Visible to the public Biblio

Found 204 results

Filters: Keyword is IoT  [Clear All Filters]
Nouichi, Douae, Abdelsalam, Mohamed, Nasir, Qassim, Abbas, Sohail.  2019.  IoT Devices Security Using RF Fingerprinting. 2019 Advances in Science and Engineering Technology International Conferences (ASET). :1–7.
Internet of Things (IoT) devices industry is rapidly growing, with an accelerated increase in the list of manufacturers offering a wide range of smart devices selected to enhance end-users' standard of living. Security remains an after-thought in these devices resulting in vulnerabilities. While there exists a cryptographic protocol designed to solve such authentication problem, the computational complexity of cryptographic protocols and scalability problems make almost all cryptography-based authentication protocols impractical for IoT. Wireless RFF (Radio Frequency Fingerprinting) comes as a physical layer-based security authentication method that improves wireless security authentication, which is especially useful for the power and computing limited devices. As a proof-of-concept, this paper proposes a universal SDR (software defined Radio)-based inexpensive implementation intended to sense emitted wireless signals from IoT devices. Our approach is validated by extracting mobile phone signal bursts under different user-dedicated modes. The proposed setup is well adapted to accurately capture signals from different telecommunication standards. To ensure a unique identification of IoT devices, this paper also provides an optimum set of features useful to generate the device identity fingerprint.
Pandelea, Alexandru-Ionut, Chiroiu, Mihai-Daniel.  2019.  Password Guessing Using Machine Learning on Wearables. 2019 22nd International Conference on Control Systems and Computer Science (CSCS). :304–311.
Wearables are now ubiquitous items equipped with a multitude of sensors such as GPS, accelerometer, or Bluetooth. The raw data from this sensors are typically used in a health context. However, we can also use it for security purposes. In this paper, we present a solution that aims at using data from the sensors of a wearable device to identify the password a user is typing on a keyboard by using machine learning algorithms. Hence, the purpose is to determine whether a malicious third party application could extract sensitive data through the raw data that it has access to.
Hassan, Mehmood, Mansoor, Khwaja, Tahir, Shahzaib, Iqbal, Waseem.  2019.  Enhanced Lightweight Cloud-assisted Mutual Authentication Scheme for Wearable Devices. 2019 International Conference on Applied and Engineering Mathematics (ICAEM). :62–67.
With the emergence of IoT, wearable devices are drawing attention and becoming part of our daily life. These wearable devices collect private information about their wearers. Mostly, a secure authentication process is used to verify a legitimate user that relies on the mobile terminal. Similarly, remote cloud services are used for verification and authentication of both wearable devices and wearers. Security is necessary to preserve the privacy of users. Some traditional authentication protocols are proposed which have vulnerabilities and are prone to different attacks like forgery, de-synchronization, and un-traceability issues. To address these vulnerabilities, recently, Wu et al. (2017) proposed a cloud-assisted authentication scheme which is costly in terms of computations required. Therefore this paper proposed an improved, lightweight and computationally efficient authentication scheme for wearable devices. The proposed scheme provides similar level of security as compared to Wu's (2017) scheme but requires 41.2% lesser computations.
Rizk, Dominick, Rizk, Rodrigue, Hsu, Sonya.  2019.  Applied Layered-Security Model to IoMT. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :227–227.
Nowadays, IoT has crossed all borders and become ubiquitous in everyday life. This emerging technology has a huge success in closing the gap between the digital and the real world. However, security and privacy become huge concerns especially in the medical field which prevent the healthcare industry from adopting it despite its benefits and potentials. This paper focuses on identifying potential security threats to the IoMT and presents the security mechanisms to remove any possible impediment from immune information security of IoMT. A summarized framework of the layered-security model is proposed followed by a specific assessment review of each layer.
Alfaleh, Faleh, Alfehaid, Haitham, Alanzy, Mohammed, Elkhediri, Salim.  2019.  Wireless Sensor Networks Security: Case study. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–4.
Wireless Sensor Networks (WSNs) are important and becoming more important as we integrate wireless sensor networks and the internet with different things, which has changed our life, and it is affected everywhere in our life like shopping, storage, live monitoring, smart home etc., called Internet of Things (IoT), as any use of the network physical devices that included in electronics, software, sensors, actuators, and connectivity which makes available these things to connect, collect and exchange data, and the most importantly thing is the accuracy of the data that has been collected in the Internet of Things, detecting sensor data with faulty readings is an important issue of secure communication and power consumption. So, requirement of energy-efficiency and integrity of information is mandatory.
Shukla, Meha, Johnson, Shane D., Jones, Peter.  2019.  Does the NIS implementation strategy effectively address cyber security risks in the UK? 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–11.
This research explored how cyber security risks are managed across UK Critical National Infrastructure (CNI) sectors following implementation of the 2018 Networks and Information Security (NIS) legislation. Being in its infancy, there has been limited study into the effectiveness of this national framework for cyber risk management. The analysis of data gathered through interviews with key stakeholders against the NIS objectives indicated a collaborative implementation approach to improve cyber-risk management capabilities in CNI sectors. However, more work is required to bridge the gaps in the NIS framework to ensure holistic security across cyber spaces as well as non-cyber elements: cyber-physical security, cross-sector CNI service security measures, outcome-based regulatory assessments and risks due to connected smart technology implementations alongside legacy systems. This paper proposes ten key recommendations to counter the danger of not meeting the NIS key strategic objectives. In particular, it recommends that the approach to NIS implementation needs further alignment with its objectives, such as bringing a step-change in the cyber-security risk management capabilities of the CNI sectors.
