Visible to the public Biblio

Filters: Keyword is brute force attacks  [Clear All Filters]
2021-03-09
Liu, G., Quan, W., Cheng, N., Lu, N., Zhang, H., Shen, X..  2020.  P4NIS: Improving network immunity against eavesdropping with programmable data planes. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :91—96.

Due to improving computational capacity of supercomputers, transmitting encrypted packets via one single network path is vulnerable to brute-force attacks. The versatile attackers secretly eavesdrop all the packets, classify packets into different streams, performs an exhaustive search for the decryption key, and extract sensitive personal information from the streams. However, new Internet Protocol (IP) brings great opportunities and challenges for preventing eavesdropping attacks. In this paper, we propose a Programming Protocol-independent Packet Processors (P4) based Network Immune Scheme (P4NIS) against the eavesdropping attacks. Specifically, P4NIS is equipped with three lines of defense to improve the network immunity. The first line is promiscuous forwarding by splitting all the traffic packets in different network paths disorderly. Complementally, the second line encrypts transmission port fields of the packets using diverse encryption algorithms. The encryption could distribute traffic packets from one stream into different streams, and disturb eavesdroppers to classify them correctly. Besides, P4NIS inherits the advantages from the existing encryption-based countermeasures which is the third line of defense. Using a paradigm of programmable data planes-P4, we implement P4NIS and evaluate its performances. Experimental results show that P4NIS can increase difficulties of eavesdropping significantly, and increase transmission throughput by 31.7% compared with state-of-the-art mechanisms.

Muslim, A. A., Budiono, A., Almaarif, A..  2020.  Implementation and Analysis of USB based Password Stealer using PowerShell in Google Chrome and Mozilla Firefox. 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE). :421—426.

Along with the development of the Windows operating system, browser applications to surf the internet are also growing rapidly. The most widely used browsers today are Google Chrome and Mozilla Firefox. Both browsers have a username and password management feature that makes users login to a website easily, but saving usernames and passwords in the browser is quite dangerous because the stored data can be hacked using brute force attacks or read through a program. One way to get a username and password in the browser is to use a program that can read Google Chrome and Mozilla Firefox login data from the computer's internal storage and then show those data. In this study, an attack will be carried out by implementing Rubber Ducky using BadUSB to run the ChromePass and PasswordFox program and the PowerShell script using the Arduino Pro Micro Leonardo device as a USB Password Stealer. The results obtained from this study are the username and password on Google Chrome and Mozilla Firefox successfully obtained when the USB is connected to the target device, the average time of the attack is 14 seconds then sending it to the author's email.

Philipcris C Encarnacion, Bobby D Gerardo, Alexander A Hernandez.  2020.  Performance Analysis on Enhanced Round Function of SIMECK Block Cipher. 2020 12th International Conference on Communication Software and Networks (ICCSN).

There are various Lightweight Block Ciphers (LBC) nowadays that exist to meet the demand on security requirements of the current trend in computing world, the application in the resource-constrained devices, and the Internet of Things (IoT) technologies. One way to evaluate these LBCs is to conduct a performance analysis. Performance evaluation parameters seek appropriate value such as encryption time, security level, scalability, and flexibility. Like SIMECK block cipher whose algorithm design was anchored with the SIMON and SPECK block ciphers were efficient in security and performance, there is a need to revisit its design. This paper aims to present a comparative study on the performance analysis of the enhanced round function of the SIMECK Family block cipher. The enhanced ARX structure of the round function on the three variants shows an efficient performance over the original algorithm in different simulations using the following methods of measurement; avalanche effect, runtime performance, and brute-force attack. Its recommended that the enhanced round function of the SIMECK family be evaluated by different security measurements and attacks.

Hakim, A. R., Rinaldi, J., Setiadji, M. Y. B..  2020.  Design and Implementation of NIDS Notification System Using WhatsApp and Telegram. 2020 8th International Conference on Information and Communication Technology (ICoICT). :1—4.

Network Intrusion Detection System (NIDS) can help administrators of a server in detecting attacks by analyzing packet data traffic on the network in real-time. If an attack occurs, an alert to the administrator is provided by NIDS so that the attack can be known and responded immediately. On the other hand, the alerts cannot be monitored by administrators all the time. Therefore, a system that automatically sends notifications to administrators in real-time by utilizing social media platforms is needed. This paper provides an analysis of the notification system built using Snort as NIDS with WhatsApp and Telegram as a notification platform. There are three types of attacks that are simulated and must be detected by Snort, which are Ping of Death attacks, SYN flood attacks, and SSH brute force attacks. The results obtained indicate that the system successfully provided notification in the form of attack time, IP source of the attack, source of attack port and type of attack in real-time.

