constant piecewise graphs produced as an output of the two modeling algorithms. One issue limiting the applicability of modeling techniques to RFID traffic is the fact that there are a large number of various RFID applications available. We consider this phenomenon to present the main motivation for this study. The general expectation is that the RFID traffic traces from different applications would be sequences with different histogram shapes. Therefore., no modeling technique could be considered universal for modeling the traffic from multiple RFID applications., without first evaluating its model performance for various traffic patterns. We postulate that differences in traffic patterns are present if the histograms of two different sets of RFID traces form visually different plot shapes.

Sharma, V., Vithalkar, A., Hashmi, M..  2018.  Lightweight Security Protocol for Chipless RFID in Internet of Things (IoT) Applications. 2018 10th International Conference on Communication Systems Networks (COMSNETS). :468–471.

The RFID based communication between objects within the framework of IoT is potentially very efficient in terms of power requirements and system complexity. The new design incorporating the emerging chipless RFID tags has the potential to make the system more efficient and simple. However, these systems are prone to privacy and security risks and these challenges associated with such systems have not been addressed appropriately in the broader IoT framework. In this context, a lightweight collision free algorithm based on n-bit pseudo random number generator, X-OR hash function, and rotations for chipless RFID system is presented. The algorithm has been implemented on an 8-bit open-loop resonator based chipless RFID tag based system and is validated using BASYS 2 FPGA board based platform. The proposed scheme has been shown to possess security against various attacks such as Denial of Service (DoS), tag/reader anonymity, and tag impersonation.

Sharma, V., Malhotra, S., Hashmi, M..  2018.  An Emerging Application Centric RFID Framework Based on New Web Technology. 2018 IEEE International Conference on RFID Technology Application (RFID-TA). :1–6.

In the context of emerging applications such as IoT, an RFID framework that can dynamically incorporate, identify, and seamlessly regulate the RFID tags is considered exciting. Earlier RFID frameworks developed using the older web technologies were limited in their ability to provide complete information about the RFID tags and their respective locations. However, the new and emerging web technologies have transformed this scenario and now framework can be developed to include all the required flexibility and security for seamless applications such as monitoring of RFID tags. This paper revisits and proposes a generic scenario of an RFID framework built using latest web technology and demonstrates its ability to customize using an application for tracking of personal user objects. This has been shown that the framework based on newer web technologies can be indeed robust, uniform, unified, and integrated.

Huang, Shao-Cheng, Tsai, Chia-Wei, Hwang, Tzonelih.  2018.  Comment on "Cryptanalysis of a Novel Ultralightweight Mutual Authentication Protocol for IoT Devices Using RFID Tags". Proceedings of the 2018 International Conference on Data Science and Information Technology. :23–27.

To protect the security of IoT devices, Tewari and Gupta proposed an ultralightweight mutual-authentication protocol for an RFID system. In the protocol, only two simple bitwise operations (XOR and rotation) are used to achieve two-pass mutual authentication. Although the protocol is efficient, we observe that the protocol has a security vulnerability. This security weakness could cause the leaking of all secrets in RFID tags. Compared with other researches that also proposed attacks for Tewari and Gupta's protocol, our attack needs less time and smaller space complexity to implement. The time complexity of our attack is O(1), and the attack can successfully crack the protocol with 100% probability.