Bansal, Bhawana, Sharma, Monika.  2019.  Client-Side Verification Framework for Offline Architecture of IoT. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :1044–1050.
Internet of things is a network formed between two or more devices through internet which helps in sharing data and resources. IoT is present everywhere and lot of applications in our day-to-day life such as smart homes, smart grid system which helps in reducing energy consumption, smart garbage collection to make cities clean, smart cities etc. It has some limitations too such as concerns of security of the network and the cost of installations of the devices. There have been many researches proposed various method in improving the IoT systems. In this paper, we have discussed about the scope and limitations of IoT in various fields and we have also proposed a technique to secure offline architecture of IoT.
Yang, Weiyong, Liu, Wei, Wei, Xingshen, Lv, Xiaoliang, Qi, Yunlong, Sun, Boyan, Liu, Yin.  2019.  Micro-Kernel OS Architecture and its Ecosystem Construction for Ubiquitous Electric Power IoT. 2019 IEEE International Conference on Energy Internet (ICEI). :179–184.
The operating system is extremely important for both "Made in China 2025" and ubiquitous electric power Internet of Things. By investigating of five key requirements for ubiquitous electric power Internet of Things at the OS level (performance, ecosystem, information security, functional security, developer framework), this paper introduces the intelligent NARI microkernel Operating System and its innovative schemes. It is implemented with microkernel architecture based on the trusted computing. Some technologies such as process based fine-grained real-time scheduling algorithm, sigma0 efficient message channel and service process binding in multicore are applied to improve system performance. For better ecological expansion, POSIX standard API is compatible, Linux container, embedded virtualization and intelligent interconnection technology are supported. Native process sandbox and mimicry defense are considered for security mechanism design. Multi-level exception handling and multidimensional partition isolation are adopted to provide High Reliability. Theorem-assisted proof tools based on Isabelle/HOL is used to verify the design and implementation of NARI microkernel OS. Developer framework including tools, kit and specification is discussed when developing both system software and user software on this IoT OS.
Ramu, Gandu, Mishra, Zeesha, Acharya, B..  2019.  Hardware implementation of Piccolo Encryption Algorithm for constrained RFID application. 2019 9th Annual Information Technology, Electromechanical Engineering and Microelectronics Conference (IEMECON). :85–89.
The deployment of smart devices in IoT applications are increasing with tremendous pace causing severe security concerns, as it trade most of private information. To counter that security issues in low resource applications, lightweight cryptographic algorithms have been introduced in recent past. In this paper we propose efficient hardware architecture of piccolo lightweight algorithm uses 64 bits block size with variable key size of length 80 and 128 bits. This paper introduces novel hardware architecture of piccolo-80, to supports high speed RFID security applications. Different design strategies are there to optimize the hardware metrics trade-off for particular application. The algorithm is implemented on different family of FPGAs with different devices to analyze the performance of design in 4 input LUTs and 6 input LUTs implementations. In addition, the results of hardware design are evaluated and compared with the most relevant lightweight block ciphers, shows the proposed architecture finds its utilization in terms of speed and area optimization from the hardware resources. The increment in throughput with optimized area of this architecture suggests that piccolo can applicable to implement for ultra-lightweight applications also.
Sun, Shuang, Chen, Shudong, Du, Rong, Li, Weiwei, Qi, Donglin.  2019.  Blockchain Based Fine-Grained and Scalable Access Control for IoT Security and Privacy. 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC). :598–603.
In this paper, we focuses on an access control issue in the Internet of Things (IoT). Generally, we firstly propose a decentralized IoT system based on blockchain. Then we establish a secure fine-grained access control strategies for users, devices, data, and implement the strategies with smart contract. To trigger the smart contract, we design different transactions. Finally, we use the multi-index table struct for the access right's establishment, and store the access right into Key-Value database to improve the scalability of the decentralized IoT system. In addition, to improve the security of the system we also store the access records on the blockchain and database.
Auer, Lukas, Skubich, Christian, Hiller, Matthias.  2019.  A Security Architecture for RISC-V based IoT Devices. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :1154–1159.
New IoT applications are demanding for more and more performance in embedded devices while their deployment and operation poses strict power constraints. We present the security concept for a customizable Internet of Things (IoT) platform based on the RISC-V ISA and developed by several Fraunhofer Institutes. It integrates a range of peripherals with a scalable computing subsystem as a three dimensional System-in-Package (3D-SiP). The security features aim for a medium security level and target the requirements of the IoT market. Our security architecture extends given implementations to enable secure deployment, operation, and update. Core security features are secure boot, an authenticated watchdog timer, and key management. The Universal Sensor Platform (USeP) SoC is developed for GLOBALFOUNDRIES' 22FDX technology and aims to provide a platform for Small and Medium-sized Enterprises (SMEs) that typically do not have access to advanced microelectronics and integration know-how, and are therefore limited to Commercial Off-The-Shelf (COTS) products.
Nikolov, Neven, Nakov, Ognyan.  2019.  Research of Secure Communication of Esp32 IoT Embedded System to.NET Core Cloud Structure Using MQTTS SSL/TLS. 2019 IEEE XXVIII International Scientific Conference Electronics (ET). :1–4.

