Visible to the public Biblio

Filters: Keyword is autonomous aerial vehicles  [Clear All Filters]
2021-03-29
Sayers, J. M., Feighery, B. E., Span, M. T..  2020.  A STPA-Sec Case Study: Eliciting Early Security Requirements for a Small Unmanned Aerial System. 2020 IEEE Systems Security Symposium (SSS). :1—8.

This work describes a top down systems security requirements analysis approach for understanding and eliciting security requirements for a notional small unmanned aerial system (SUAS). More specifically, the System-Theoretic Process Analysis approach for Security (STPA-Sec) is used to understand and elicit systems security requirements. The effort employs STPA-Sec on a notional SUAS system case study to detail the development of functional-level security requirements, design-level engineering considerations, and architectural-level security specification criteria early in the system life cycle when the solution trade-space is largest rather than merely examining components and adding protections during system operation or sustainment. These details were elaborated during a semester independent study research effort by two United States Air Force Academy Systems Engineering cadets, guided by their instructor and a series of working group sessions with UAS operators and subject matter experts. This work provides insight into a viable systems security requirements analysis approach which results in traceable security, safety, and resiliency requirements that can be designed-for, built-to, and verified with confidence.

2021-03-15
Khalid, W., Yu, H..  2020.  Residual Energy Analysis with Physical-Layer Security for Energy-Constrained UAV Cognitive Radio Systems. 2020 International Conference on Electronics, Information, and Communication (ICEIC). :1–3.
Unmanned aerial vehicles (UAVs) based cognitive radio (CR) systems improve the sensing performance. However, such systems demand secure communication with lower power consumption. Motivated by these observations, we consider an energy-constraint yet energy harvesting (EH) drone flying periodically in the circular track around primary transmitter in the presence of an eavesdropper with an aim to use the licensed band opportunistically. Considering the trade-off between the residual energy and secondary link performance, we formulate the constrained optimization problem, i.e., maximizing residual energy under the constraint of secondary secrecy outage. Simulation results verify the proposed theoretical analysis.
2021-03-01
Dubey, R., Louis, S. J., Sengupta, S..  2020.  Evolving Dynamically Reconfiguring UAV-hosted Mesh Networks. 2020 IEEE Congress on Evolutionary Computation (CEC). :1–8.
We use potential fields tuned by genetic algorithms to dynamically reconFigure unmanned aerial vehicles networks to serve user bandwidth needs. Such flying network base stations have applications in the many domains needing quick temporary networked communications capabilities such as search and rescue in remote areas and security and defense in overwatch and scouting. Starting with an initial deployment that covers an area and discovers how users are distributed across this area of interest, tuned potential fields specify subsequent movement. A genetic algorithm tunes potential field parameters to reposition UAVs to create and maintain a mesh network that maximizes user bandwidth coverage and network lifetime. Results show that our evolutionary adaptive network deployment algorithm outperforms the current state of the art by better repositioning the unmanned aerial vehicles to provide longer coverage lifetimes while serving bandwidth requirements. The parameters found by the genetic algorithm on four training scenarios with different user distributions lead to better performance than achieved by the state of the art. Furthermore, these parameters also lead to superior performance in three never before seen scenarios indicating that our algorithm finds parameter values that generalize to new scenarios with different user distributions.
2021-02-15
Rabieh, K., Mercan, S., Akkaya, K., Baboolal, V., Aygun, R. S..  2020.  Privacy-Preserving and Efficient Sharing of Drone Videos in Public Safety Scenarios using Proxy Re-encryption. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :45–52.
Unmanned Aerial Vehicles (UAVs) also known as drones are being used in many applications where they can record or stream videos. One interesting application is the Intelligent Transportation Systems (ITS) and public safety applications where drones record videos and send them to a control center for further analysis. These videos are shared by various clients such as law enforcement or emergency personnel. In such cases, the recording might include faces of civilians or other sensitive information that might pose privacy concerns. While the video can be encrypted and stored in the cloud that way, it can still be accessed once the keys are exposed to third parties which is completely insecure. To prevent such insecurity, in this paper, we propose proxy re-encryption based sharing scheme to enable third parties to access only limited videos without having the original encryption key. The costly pairing operations in proxy re-encryption are not used to allow rapid access and delivery of the surveillance videos to third parties. The key management is handled by a trusted control center, which acts as the proxy to re-encrypt the data. We implemented and tested the approach in a realistic simulation environment using different resolutions under ns-3. The implementation results and comparisons indicate that there is an acceptable overhead while it can still preserve the privacy of drivers and passengers.
2020-12-17
Lu, W., Shu, S., Shi, H., Li, R., Dong, W..  2020.  Synthesizing Secure Reactive Controller for Unmanned Aerial System. 2019 6th International Conference on Dependable Systems and Their Applications (DSA). :419—424.