McMahon, E., Patton, M., Samtani, S., Chen, H..  2018.  Benchmarking Vulnerability Assessment Tools for Enhanced Cyber-Physical System (CPS) Resiliency. 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). :100–105.
Cyber-Physical Systems (CPSs) are engineered systems seamlessly integrating computational algorithms and physical components. CPS advances offer numerous benefits to domains such as health, transportation, smart homes and manufacturing. Despite these advances, the overall cybersecurity posture of CPS devices remains unclear. In this paper, we provide knowledge on how to improve CPS resiliency by evaluating and comparing the accuracy, and scalability of two popular vulnerability assessment tools, Nessus and OpenVAS. Accuracy and suitability are evaluated with a diverse sample of pre-defined vulnerabilities in Industrial Control Systems (ICS), smart cars, smart home devices, and a smart water system. Scalability is evaluated using a large-scale vulnerability assessment of 1,000 Internet accessible CPS devices found on Shodan, the search engine for the Internet of Things (IoT). Assessment results indicate several CPS devices from major vendors suffer from critical vulnerabilities such as unsupported operating systems, OpenSSH vulnerabilities allowing unauthorized information disclosure, and PHP vulnerabilities susceptible to denial of service attacks.
2019-09-23
Kobayashi, Toru, Nakashima, Ryota, Uchida, Rinsuke, Arai, Kenichi.  2018.  SNS Door Phone As Robotic Process Automation. Proceedings of the 2018 ACM International Conference on Interactive Surfaces and Spaces. :457–460.
We developed SNS Door Phone by making an interphone system an IoT device. We integrated SNS and QR-code recognition function with an interphone system. Thanks to connection with SNS, we can know the visit of the parcel delivery service anytime through SNS even if during going out. Thanks to introduction of QR-code recognition function, if a parcel deliveryman only showed the QR-code of the parcel in front of SNS Door Phone, the re-delivery operation information would be sent to a user automatically through SNS. Then, the user can call or ask re-delivery arrangement using smart phone without inputting any additional data. We can consider this kind of seamless re-delivery operation to be a good example of Robotic Process Automation.
Ramijak, Dusan, Pal, Amitangshu, Kant, Krishna.  2018.  Pattern Mining Based Compression of IoT Data. Proceedings of the Workshop Program of the 19th International Conference on Distributed Computing and Networking. :12:1–12:6.
The increasing proliferation of the Internet of Things (IoT) devices and systems result in large amounts of highly heterogeneous data to be collected. Although at least some of the collected sensor data is often consumed by the real-time decision making and control of the IoT system, that is not the only use of such data. Invariably, the collected data is stored, perhaps in some filtered or downselected fashion, so that it can be used for a variety of lower-frequency operations. It is expected that in a smart city environment with numerous IoT deployments, the volume of such data can become enormous. Therefore, mechanisms for lossy data compression that provide a trade-off between compression ratio and data usefulness for offline statistical analysis becomes necessary. In this paper, we discuss several simple pattern mining based compression strategies for multi-attribute IoT data streams. For each method, we evaluate the compressibility of the method vs. the level of similarity between original and compressed time series in the context of the home energy management system.
2019-09-11
Mbiriki, A., Katar, C., Badreddine, A..  2018.  Improvement of Security System Level in the Cyber-Physical Systems (CPS) Architecture. 2018 30th International Conference on Microelectronics (ICM). :40–43.

Industry 4.0 is based on the CPS architecture since it is the next generation in the industry. The CPS architecture is a system based on Cloud Computing technology and Internet of Things where computer elements collaborate for the control of physical entities. The security framework in this architecture is necessary for the protection of two parts (physical and information) so basically, security in CPS is classified into two main parts: information security (data) and security of control. In this work, we propose two models to solve the two problems detected in the security framework. The first proposal SCCAF (Smart Cloud Computing Adoption Framework) treats the nature of information that serves for the detection and the blocking of the threats our basic architecture CPS. The second model is a modeled detector related to the physical nature for detecting node information.

2019-09-09
Karlsson, J., Dooley, L. S., Pulkkis, G..  2018.  Secure Routing for MANET Connected Internet of Things Systems. 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud). :114-119.

This paper presents a contemporary review of communication architectures and topographies for MANET-connected Internet-of-Things (IoT) systems. Routing protocols for multi-hop MANETs are analyzed with a focus on the standardized Routing Protocol for Low-power and Lossy Networks. Various security threats and vulnerabilities in current MANET routing are described and security enhanced routing protocols and trust models presented as methodologies for supporting secure routing. Finally, the paper identifies some key research challenges in the emerging domain of MANET-IoT connectivity.

2019-08-26
Asati, V. K., Pilli, E. S., Vipparthi, S. K., Garg, S., Singhal, S., Pancholi, S..  2018.  RMDD: Cross Layer Attack in Internet of Things. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :172-178.