This paper studies and describes encrypted communication between IoT cloud and IoT embedded systems. It uses encrypted MQTTS protocol with SSL/TLS certificate. A JSON type data format is used between the cloud structure and the IoT device. The embedded system used in this experiment is Esp32 Wrover. The IoT embedded system measures temperature and humidity from a sensor DHT22. The architecture and software implementation of the experimental stage are also presented.

Hibti, Meryem, Baïna, Karim, Benatallah, Boualem.  2019.  Towards Swarm Intelligence Architectural Patterns: an IoT-Big Data-AI-Blockchain convergence perspective. Proceedings of the 4th International Conference on Big Data and Internet of Things. :1–8.
The Internet of Things (IoT) is exploding. It is made up of billions of smart devices -from minuscule chips to mammoth machines - that use wireless technology to talk to each other (and to us). IoT infrastructures can vary from instrumented connected devices providing data externally to smart, and autonomous systems. To accompany data explosion resulting, among others, from IoT, Big data analytics processes examine large data sets to uncover hidden patterns, unknown correlations between collected events, either at a very technical level (incident/anomaly detection, predictive maintenance) or at business level (customer preferences, market trends, revenue opportunities) to provide improved operational efficiency, better customer service, competitive advantages over rival organizations, etc. In order to capitalize business value of the data generated by IoT sensors, IoT, Big Data Analytics/IA need to meet in the middle. One critical use case for IoT is to warn organizations when a product or service is at risk. The aim of this paper is to present a first proposal of IoT-Big Data-IA architectural patterns catalogues with a Blockchain implementation perspective in seek of design methodologies artifacts.
Fan, Yongkai, Zhao, Guanqun, Sun, Xiaofeng, Wang, Jinghan, Lei, Xia, Xia, Fanglue, Peng, Cong.  2019.  A Security Scheme for Fog Computing Environment of IoT. Proceedings of the 2nd International ACM Workshop on Security and Privacy for the Internet-of-Things. :58–59.