Ahmed, H. M., Jassim, R. W..  2020.  Distributed Transform Encoder to Improve Diffie-Hellman Protocol for Big Message Security. 2020 3rd International Conference on Engineering Technology and its Applications (IICETA). :84—88.

Man in the middle Attack (MIMA) problem of Diffie-Hellman key exchange (D-H) protocol, has led to introduce the Hash Diffie-Hellman key exchange (H-D-H) protocol. Which was cracked by applying the brute force attack (BFA) results of hash function. For this paper, a system will be suggested that focusses on an improved key exchange (D-H) protocol, and distributed transform encoder (DTE). That system utilized for enhanced (D-H) protocol algorithm when (D-H) is applied for generating the keys used for encrypting data of long messages. Hash256, with two secret keys and one public key are used for D-H protocol improvements. Finally, DTE where applied, this cryptosystem led to increase the efficiency of data transfer security with strengthening the shared secret key code. Also, it has removed the important problems such as MITM and BFA, as compared to the previous work.

Ramesh, K., Kumar, B. A., Renjith, P. N..  2020.  Treats based Revisiting Defences Against Password Guessing Attacks and Phishing Data Over Different Online Records. 2020 International Conference on Inventive Computation Technologies (ICICT). :824—827.

Password Guessing Attacks, for instance, Brute Force and word reference ambushes on online records are directly wide spread. Guarding the ambushes and giving the accommodating login the genuine customers together is a problematic endeavour. The present structures are lacking to give both the security and solace together. Phishing is a digital assault that targets credulous online clients fooling into uncovering delicate data, for example, username, secret key, standardized savings number or charge card number and so forth. Assailants fool the Internet clients by concealing site page as a dependable or real page to recover individual data. Password Guessing Attacks Resistance Protocol (PGARP) limits the full-scale number of logins attempts from darken remote hosts to as low as a single undertaking for each username, genuine customers all around (e.g., when tries are created utilizing known, occasionally used machines) can make a couple failed login tries before being tried with an ATT. A specific most distant point will be made to oblige the number of failed attempts with the ATT in order to keep the attacks. After the failed login attempt with ATT limit accomplished, an admonition will be sent to the customer concerning the failed login tries have accomplished the best measurement. This admonition will caution the customer and the customer will be urged to change the mystery expression and security question.

Lee, T., Chang, L., Syu, C..  2020.  Deep Learning Enabled Intrusion Detection and Prevention System over SDN Networks. 2020 IEEE International Conference on Communications Workshops (ICC Workshops). :1—6.

The Software Defined Network (SDN) provides higher programmable functionality for network configuration and management dynamically. Moreover, SDN introduces a centralized management approach by dividing the network into control and data planes. In this paper, we introduce a deep learning enabled intrusion detection and prevention system (DL-IDPS) to prevent secure shell (SSH) brute-force attacks and distributed denial-of-service (DDoS) attacks in SDN. The packet length in SDN switch has been collected as a sequence for deep learning models to identify anomalous and malicious packets. Four deep learning models, including Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) and Stacked Auto-encoder (SAE), are implemented and compared for the proposed DL-IDPS. The experimental results show that the proposed MLP based DL-IDPS has the highest accuracy which can achieve nearly 99% and 100% accuracy to prevent SSH Brute-force and DDoS attacks, respectively.

Wilkens, F., Fischer, M..  2020.  Towards Data-Driven Characterization of Brute-Force Attackers. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.

Brute-force login attempts are common for every host on the public Internet. While most of them can be discarded as low-threat attacks, targeted attack campaigns often use a dictionary-based brute-force attack to establish a foothold in the network. Therefore, it is important to characterize the attackers' behavior to prioritize defensive measures and react to new threats quickly. In this paper we present a set of metrics that can support threat hunters in characterizing brute-force login attempts. Based on connection metadata, timing information, and the attacker's dictionary these metrics can help to differentiate scans and to find common behavior across distinct IP addresses. We evaluated our novel metrics on a real-world data set of malicious login attempts collected by our honeypot Honeygrove. We highlight interesting metrics, show how clustering can be leveraged to reveal common behavior across IP addresses, and describe how selected metrics help to assess the threat level of attackers. Amongst others, we for example found strong indicators for collusion between ten otherwise unrelated IP addresses confirming that a clustering of the right metrics can help to reveal coordinated attacks.