The existing research on the Internet of Things(IoT) security mainly focuses on attack and defense on a single protocol layer. Increasing and ubiquitous use of loT also makes it vulnerable to many attacks. An attacker try to performs the intelligent, brutal and stealthy attack that can reduce the risk of being detected. In these kinds of attacks, the attackers not only restrict themselves to a single layer of protocol stack but they also try to decrease the network performance and throughput by a simultaneous and coordinated attack on different layers. A new class of attacks, termed as cross-layer attack became prominent due to lack of interaction between MAC, routing and upper layers. These attacks achieve the better effect with reduced cost. Research has been done on cross-layer attacks in other domains like Cognitive Radio Network(CRN), Wireless Sensor Networks(WSN) and ad-hoc networks. However, our proposed scheme of cross-layer attack in IoT is the first paper to the best of our knowledge. In this paper, we have proposed Rank Manipulation and Drop Delay(RMDD) cross-layer attack in loT, we have investigated how small intensity attack on Routing protocol for low power lossy networks (RPL) degrades the overall application throughput. We have exploited the Rank system of the RPL protocol to implement the attacks. Rank is given to each node in the graph, and it shows its position in the network. If the rank could be manipulated in some manner, then the network topology can be modified. Simulation results demonstrate that the proposed attacks degrade network performance very much in terms of the throughput, latency, and connectivity.

Ozeer, Umar, Etchevers, Xavier, Letondeur, Loïc, Ottogalli, Fran\c cois-Gaël, Salaün, Gwen, Vincent, Jean-Marc.  2018.  Resilience of Stateful IoT Applications in a Dynamic Fog Environment. Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. :332-341.

Fog computing provides computing, storage and communication resources at the edge of the network, near the physical world. Subsequently, end devices nearing the physical world can have interesting properties such as short delays, responsiveness, optimized communications and privacy. However, these end devices have low stability and are prone to failures. There is consequently a need for failure management protocols for IoT applications in the Fog. The design of such solutions is complex due to the specificities of the environment, i.e., (i) dynamic infrastructure where entities join and leave without synchronization, (ii) high heterogeneity in terms of functions, communication models, network, processing and storage capabilities, and, (iii) cyber-physical interactions which introduce non-deterministic and physical world's space and time dependent events. This paper presents a fault tolerance approach taking into account these three characteristics of the Fog-IoT environment. Fault tolerance is achieved by saving the state of the application in an uncoordinated way. When a failure is detected, notifications are propagated to limit the impact of failures and dynamically reconfigure the application. Data stored during the state saving process are used for recovery, taking into account consistency with respect to the physical world. The approach was validated through practical experiments on a smart home platform.

Chakraborty, Saurav, Thomas, Drew, DeHart, Joanathan, Saralaya, Kishan, Tadepalli, Prabhakar, Narendra, Siva G..  2018.  Solving Internet's Weak Link for Blockchain and IoT Applications. Proceedings of the 1st ACM/EIGSCC Symposium on Smart Cities and Communities. :6:1–6:5.
Blockchain normalizes applications that run on the internet through the standardization of decentralized data structure, computational requirements and trust in transactions. This new standard has now spawned hundreds of legitimate internet applications in addition to the cryptocurrency revolution. This next frontier that standardizes internet applications will dramatically increase productivity to levels never seen before, especially when applied to Internet of Things (IoT) applications. The blockchain framework relies on cryptographic private keys to sign digital data as its foundational principle. Without the security of private keys to sign data blocks, there can be no trust in blockchain. Central storage of these keys for managing IoT machines and users, while convenient to implement, will be highly detrimental to the assumed safety and security of this next frontier. In this paper, we will introduce decentralized and device agnostic cryptographic signing solutions suitable for securing users and machines in blockchain and IoT applications.
2019-08-05
Sertbaş, Nurefşan, Aytaç, Samet, Ermiş, Orhan, Alagöz, Fatih, Gür, Gürkan.  2018.  Attribute Based Content Security and Caching in Information Centric IoT. Proceedings of the 13th International Conference on Availability, Reliability and Security. :34:1–34:8.
Information-centric networking (ICN) is a Future Internet paradigm which uses named information (data objects) instead of host-based end-to-end communications. In-network caching is a key pillar of ICN. Basically, data objects are cached in ICN routers and retrieved from these network elements upon availability when they are requested. It is a particularly promising networking approach due to the expected benefits of data dissemination efficiency, reduced delay and improved robustness for challenging communication scenarios in IoT domain. From the security perspective, ICN concentrates on securing data objects instead of ensuring the security of end-to-end communication link. However, it inherently involves the security challenge of access control for content. Thus, an efficient access control mechanism is crucial to provide secure information dissemination. In this work, we investigate Attribute Based Encryption (ABE) as an access control apparatus for information centric IoT. Moreover, we elaborate on how such a system performs for different parameter settings such as different numbers of attributes and file sizes.
Pan, G., He, J., Wu, Q., Fang, R., Cao, J., Liao, D..  2018.  Automatic stabilization of Zigbee network. 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD). :224–227.