As an extension of cloud computing, fog computing environment as well as fog node plays an increasingly important role in internet of things (IoT). This technology provides IoT with more distributed and efficient applications and services. However, IoT nodes have so much variety and perform poorly, which leads to more security issues. For this situation, we initially design a security scheme for the IoT fog environment. Based on the combination of Blockchain and Trusted Execution Environment (TEE) technologies, the security of data storage and transmission from fog nodes to the cloud are ensured, thus ensuring the trustworthiness of the data source in the fog environment.

Saadeh, Huda, Almobaideen, Wesam, Sabri, Khair Eddin, Saadeh, Maha.  2019.  Hybrid SDN-ICN Architecture Design for the Internet of Things. 2019 Sixth International Conference on Software Defined Systems (SDS). :96–101.
Internet of Things (IoT) impacts the current network with many challenges due to the variation, heterogeneity of its devices and running technologies. For those reasons, monitoring and controlling network efficiently can rise the performance of the network and adapts network techniques according to environment measurements. This paper proposes a new privacy aware-IoT architecture that combines the benefits of both Information Centric Network (ICN) and Software Defined Network (SDN) paradigms. In this architecture controlling functionalities are distributed over multiple planes: operational plane which is considered as smart ICN data plane with Controllers that control local clusters, tactical plane which is an Edge environment to take controlling decisions based on small number of clusters, and strategic plane which is a cloud controlling environment to make long-term decision that affects the whole network. Deployment options of this architecture is discussed and SDN enhancement due to in-network caching is evaluated.
Noura, Hassan, Couturier, Raphael, Pham, Congduc, Chehab, Ali.  2019.  Lightweight Stream Cipher Scheme for Resource-Constrained IoT Devices. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–8.

The Internet of Things (IoT) systems are vulnerable to many security threats that may have drastic impacts. Existing cryptographic solutions do not cater for the limitations of resource-constrained IoT devices, nor for real-time requirements of some IoT applications. Therefore, it is essential to design new efficient cipher schemes with low overhead in terms of delay and resource requirements. In this paper, we propose a lightweight stream cipher scheme, which is based, on one hand, on the dynamic key-dependent approach to achieve a high security level, and on the other hand, the scheme involves few simple operations to minimize the overhead. In our approach, cryptographic primitives change in a dynamic lightweight manner for each input block. Security and performance study as well as experimentation are performed to validate that the proposed cipher achieves a high level of efficiency and robustness, making it suitable for resource-constrained IoT devices.

Elaguech, Amira, Kchaou, Afef, El Hadj Youssef, Wajih, Ben Othman, Kamel, Machhout, Mohsen.  2019.  Performance evaluation of lightweight Block Ciphers in soft-core processor. 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). :101–105.

The Internet of Things (IoT) and RFID devices are essential parts of the new information technology generation. They are mostly characterized by their limited power and computing resources. In order to ensure their security under computing and power constraints, a number of lightweight cryptography algorithms has emerged. This paper outlines the performance analysis of six lightweight blocks crypto ciphers with different structures - LED, PRESENT, HIGHT, LBlock, PICCOLO and TWINE on a LEON3 open source processor. We have implemented these crypto ciphers on the FPGA board using the C language and the LEON3 processor. Analysis of these crypto ciphers is evaluated after considering various benchmark parameters like throughput, execution time, CPU performance, AHB bandwidth, Simulator performance, and speed. These metrics are tested with different key sizes provided by each crypto algorithm.

Giaretta, Alberto, Dragoni, Nicola, Massacci, Fabio.  2019.  Protecting the Internet of Things with Security-by-Contract and Fog Computing. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :1–6.