Ho, W.-G., Ng, C.-S., Kyaw, N. A., Lwin, N. Kyaw Zwa, Chong, K.-S., Gwee, B.-H..  2020.  High Efficiency Early-Complete Brute Force Elimination Method for Security Analysis of Camouflage IC. 2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). :161—164.

We propose a high efficiency Early-Complete Brute Force Elimination method that speeds up the analysis flow of the Camouflage Integrated Circuit (IC). The proposed method is targeted for security qualification of the Camouflaged IC netlists in Intellectual Property (IP) protection. There are two main features in the proposed method. First, the proposed method features immediate elimination of the incorrect Camouflage gates combination for the rest of computation, concentrating the resources into other potential correct Camouflage gates combination. Second, the proposed method features early complete, i.e. revealing the correct Camouflage gates once all incorrect gates combination are eliminated, increasing the computation speed for the overall security analysis. Based on the Python programming platform, we implement the algorithm of the proposed method and test it for three circuits including ISCAS’89 benchmarks. From the simulation results, our proposed method, on average, features 71% lesser number of trials and 79% shorter run time as compared to the conventional method in revealing the correct Camouflage gates from the Camouflaged IC netlist.

Hossain, M. D., Ochiai, H., Doudou, F., Kadobayashi, Y..  2020.  SSH and FTP brute-force Attacks Detection in Computer Networks: LSTM and Machine Learning Approaches. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :491—497.

Network traffic anomaly detection is of critical importance in cybersecurity due to the massive and rapid growth of sophisticated computer network attacks. Indeed, the more new Internet-related technologies are created, the more elaborate the attacks become. Among all the contemporary high-level attacks, dictionary-based brute-force attacks (BFA) present one of the most unsurmountable challenges. We need to develop effective methods to detect and mitigate such brute-force attacks in realtime. In this paper, we investigate SSH and FTP brute-force attack detection by using the Long Short-Term Memory (LSTM) deep learning approach. Additionally, we made use of machine learning (ML) classifiers: J48, naive Bayes (NB), decision table (DT), random forest (RF) and k-nearest-neighbor (k-NN), for additional detection purposes. We used the well-known labelled dataset CICIDS2017. We evaluated the effectiveness of the LSTM and ML algorithms, and compared their performance. Our results show that the LSTM model outperforms the ML algorithms, with an accuracy of 99.88%.

