Visible to the public Biblio

Filters: Keyword is Traceability  [Clear All Filters]
2021-07-27
Ye, Yunxiu, Cao, Zhenfu, Shen, Jiachen.  2020.  Unbounded Key-Policy Attribute-Based Encryption with Black-Box Traceability. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1655—1663.
Attribute-based encryption received widespread attention as soon as it was proposed. However, due to its specific characteristics, some restrictions on attribute set are not flexible enough in actual operation. In addition, since access authorities are determined according to users' attributes, users sharing the same attributes are difficult to be distinguished. Once a malicious user makes illicit gains by their decryption authorities, it is difficult to track down specific user. This paper follows practical demands to propose a more flexible key-policy attribute-based encryption scheme with black-box traceability. The scheme has a constant size of public parameters which can be utilized to construct attribute-related parameters flexibly, and the method of traitor tracing in broadcast encryption is introduced to achieve effective malicious user tracing. In addition, the security and feasibility can be proved by the security proofs and performance evaluation in this paper.
Zhang, Wei, Zhang, ZhiShuo, Wu, Yi.  2020.  Multi-Authority Attribute Based Encryption With Policy-hidden and Accountability. 2020 International Conference on Space-Air-Ground Computing (SAGC). :95—96.
In this paper, an attribute-based encryption scheme with policy hidden and key tracing under multi-authority is proposed. In our scheme, the access structure is embedded into the ciphertext implicitly and the attacker cannot gain user's private information by access structure. The key traceability is realized under multi-authority and collusion is prevented. Finally, based on the DBDH security model, it is proved that this scheme can resist the plaintext attack under the standard model.
2021-03-22
Wang, X., Chi, Y., Zhang, Y..  2020.  Traceable Ciphertext Policy Attribute-based Encryption Scheme with User Revocation for Cloud Storage. 2020 International Conference on Computer Engineering and Application (ICCEA). :91–95.
Ciphertext policy Attribute-based encryption (CPABE) plays an increasingly important role in the field of fine-grained access control for cloud storage. However, The exiting solution can not balance the issue of user identity tracking and user revocation. In this paper, we propose a CP-ABE scheme that supports association revocation and traceability. This scheme uses identity directory technology to realize single user revocation and associated user revocation, and the ciphertext re-encryption technology guarantees the forward security of revocation without updating the private key. In addition, we can accurately trace the identity of the user according to the decryption private key and effectively solve the problem of key abuse. This scheme is proved to be safe and traceable under the standard model, and can effectively control the computational and storage costs while maintaining functional advantages. It is suitable for the practical scenarios of tracking audit and user revocation.
2021-01-18
Zhu, L., Chen, C., Su, Z., Chen, W., Li, T., Yu, Z..  2020.  BBS: Micro-Architecture Benchmarking Blockchain Systems through Machine Learning and Fuzzy Set. 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). :411–423.
Due to the decentralization, irreversibility, and traceability, blockchain has attracted significant attention and has been deployed in many critical industries such as banking and logistics. However, the micro-architecture characteristics of blockchain programs still remain unclear. What's worse, the large number of micro-architecture events make understanding the characteristics extremely difficult. We even lack a systematic approach to identify the important events to focus on. In this paper, we propose a novel benchmarking methodology dubbed BBS to characterize blockchain programs at micro-architecture level. The key is to leverage fuzzy set theory to identify important micro-architecture events after the significance of them is quantified by a machine learning based approach. The important events for single programs are employed to characterize the programs while the common important events for multiple programs form an importance vector which is used to measure the similarity between benchmarks. We leverage BBS to characterize seven and six benchmarks from Blockbench and Caliper, respectively. The results show that BBS can reveal interesting findings. Moreover, by leveraging the importance characterization results, we improve that the transaction throughput of Smallbank from Fabric by 70% while reduce the transaction latency by 55%. In addition, we find that three of seven and two of six benchmarks from Blockbench and Caliper are redundant, respectively.
2020-09-28
Mitani, Tatsuo, OTSUKA, Akira.  2019.  Traceability in Permissioned Blockchain. 2019 IEEE International Conference on Blockchain (Blockchain). :286–293.
In this paper, we propose the traceability of assets in a permissioned blockchain connected with a permissionless blockchain. We make traceability of assets in the permissioned blockchain be defined and be expressed as a hidden Markov model. There exists no dishonest increase and decrease of assets in this model. The condition is called balance. As we encrypt this model with fully homomorphic encryption and apply the zero knowledge proof of plaintext knowledge, we show that the trace-ability and balance of the permissioned blockchain are able to be proved in zero knowledge to the permissionless blockchain with concealing the asset allocation of the permissioned blockchain.
Fischinger, Michael, Egger, Norbert, Binder, Christoph, Neureiter, Christian.  2019.  Towards a Model-centric Approach for Developing Dependable Smart Grid Applications. 2019 4th International Conference on System Reliability and Safety (ICSRS). :1–9.
The Smart Grid is the leading example when talking about complex and critical System-of-Systems (SoS). Specifically regarding the Smart Grids criticality, dependability is a central quality attribute to strive for. Combined with the desire of agility in modern development, conventional systems engineering methods reach their limits in coping with these requirements. However, approaches from model-based or model-driven engineering can reduce complexity and encourage development with rapidly changing requirements. Model-Driven Engineering (MDE) is known to be more successful in a domain specific manner. For that reason, an approach for Domain Specific Systems Engineering (DSSE) in the Smart Grid has already been specially investigated. This Model-Driven Architecture (MDA) approach especially aims the comprehensibility of complex systems. In this context, the traceability of requirements is a centrally pursued attribute. However, achieving continuing traceability between the model of a system and the concrete implementation is still an open issue. To close this gap, the present research paper introduces a Model-Centric Software Development (MCSD) solution for Smart Grid applications. Based on two exploratory case studies, the focus finally lies on the automated generation of partial implementation artifacts and the evaluation of traceability, based on dedicated functional aspects.
2020-05-11
Kinkelin, Holger, Hauner, Valentin, Niedermayer, Heiko, Carle, Georg.  2018.  Trustworthy configuration management for networked devices using distributed ledgers. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–5.
Numerous IoT applications, like building automation or process control of industrial sites, exist today. These applications inherently have a strong connection to the physical world. Hence, IT security threats cannot only cause problems like data leaks but also safety issues which might harm people. Attacks on IT systems are not only performed by outside attackers but also insiders like administrators. For this reason, we present ongoing work on a Byzantine fault tolerant configuration management system (CMS) that provides control over administrators, restrains their rights, and enforces separation of concerns. We reach this goal by conducting a configuration management process that requires multi-party authorization for critical configurations to prevent individual malicious administrators from performing undesired actions. Only after a configuration has been authorized by multiple experts, it is applied to the targeted devices. For the whole configuration management process, our CMS guarantees accountability and traceability. Lastly, our system is tamper-resistant as we leverage Hyperledger Fabric, which provides a distributed execution environment for our CMS and a blockchain-based distributed ledger that we use to store the configurations. A beneficial side effect of this approach is that our CMS is also suitable to manage configurations for infrastructure shared across different organizations that do not need to trust each other.
2020-03-12
Kumar, Randhir, Tripathi, Rakesh.  2019.  Traceability of Counterfeit Medicine Supply Chain through Blockchain. 2019 11th International Conference on Communication Systems Networks (COMSNETS). :568–570.