Nowadays, the Internet of Things (IoT) is a consolidated reality. Smart homes are equipped with a growing number of IoT devices that capture more and more information about human beings lives. However, manufacturers paid little or no attention to security, so that various challenges are still in place. In this paper, we propose a novel approach to secure IoT systems that combines the concept of Security-by-Contract (S×C) with the Fog computing distributed paradigm. We define the pillars of our approach, namely the notions of IoT device contract, Fog node policy and contract-policy matching, the respective life-cycles, and the resulting S×C workflow. To better understand all the concepts of the S×C framework, and highlight its practical feasibility, we use a running case study based on a context-aware system deployed in a real smart home.

Wang, Qihua, Lv, Gaoyan, Sun, Xiuling.  2019.  Distributed Access Control with Outsourced Computation in Fog Computing. 2019 Chinese Control And Decision Conference (CCDC). :2446–2450.

With the rapid development of Internet of things (IOT) and big data, the number of network terminal devices and big data transmission are increasing rapidly. Traditional cloud computing faces a great challenge in dealing with this massive amount of data. Fog computing which extends the computing at the edge of the network can provide computation and data storage. Attribute based-encryption can effectively achieve the fine-grained access control. However, the computational complexity of the encryption and decryption is growing linearly with the increase of the number of attributes. In order to reduce the computational cost and guarantee the confidentiality of data, distributed access control with outsourced computation in fog computing is proposed in this paper. In our proposed scheme, fog device takes most of computational cost in encryption and decryption phase. The computational cost of the receiver and sender can be reduced. Moreover, the private key of the user is generated by multi-authority which can enhance the security of data. The analysis of security and performance shows that our proposed scheme proves to be effective and secure.

Faticanti, Francescomaria, De Pellegrini, Francesco, Siracusa, Domenico, Santoro, Daniele, Cretti, Silvio.  2019.  Cutting Throughput with the Edge: App-Aware Placement in Fog Computing. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :196–203.

Fog computing extends cloud computing technology to the edge of the infrastructure to support dynamic computation for IoT applications. Reduced latency and location awareness in objects' data access is attained by displacing workloads from the central cloud to edge devices. Doing so, it reduces raw data transfers from target objects to the central cloud, thus overcoming communication bottlenecks. This is a key step towards the pervasive uptake of next generation IoT-based services. In this work we study efficient orchestration of applications in fog computing, where a fog application is the cascade of a cloud module and a fog module. The problem results into a mixed integer non linear optimisation. It involves multiple constraints due to computation and communication demands of fog applications, available infrastructure resources and it accounts also the location of target IoT objects. We show that it is possible to reduce the complexity of the original problem with a related placement formulation, which is further solved using a greedy algorithm. This algorithm is the core placement logic of FogAtlas, a fog computing platform based on existing virtualization technologies. Extensive numerical results validate the model and the scalability of the proposed algorithm, showing performance close to the optimal solution with respect to the number of served applications.

Alhazmi, Omar H., Aloufi, Khalid S..  2019.  Fog-Based Internet of Things: A Security Scheme. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–6.

Internet of Things (IoT) stack models differ in their architecture, applications and needs. Hence, there are different approaches to apply IoT; for instance, it can be based on traditional data center or based on cloud computing. In fact, Cloud-based IoT is gaining more popularity due to its high scalability and cost effectiveness; hence, it is becoming the norm. However, Cloud is usually located far from the IoT devices and some recent research suggests using Fog-Based IoT by using a nearby light-weight middleware to bridge the gap and to provide the essential support and communication between devices, sensors, receptors and the servers. Therefore, Fog reduces centrality and provides local processing for faster analysis, especially for the time-sensitive applications. Thus, processing is done faster, giving the system flexibility for faster response time. Fog-Based Internet of Things security architecture should be suitable to the environment and provide the necessary measures to improve all security aspects with respect to the available resources and within performance constraints. In this work, we discuss some of these challenges, analyze performance of Fog based IoT and propose a security scheme based on MQTT protocol. Moreover, we present a discussion on security-performance tradeoffs.

Bardoutsos, Andreas, Filios, Gabriel, Katsidimas, Ioannis, Nikoletseas, Sotiris.  2019.  Energy Efficient Algorithm for Multihop BLE Networks on Resource-Constrained Devices. 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS). :400–407.