2020-09-04
Glory, Farhana Zaman, Ul Aftab, Atif, Tremblay-Savard, Olivier, Mohammed, Noman.  2019.  Strong Password Generation Based On User Inputs. 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0416—0423.
Every person using different online services is concerned with the security and privacy for protecting individual information from the intruders. Many authentication systems are available for the protection of individuals' data, and the password authentication system is one of them. Due to the increment of information sharing, internet popularization, electronic commerce transactions, and data transferring, both password security and authenticity have become an essential and necessary subject. But it is also mandatory to ensure the strength of the password. For that reason, all cyber experts recommend intricate password patterns. But most of the time, the users forget their passwords because of those complicated patterns. In this paper, we are proposing a unique algorithm that will generate a strong password, unlike other existing random password generators. This password will he based on the information, i.e. (some words and numbers) provided by the users so that they do not feel challenged to remember the password. We have tested our system through various experiments using synthetic input data. We also have checked our generator with four popular online password checkers to verify the strength of the produced passwords. Based on our experiments, the reliability of our generated passwords is entirely satisfactory. We also have examined that our generated passwords can defend against two password cracking attacks named the "Dictionary attack" and the "Brute Force attack". We have implemented our system in Python programming language. In the near future, we have a plan to extend our work by developing an online free to use user interface. The passwords generated by our system are not only user-friendly but also have achieved most of the qualities of being strong as well as non- crackable passwords.
Laguduva, Vishalini, Islam, Sheikh Ariful, Aakur, Sathyanarayanan, Katkoori, Srinivas, Karam, Robert.  2019.  Machine Learning Based IoT Edge Node Security Attack and Countermeasures. 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :670—675.
Advances in technology have enabled tremendous progress in the development of a highly connected ecosystem of ubiquitous computing devices collectively called the Internet of Things (IoT). Ensuring the security of IoT devices is a high priority due to the sensitive nature of the collected data. Physically Unclonable Functions (PUFs) have emerged as critical hardware primitive for ensuring the security of IoT nodes. Malicious modeling of PUF architectures has proven to be difficult due to the inherently stochastic nature of PUF architectures. Extant approaches to malicious PUF modeling assume that a priori knowledge and physical access to the PUF architecture is available for malicious attack on the IoT node. However, many IoT networks make the underlying assumption that the PUF architecture is sufficiently tamper-proof, both physically and mathematically. In this work, we show that knowledge of the underlying PUF structure is not necessary to clone a PUF. We present a novel non-invasive, architecture independent, machine learning attack for strong PUF designs with a cloning accuracy of 93.5% and improvements of up to 48.31% over an alternative, two-stage brute force attack model. We also propose a machine-learning based countermeasure, discriminator, which can distinguish cloned PUF devices and authentic PUFs with an average accuracy of 96.01%. The proposed discriminator can be used for rapidly authenticating millions of IoT nodes remotely from the cloud server.
Manucom, Emraida Marie M., Gerardo, Bobby D., Medina, Ruji P..  2019.  Security Analysis of Improved One-Time Pad Cryptography Using TRNG Key Generator. 2019 IEEE 5th International Conference on Computer and Communications (ICCC). :1515—1521.
Cryptography is one of the important aspect of data and information security. The security strength of cryptographic algorithms rely on the secrecy and randomness of keys. In this study, bitwise operations, Fisher-Yates shuffling algorithm, and cipher text mapping are integrated in the proposed TRNG key generator for One-Time Pad cryptography. Frequency monobit, frequency within a block, and runs tests are performed to evaluate the key randomness. The proposed method is also evaluated in terms of avalanche effect and brute force attack. Tests results indicate that the proposed method generates more random keys and has a higher level of security compared with the usual OTP using PRNG and TRNGs that do not undergo a refining phase.
Subangan, S., Senthooran, V..  2019.  Secure Authentication Mechanism for Resistance to Password Attacks. 2019 19th International Conference on Advances in ICT for Emerging Regions (ICTer). 250:1—7.
Authentication is a process that provides access control of any type of computing applications by inspecting the user's identification with the database of authorized users. Passwords play the vital role in authentication mechanism to ensure the privacy of the information and avert from the illicit access. Password based authentication mechanism suffers from many password attacks such as shoulder surfing, brute forcing and dictionary attacks that crack the password of authentication schema by the adversary. Key Stroke technique, Click Pattern technique, Graphichical Password technique and Authentication panel are the several authentication techniques used to resist the password attacks in the literature. This research study critically reviews the types of password attacks and proposes a matrix based secure authentication mechanism which includes three phases namely, User generation phase, Matrix generation phase and Authentication phase to resist the existing password attacks. The performance measure of the proposed method investigates the results in terms existing password attacks and shows the good resistance to password attacks in any type of computing applications.