We present an intelligent system that focus on how to ensure the stability of ZigBee network automatically. First, we discussed on the character of ZigBee compared with WIFI. Pointed out advantage of ZigBee resides in security, stability, low power consumption and better expandability. Second, figuring out the shortcomings of ZigBee on application is that physical limitation of the frequency band and weak ability on diffraction, especially coming across a wall or a door in the actual environment of home. The third, to put forward a method which can be used to ensure the strength of ZigBee signal. The method is to detect the strength of ZigBee relay in advance. And then, to compare it with the threshold value which had been defined in previous. The threshold value of strength of ZigBee is the minimal and tolerable value which can ensure stable transmission of ZigBee. If the detected value is out of the range of threshold, system will prompt up warning message which can be used to hint user to add ZigBee reply between the original ZigBee node and ZigBee gateway.

Thapliyal, H., Ratajczak, N., Wendroth, O., Labrado, C..  2018.  Amazon Echo Enabled IoT Home Security System for Smart Home Environment. 2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :31–36.

Ever-driven by technological innovation, the Internet of Things (IoT) is continuing its exceptional evolution and growth into the common consumer space. In the wake of these developments, this paper proposes a framework for an IoT home security system that is secure, expandable, and accessible. Congruent with the ideals of the IoT, we are proposing a system utilizing an ultra-low-power wireless sensor network which would interface with a central hub via Bluetooth 4, commonly referred to as Bluetooth Low Energy (BLE), to monitor the home. Additionally, the system would interface with an Amazon Echo to accept user voice commands. The aforementioned central hub would also act as a web server and host an internet accessible configuration page from which users could monitor and customize their system. An internet-connected system would carry the capability to notify the users of system alarms via SMS or email. Finally, this proof of concept is intended to demonstrate expandability into other areas of home automation or building monitoring functions in general.

2019-07-01
Ammar, Zakariya, AlSharif, Ahmad.  2018.  Deployment of IoT-based Honeynet Model. Proceedings of the 6th International Conference on Information Technology: IoT and Smart City. :134–139.
This paper deals with the developing model of a honeynet that depends on the Internet of things (IoT). Due to significant of industrial services, such model helps enhancement of information security detection in industrial domain, the model is designed to detect adversaries whom attempt to attack industrial control systems (ICS) and supervisory control and data acquisition (SCADA) systems. The model consists of hardware and software aspects, designed to focus on ICS services that managed remotely via SCADA systems. In order to prove the work of the model, a few of security tools are used such as Shodan, Nmap and others. These tools have been applied locally inside LAN and globally via internet to get proving results. Ultimately, results contain a list of protocols and ports that represent industry control services. To clarify outputs, it contains tcp/udp ports 623, 102, 1025 and 161 which represent respectively IPMI, S7comm, KAMSTRAP and SNMP services.
Saleem, Jibran, Hammoudeh, Mohammad, Raza, Umar, Adebisi, Bamidele, Ande, Ruth.  2018.  IoT Standardisation: Challenges, Perspectives and Solution. Proceedings of the 2Nd International Conference on Future Networks and Distributed Systems. :1:1-1:9.