The main issues with drug safety in the counterfeit medicine supply chain, are to do with how the drugs are initially manufactured. The traceability of right and active pharmaceutical ingredients during actual manufacture is a difficult process, so detecting drugs that do not contain the intended active ingredients can ultimately lead to end-consumer patient harm or even death. Blockchain's advanced features make it capable of providing a basis for complete traceability of drugs, from manufacturer to end consumer, and the ability to identify counterfeit-drug. This paper aims to address the issue of drug safety using Blockchain and encrypted QR(quick response) code security.

Zhang, Haibo, Nakamura, Toru, Sakurai, Kouichi.  2019.  Security and Trust Issues on Digital Supply Chain. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :338–343.

This exploratory investigation aims to discuss current status and challenges, especially in aspect of security and trust problems, of digital supply chain management system with applying some advanced information technologies, such as Internet of Things, cloud computing and blockchain, for improving various system performance and properties, i.e. transparency, visibility, accountability, traceability and reliability. This paper introduces the general histories and definitions, in terms of information science, of the supply chain and relevant technologies which have been applied or are potential to be applied on supply chain with purpose of lowering cost, facilitating its security and convenience. It provides a comprehensive review of current relative research work and industrial cases from several famous companies. It also illustrates requirements or performance of digital supply chain system, security management and trust issues. Finally, this paper concludes several potential or existing security issues and challenges which supply chain management is facing.

2020-01-27
Yang, Kun, Forte, Domenic, Tehranipoor, Mark M..  2017.  CDTA: A Comprehensive Solution for Counterfeit Detection, Traceability, and Authentication in the IoT Supply Chain. ACM Transactions on Design Automation of Electronic Systems (TODAES). 22:42:1-42:31.