Osia, Seyed Ali, Rassouli, Borzoo, Haddadi, Hamed, Rabiee, Hamid R., Gündüz, Deniz.  2019.  Privacy Against Brute-Force Inference Attacks. 2019 IEEE International Symposium on Information Theory (ISIT). :637—641.
Privacy-preserving data release is about disclosing information about useful data while retaining the privacy of sensitive data. Assuming that the sensitive data is threatened by a brute-force adversary, we define Guessing Leakage as a measure of privacy, based on the concept of guessing. After investigating the properties of this measure, we derive the optimal utility-privacy trade-off via a linear program with any f-information adopted as the utility measure, and show that the optimal utility is a concave and piece-wise linear function of the privacy-leakage budget.
Gillela, Maruthi, Prenosil, Vaclav, Ginjala, Venkat Reddy.  2019.  Parallelization of Brute-Force Attack on MD5 Hash Algorithm on FPGA. 2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID). :88—93.
FPGA implementation of MD5 hash algorithm is faster than its software counterpart, but a pre-image brute-force attack on MD5 hash still needs 2ˆ(128) iterations theoretically. This work attempts to improve the speed of the brute-force attack on the MD5 algorithm using hardware implementation. A full 64-stage pipelining is done for MD5 hash generation and three architectures are presented for guess password generation. A 32/34/26-instance parallelization of MD5 hash generator and password generator pair is done to search for a password that was hashed using the MD5 algorithm. Total performance of about 6G trials/second has been achieved using a single Virtex-7 FPGA device.
Merhav, Neri, Cohen, Asaf.  2019.  Universal Randomized Guessing with Application to Asynchronous Decentralized Brute—Force Attacks. 2019 IEEE International Symposium on Information Theory (ISIT). :485—489.
Consider the problem of guessing a random vector X by submitting queries (guesses) of the form "Is X equal to x?" until an affirmative answer is obtained. A key figure of merit is the number of queries required until the right vector is guessed, termed the guesswork. The goal is to devise a guessing strategy which minimizes a certain guesswork moment. We study a universal, decentralized scenario where the guesser does not know the distribution of X, and is not allowed to prepare a list of words to be guessed in advance, or to remember its past guesses. Such a scenario is useful, for example, if bots within a Botnet carry out a brute-force attack to guess a password or decrypt a message, yet cannot coordinate the guesses or even know how many bots actually participate in the attack. We devise universal decentralized guessing strategies, first, for memoryless sources, and then generalize them to finite-state sources. For both, we derive the guessing exponent and prove its asymptotic optimality by deriving a matching converse. The strategies are based on randomized guessing using a universal distribution. We also extend the results to guessing with side information (SI). Finally, we design simple algorithms for sampling from the universal distributions.
Qader, Karwan, Adda, Mo.  2019.  DOS and Brute Force Attacks Faults Detection Using an Optimised Fuzzy C-Means. 2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA). :1—6.
This paper explains how the commonly occurring DOS and Brute Force attacks on computer networks can be efficiently detected and network performance improved, which reduces costs and time. Therefore, network administrators attempt to instantly diagnose any network issues. The experimental work used the SNMP-MIB parameter datasets, which are collected via a specialised MIB dataset consisting of seven types of attack as noted in section three. To resolves such issues, this researched carried out several important contributions which are related to fault management concerns in computer network systems. A central task in the detection of the attacks relies on MIB feature behaviours using the suggested SFCM method. It was concluded that the DOS and Brute Force fault detection results for three different clustering methods demonstrated that the proposed SFCM detected every data point in the related group. Consequently, the FPC approached 1.0, its highest record, and an improved performance solution better than the EM methods and K-means are based on SNMP-MIB variables.
Nursetyo, Arif, Ignatius Moses Setiadi, De Rosal, Rachmawanto, Eko Hari, Sari, Christy Atika.  2019.  Website and Network Security Techniques against Brute Force Attacks using Honeypot. 2019 Fourth International Conference on Informatics and Computing (ICIC). :1—6.
The development of the internet and the web makes human activities more practical, comfortable, and inexpensive. So that the use of the internet and websites is increasing in various ways. Public networks make the security of websites vulnerable to attack. This research proposes a Honeypot for server security against attackers who want to steal data by carrying out a brute force attack. In this research, Honeypot is integrated on the server to protect the server by creating a shadow server. This server is responsible for tricking the attacker into not being able to enter the original server. Brute force attacks tested using Medusa tools. With the application of Honeypot on the server, it is proven that the server can be secured from the attacker. Even the log of activities carried out by the attacker in the shadow server is stored in the Kippo log activities.
Mahmood, Riyadh Zaghlool, Fathil, Ahmed Fehr.  2019.  High Speed Parallel RC4 Key Searching Brute Force Attack Based on FPGA. 2019 International Conference on Advanced Science and Engineering (ICOASE). :129—134.