The success and widespread adoption of the Internet of Things (IoT) has increased many folds over the last few years. Industries, technologists and home users recognise the importance of IoT in their lives. Essentially, IoT has brought vast industrial revolution and has helped automate many processes within organisations and homes. However, the rapid growth of IoT is also a cause for significant concern. IoT is not only plagued with security, authentication and access control issues, it also doesn't work as well as it should with fourth industrial revolution, commonly known as Industry 4.0. The absence of effective regulation, standards and weak governance has led to a continual downward trend in the security of IoT networks and devices, as well as given rise to a broad range of privacy issues. This paper examines the IoT industry and discusses the urgent need for standardisation, the benefits of governance as well as the issues affecting the IoT sector due to the absence of regulation. Additionally, through this paper, we are introducing an IoT security framework (IoTSFW) for organisations to bridge the current lack of guidelines in the IoT industry. Implementation of the guidelines, defined in the proposed framework, will assist organisations in achieving security, privacy, sustainability and scalability within their IoT networks.

2019-06-28
Hamza, Ayyoob, Gharakheili, Hassan Habibi, Sivaraman, Vijay.  2018.  Combining MUD Policies with SDN for IoT Intrusion Detection. Proceedings of the 2018 Workshop on IoT Security and Privacy. :1-7.

The IETF's push towards standardizing the Manufacturer Usage Description (MUD) grammar and mechanism for specifying IoT device behavior is gaining increasing interest from industry. The ability to control inappropriate communication between devices in the form of access control lists (ACLs) is expected to limit the attack surface on IoT devices; however, little is known about how MUD policies will get enforced in operational networks, and how they will interact with current and future intrusion detection systems (IDS). We believe this paper is the first attempt to translate MUD policies into flow rules that can be enforced using SDN, and in relating exception behavior to attacks that can be detected via off-the-shelf IDS. Our first contribution develops and implements a system that translates MUD policies to flow rules that are proactively configured into network switches, as well as reactively inserted based on run-time bindings of DNS. We use traces of 28 consumer IoT devices taken over several months to evaluate the performance of our system in terms of switch flow-table size and fraction of exception traffic that needs software inspection. Our second contribution identifies the limitations of flow-rules derived from MUD in protecting IoT devices from internal and external network attacks, and we show how our system is able to detect such volumetric attacks (including port scanning, TCP/UDP/ICMP flooding, ARP spoofing, and TCP/SSDP/SNMP reflection) by sending only a very small fraction of exception packets to off-the-shelf IDS.

Kulik, T., Tran-Jørgensen, P. W. V., Boudjadar, J., Schultz, C..  2018.  A Framework for Threat-Driven Cyber Security Verification of IoT Systems. 2018 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :89-97.

Industrial control systems are changing from monolithic to distributed and interconnected architectures, entering the era of industrial IoT. One fundamental issue is that security properties of such distributed control systems are typically only verified empirically, during development and after system deployment. We propose a novel modelling framework for the security verification of distributed industrial control systems, with the goal of moving towards early design stage formal verification. In our framework we model industrial IoT infrastructures, attack patterns, and mitigation strategies for countering attacks. We conduct model checking-based formal analysis of system security through scenario execution, where the analysed system is exposed to attacks and implement mitigation strategies. We study the applicability of our framework for large systems using a scalability analysis.

2019-06-24
Kim, Gihoon, Choi, Chang, Choi, Junho.  2018.  Ontology Modeling for APT Attack Detection in an IoT-based Power System. Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems. :160–164.

Smart grid technology is the core technology for the next-generation power grid system with enhanced energy efficiency through decision-making communication between suppliers and consumers enabled by integrating the IoT into the existing grid. This open architecture allowing bilateral information exchange makes it vulnerable to various types of cyberattack. APT attacks, one of the most common cyberattacks, are highly tricky and sophisticated attacks that can circumvent the existing detection technology and attack the targeted system after a certain latent period after intrusion. This paper proposes an ontology-based attack detection system capable of early detection of and response to APT attacks by analyzing their attacking patterns.

Cao, H., Liu, S., Guan, Z., Wu, L., Deng, H., Du, X..  2018.  An Efficient Privacy-Preserving Algorithm Based on Randomized Response in IoT-Based Smart Grid. 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :881–886.