Bluetooth Low Energy is a fast growing protocol which has gained wide acceptance during last years. Key features for this growth are its high data rate and its ultra low energy consumption, making it the perfect candidate for piconets. However, the lack of expandability without serious impact on its energy consumption profile, prevents its adoption on more complex systems which depend on long network lifetime. Thus, a lot of academic research has been focused on the solution of BLE expandability problem and BLE mesh has been introduced on the latest Bluetooth version. In our point of view, most of the related work cannot be efficiently implemented in networks which are mostly comprised of constrained-resource nodes. Thus, we propose a new energy efficient tree algorithm for BLE static constrained-resources networks, which achieves a longer network lifetime by both reducing as much as possible the number of needed connection events and balancing the energy dissipation in the network.

Potrino, Giuseppe, de Rango, Floriano, Santamaria, Amilcare Francesco.  2019.  Modeling and evaluation of a new IoT security system for mitigating DoS attacks to the MQTT broker. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
In recent years, technology use has assumed an important role in the support of human activities. Intellectual work has become the main preferred human activity, while structured activities are going to become ever more automatized for increasing their efficiency. For this reason, we assist to the diffusion of ever more innovative devices able to face new emergent problems. These devices can interact with the environment and each other autonomously, taking decisions even without human control. This is the Internet of Things (IoT) phenomenon, favored by low cost, high mobility, high interaction and low power devices. This spread of devices has become uncontrolled, but security in this context continues to increase slowly. The purpose of this work is to model and evaluate a new IoT security system. The context is based on a generic IoT system in the presence of lightweight actuator and sensor nodes exchanging messages through Message Queue Telemetry Transport (MQTT) protocol. This work aims to increase the security of this protocol at application level, particularly mitigating Denial of Service (DoS) attacks. The system is based on the use of a host Intrusion Detection System (IDS) which applies a threshold based packet discarding policy to the different topics defined through MQTT.
Li, Nan, Varadharajan, Vijay, Nepal, Surya.  2019.  Context-Aware Trust Management System for IoT Applications with Multiple Domains. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1138–1148.
The Internet of Things (IoT) provides connectivity between heterogeneous devices in different applications, such as smart wildlife, supply chain and traffic management. Trust management system (TMS) assesses the trustworthiness of service with respect to its quality. Under different context information, a service provider may be trusted in one context but not in another. The existing context-aware trust models usually store trust values under different contexts and search the closest (to a given context) record to evaluate the trustworthiness of a service. However, it is not suitable for distributed resource-constrained IoT devices which have small memory and low power. Reputation systems are applied in many trust models where trustor obtains recommendations from others. In context-based trust evaluation, it requires interactive queries to find relevant information from remote devices. The communication overhead and energy consumption are issues in low power networks like 6LoWPAN. In this paper, we propose a new context-aware trust model for lightweight IoT devices. The proposed model provides a trustworthiness overview of a service provider without storing past behavior records, that is, constant size storage. The proposed model allows a trustor to decide the significance of context items. This could result in distinctive decisions under the same trustworthiness record. We also show the performance of the proposed model under different attacks.
Gopaluni, Jitendra, Unwala, Ishaq, Lu, Jiang, Yang, Xiaokun.  2019.  Graphical User Interface for OpenThread. 2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT IoT and AI (HONET-ICT). :235–237.
This paper presents an implementation of a Graphical User Interface (GUI) for the OpenThread software. OpenThread is a software package for Thread. Thread is a networking protocol for Internet of Things (IoT) designed for home automation. OpenThread package was released by Nest Labs as an open source implementation of the Thread specification v1.1.1. The OpenThread includes IPv6, 6LoWPAN, IEEE 802.15.4 with MAC security, Mesh Link Establishment, and Mesh Routing. OpenThread includes all Thread supported device types and supports both SOC and NCP implementations. OpenThread runs on Linux and allows the users to use it as a simulator with a command line interface. This research is focused on adding a Graphical User Interface (GUI) to the OpenThread. The GUI package is implemented in TCL/Tk (Tool Control Language). OpenThread with a GUI makes working with OpenThread much easier for researchers and students. The GUI also makes it easier to visualize the Thread network and its operations.