A parallel brute force attack on RC4 algorithm based on FPGA (Field Programmable Gate Array) with an efficient style has been presented. The main idea of this design is to use number of forecast keying methods to reduce the overall clock pulses required depended to key searching operation by utilizes on-chip BRAMs (block RAMs) of FPGA for maximizing the total number of key searching unit with taking into account the highest clock rate. Depending on scheme, 32 key searching units and main controller will be used in one Xilinx XC3S1600E-4 FPGA device, all these units working in parallel and each unit will be searching in a specific range of keys, by comparing the current result with the well-known cipher text if its match the found flag signal will change from 0 to 1 and the main controller will receive this signal and stop the searching operation. This scheme operating at 128-MHz clock frequency and gives us key searching speed of 7.7 × 106 keys/sec. Testing all possible keys (40-bits length), requires only around 39.5h.

Laatansa, Saputra, Ragil, Noranita, Beta.  2019.  Analysis of GPGPU-Based Brute-Force and Dictionary Attack on SHA-1 Password Hash. 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS). :1—4.
Password data in a system usually stored in hash. Various human-caused negligence and system vulnerability can make those data fall in the hand of those who isn't entitled to or even those who have malicious purpose. Attacks which could be done on the hashed password data using GPGPU-based machine are for example: brute-force, dictionary, mask-attack, and word-list. This research explains about effectivity of brute-force and dictionary attack which done on SHA-l hashed password using GPGPU-based machine. Result is showing that brute-force effectively crack more password which has lower set of character, with over 11% of 7 or less characters passwords vs mere 3 % in the dictionary attack counterpart. Whereas dictionary attack is more effective on cracking password which has unsecure character pattern with 5,053 passwords vs 491 on best brute-force attack scenario. Usage of combined attack method (brute-force + dictionary) gives more balanced approach in terms of cracking whether the password is long or secure patterned string.
Hayashi, Masayoshi, Higaki, Hiroaki.  2018.  Security Improvement of Common-Key Cryptographic Communication by Mixture of Fake Plain- Texts. 2018 Second World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :151—157.
One of the fundamental methods for eavesdroppers to achieve a plaintext from a cryptogram is the brute force attack where possible candidates of decryption keys are exhaustively applied to the decryption algorithm. Here the only reason why the eavesdroppers believe to find the common-key and to achieve the plaintext is that the output of the decryption algorithm is contextually acceptable. According to this fact, this paper proposes a novel common-key cryptosystem where fake plaintexts which are also contextually acceptable are mixed into a cryptogram with the legal plaintext. If an eavesdropper applies a fake common-key to the decryption algorithm, it outputs the fake plaintexts which the eavesdroppers might believe legal. This paper also proposes concrete encryption/decryption algorithm which can be combined with any conventional common-key cryptosystem. Results of simulation experiments show the proposed method reduces probability for eavesdroppers to get legal plaintexts.
Khan, Samar, Khodke, Priti A., Bhagat, Amol P..  2018.  An Approach to Fault Tolerant Key Generation and Secure Spread Spectrum Communiction. 2018 International Conference on Research in Intelligent and Computing in Engineering (RICE). :1—6.
Wireless communications have encountered a considerable improvement and have integrated human life through various applications, mainly by the widespread of mobile ad hoc and sensor networks. A fundamental characteristic of wireless communications are in their broadcast nature, which allows accessibility of information without placing restrictions on a user's location. However, accessibility also makes wireless communications vulnerable to eavesdropping. To enhance the security of network communication, we propose a separate key generation server which is responsible for key generation using complex random algorithm. The key will remain in database in encrypted format. To prevent brute force attack, we propose various group key generation algorithms in which every group will have separate group key to verify group member's identity. The group key will be verified with the session information before decryption, so that our system will prevent attack if any attacker knows the group key. To increase the security of the system, we propose three level encryption securities: Client side encryption using AES, Server side encryption using AES, and Artificial noise generation and addition. By using this our system is free from brute force attack as we are using three level message security and complex Random key generation algorithms.
Velan, Petr, Husák, Martin, Tovarňák, Daniel.  2018.  Rapid prototyping of flow-based detection methods using complex event processing. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1—3.
Detection of network attacks is the first step to network security. Many different methods for attack detection were proposed in the past. However, descriptions of these methods are often not complete and it is difficult to verify that the actual implementation matches the description. In this demo paper, we propose to use Complex Event Processing (CEP) for developing detection methods based on network flows. By writing the detection methods in an Event Processing Language (EPL), we can address the above-mentioned problems. The SQL-like syntax of most EPLs is easily readable so the detection method is self-documented. Moreover, it is directly executable in the CEP system, which eliminates inconsistencies between documentation and implementation. The demo will show a running example of a multi-stage HTTP brute force attack detection using Esper and its EPL.
Sadkhan, Sattar B., Reda, Dhilal M..  2018.  Best Strategies of Choosing Crypto-System’s Key for Cryptographer and Attacker Based on Game Theory. 2018 Al-Mansour International Conference on New Trends in Computing, Communication, and Information Technology (NTCCIT). :1—6.
One of the most important strength features of crypto-system's is the key space. As a result, whenever the system has more key space, it will be more resistant to attack. The weakest type of attack on the key space is Brute Force attack, which tests all the keys on the ciphertext in order to get the plaintext. But there are several strategies that can be considered by the attacker and cryptographer related to the selection of the right key with the lowest cost (time). Game theory is a mathematical theory that draws the best strategies for most problems. This research propose a new evaluation method which is employing game theory to draw best strategies for both players (cryptographer & attacker).