In this paper, we propose a new randomized response algorithm that can achieve differential-privacy and utility guarantees for consumer's behaviors, and process a batch of data at each time. Firstly, differing from traditional differential private approach-es, we add randomized response noise into the behavior signa-tures matrix to achieve an acceptable utility-privacy tradeoff. Secondly, a behavior signature modeling method based on sparse coding is proposed. After some lightweight trainings us-ing the energy consumption data, the dictionary will be associat-ed with the behavior characteristics of the electric appliances. At last, through the experimental results verification, we find that our Algorithm can preserve consumer's privacy without comprising utility.

2019-06-17
Shif, L., Wang, F., Lung, C..  2018.  Improvement of security and scalability for IoT network using SD-VPN. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–5.

The growing interest in the smart device/home/city has resulted in increasing popularity of Internet of Things (IoT) deployment. However, due to the open and heterogeneous nature of IoT networks, there are various challenges to deploy an IoT network, among which security and scalability are the top two to be addressed. To improve the security and scalability for IoT networks, we propose a Software-Defined Virtual Private Network (SD-VPN) solution, in which each IoT application is allocated with its own overlay VPN. The VPN tunnels used in this paper are VxLAN based tunnels and we propose to use the SDN controller to push the flow table of each VPN to the related OpenvSwitch via the OpenFlow protocol. The SD-VPN solution can improve the security of an IoT network by separating the VPN traffic and utilizing service chaining. Meanwhile, it also improves the scalability by its overlay VPN nature and the VxLAN technology.

Nguyen, Phu H., Phung, Phu H., Truong, Hong-Linh.  2018.  A Security Policy Enforcement Framework for Controlling IoT Tenant Applications in the Edge. Proceedings of the 8th International Conference on the Internet of Things. :4:1–4:8.
In the context of edge computing, IoT-as-a-Service (IoTaaS) with IoT data hubs and execution services allow IoT tenant applications (apps) to be executed next to IoT devices, enabling edge analytics and controls. However, this brings up new security challenges on controlling tenant apps in IoTaaS, whilst the great potential of IoTaaS can only be realized by flexible security mechanisms to govern such applications. In this paper, we propose a Model-Driven Security policy enforcement framework, named MDSIoT, for IoT tenant apps deployed in edge servers. This framework allows execution policies specified at the model level and then transformed into the code that can be deployed for policy enforcement at runtime. Moreover, our approach supports for the interoperability of IoT tenant apps when deployed in the edge to access IoTaaS services. The interoperability is enabled by an intermediate proxy layer (gatekeeper) that abstracts underlying communication protocols to the different IoTaaS services from IoT tenant apps. Therefore, our approach supports different IoT tenant apps to be deployed and controlled automatically, independently from their technologies, e.g. programming languages. We have developed a proof-of-concept of the proposed gatekeepers based on ThingML, derived from execution policies. Thanks to the ThingML tool, we can generate platform-specific code of gatekeepers that can be deployed in the edge for controlling IoT tenant apps based on the execution policies.
2019-05-20
Kurera, C., Navoda, D..  2018.  Node-to-Node Secure Data Transmission Protocol for Low-power IoT Devices. 2018 18th International Conference on Advances in ICT for Emerging Regions (ICTer). :1–7.

Through the internet and local networks, IoT devices exchange data. Most of the IoT devices are low-power devices, meaning that they are designed to use less electric power. To secure data transmission, it is required to encrypt the messages. Encryption and decryption of messages are computationally expensive activities, thus require considerable amount of processing and memory power which is not affordable to low-power IoT devices. Therefore, not all secure transmission protocols are low-power IoT devices friendly. This study proposes a secure data transmission protocol for low-power IoT devices. The design inherits some features in Kerberos and onetime password concepts. The protocol is designed for devices which are connected to each other, as in a fully connected network topology. The protocol uses symmetric key cryptography under the assumption of that the device specific keys are never being transmitted over the network. It resists DoS, message replay and Man-of-the-middle attacks while facilitating the key security concepts such as Authenticity, Confidentiality and Integrity. The designed protocol uses less number of encryption/decryption cycles and maintain session based strong authentication to facilitate secure data transmission among nodes.