The Internet of Things (IoT) is transforming the way we live and work by increasing the connectedness of people and things on a scale that was once unimaginable. However, the vulnerabilities in the IoT supply chain have raised serious concerns about the security and trustworthiness of IoT devices and components within them. Testing for device provenance, detection of counterfeit integrated circuits (ICs) and systems, and traceability of IoT devices are challenging issues to address. In this article, we develop a novel radio-frequency identification (RFID)-based system suitable for counterfeit detection, traceability, and authentication in the IoT supply chain called CDTA. CDTA is composed of different types of on-chip sensors and in-system structures that collect necessary information to detect multiple counterfeit IC types (recycled, cloned, etc.), track and trace IoT devices, and verify the overall system authenticity. Central to CDTA is an RFID tag employed as storage and a channel to read the information from different types of chips on the printed circuit board (PCB) in both power-on and power-off scenarios. CDTA sensor data can also be sent to the remote server for authentication via an encrypted Ethernet channel when the IoT device is deployed in the field. A novel board ID generator is implemented by combining outputs of physical unclonable functions (PUFs) embedded in the RFID tag and different chips on the PCB. A light-weight RFID protocol is proposed to enable mutual authentication between RFID readers and tags. We also implement a secure interchip communication on the PCB. Simulations and experimental results using Spartan 3E FPGAs demonstrate the effectiveness of this system. The efficiency of the radio-frequency (RF) communication has also been verified via a PCB prototype with a printed slot antenna.

2019-03-04
Imtiaz, Sayem Mohammad, Bhowmik, Tanmay.  2018.  Towards Data-driven Vulnerability Prediction for Requirements. Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. :744–748.
Due to the abundance of security breaches we continue to see, the software development community is recently paying attention to a more proactive approach towards security. This includes predicting vulnerability before exploitation employing static code analysis and machine learning techniques. Such mechanisms, however, are designed to detect post-implementation vulnerabilities. As the root of a vulnerability can often be traced back to the requirement specification, and vulnerability discovered later in the development life cycle is more expensive to fix, we need additional preventive mechanisms capable of predicting vulnerability at a much earlier stage. In this paper, we propose a novel framework providing an automated support to predict vulnerabilities for a requirement as early as during requirement engineering. We further present a preliminary demonstration of our framework and the promising results we observe clearly indicate the value of this new research idea.
2019-01-31
Thokchom, Surmila, Saikia, Dilip Kr..  2018.  Efficient Scheme for Dynamic Cloud Data Shared Within a Static Group with Privacy Preserving Auditing and Traceability. Proceedings of the 2018 International Conference on Cloud Computing and Internet of Things. :25–32.

This paper proposes an efficient auditing scheme for checking the integrity of dynamic data shared among a static group of users outsourced at untrusted cloud storage. The scheme is designed based on CDH-based ring signature scheme. The scheme enables a third party auditor to audit the client's data without knowing the content while also preserving the identity privacy of the group member who is signing the data from the auditor as well as from the cloud server. The identity of the group member who is signing the data block can be revealed only by the authorized opener, if needed. The paper presents a comparative performance study and security analysis of the proposed scheme.

2017-05-16
McClatchey, Richard, Branson, Andrew, Shamdasani, Jetendr.  2016.  Provenance Support for Biomedical Big Data Analytics. Proceedings of the 20th International Database Engineering & Applications Symposium. :386–391.

One essential requirement for supporting analytics for Big Medical Data systems is the provision of a suitable level of traceability to data or processes ('Items') in large volumes of data. Systems should be designed from the outset to support usage of such Items across the spectrum of medical use and over time in order to promote traceability, to simplify maintenance and to assist analytics. The philosophy proposed in this paper is to design medical data systems using a 'description-driven' approach in which meta-data and the description of medical items are saved alongside the data, simplifying item re-use over time and thereby enabling the traceability of these items over time and their use in analytics. Details are given of a big data system in neuroimaging to demonstrate aspects of provenance data capture, collaborative analysis and longitudinal information traceability. Evidence is presented that the description-driven approach leads to simplicity of design and ease of maintenance following the adoption of a unified approach to Item management.

2017-03-08
Yang, K., Forte, D., Tehranipoor, M. M..  2015.  Protecting endpoint devices in IoT supply chain. 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :351–356.

The Internet of Things (IoT), an emerging global network of uniquely identifiable embedded computing devices within the existing Internet infrastructure, is transforming how we live and work by increasing the connectedness of people and things on a scale that was once unimaginable. In addition to increased communication efficiency between connected objects, the IoT also brings new security and privacy challenges. Comprehensive measures that enable IoT device authentication and secure access control need to be established. Existing hardware, software, and network protection methods, however, are designed against fraction of real security issues and lack the capability to trace the provenance and history information of IoT devices. To mitigate this shortcoming, we propose an RFID-enabled solution that aims at protecting endpoint devices in IoT supply chain. We take advantage of the connection between RFID tag and control chip in an IoT device to enable data transfer from tag memory to centralized database for authentication once deployed. Finally, we evaluate the security of our proposed scheme against various attacks.