Complex CPS such as UAS got rapid development these years, but also became vulnerable to GPS spoofing, packets injection, buffer-overflow and other malicious attacks. Ensuring the behaviors of UAS always keeping secure no matter how the environment changes, would be a prospective direction for UAS security. This paper aims at presenting a reactive synthesis-based approach to implement the automatic generation of secure UAS controller. First, we study the operating mechanism of UAS and construct a high-Ievel model consisting of actuator and monitor. Besides, we analyze the security threats of UAS from the perspective of hardware, software and data transmission, and then extract the corresponding specifications of security properties with LTL formulas. Based on the UAS model and security specifications, the controller can be constructed by GR(1) synthesis algorithm, which is a two-player game process between UAV and Environment. Finally, we expand the function of LTLMoP platform to construct the automatons for controller in multi-robots system, which provides secure behavior strategies under several typical UAS attack scenarios.

Sandoval, S., Thulasiraman, P..  2019.  Cyber Security Assessment of the Robot Operating System 2 for Aerial Networks. 2019 IEEE International Systems Conference (SysCon). :1—8.

The Robot Operating System (ROS) is a widely adopted standard robotic middleware. However, its preliminary design is devoid of any network security features. Military grade unmanned systems must be guarded against network threats. ROS 2 is built upon the Data Distribution Service (DDS) standard and is designed to provide solutions to identified ROS 1 security vulnerabilities by incorporating authentication, encryption, and process profile features, which rely on public key infrastructure. The Department of Defense is looking to use ROS 2 for its military-centric robotics platform. This paper seeks to demonstrate that ROS 2 and its DDS security architecture can serve as a functional platform for use in military grade unmanned systems, particularly in unmanned Naval aerial swarms. In this paper, we focus on the viability of ROS 2 to safeguard communications between swarms and a ground control station (GCS). We test ROS 2's ability to mitigate and withstand certain cyber threats, specifically that of rogue nodes injecting unauthorized data and accessing services that will disable parts of the UAV swarm. We use the Gazebo robotics simulator to target individual UAVs to ascertain the effectiveness of our attack vectors under specific conditions. We demonstrate the effectiveness of ROS 2 in mitigating the chosen attack vectors but observed a measurable operational delay within our simulations.

2020-12-11
Fujiwara, N., Shimasaki, K., Jiang, M., Takaki, T., Ishii, I..  2019.  A Real-time Drone Surveillance System Using Pixel-level Short-time Fourier Transform. 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :303—308.

In this study we propose a novel method for drone surveillance that can simultaneously analyze time-frequency responses in all pixels of a high-frame-rate video. The propellers of flying drones rotate at hundreds of Hz and their principal vibration frequency components are much higher than those of their background objects. To separate the pixels around a drone's propellers from its background, we utilize these time-series features for vibration source localization with pixel-level short-time Fourier transform (STFT). We verify the relationship between the number of taps in the STFT computation and the performance of our algorithm, including the execution time and the localization accuracy, by conducting experiments under various conditions, such as degraded appearance, weather, and defocused blur. The robustness of the proposed algorithm is also verified by localizing a flying multi-copter in real-time in an outdoor scenario.

2020-12-07
Labib, N. S., Brust, M. R., Danoy, G., Bouvry, P..  2019.  Trustworthiness in IoT – A Standards Gap Analysis on Security, Data Protection and Privacy. 2019 IEEE Conference on Standards for Communications and Networking (CSCN). :1–7.
With the emergence of new digital trends like Internet of Things (IoT), more industry actors and technical committees pursue research in utilising such technologies as they promise a better and optimised management, improved energy efficiency and a better quality living through a wide array of value-added services. However, as sensing, actuation, communication and control become increasingly more sophisticated, such promising data-driven systems generate, process, and exchange larger amounts of security-critical and privacy-sensitive data, which makes them attractive targets of attacks. In turn this affirms the importance of trustworthiness in IoT and emphasises the need of a solid technical and regulatory foundation. The goal of this paper is to first introduce the concept of trustworthiness in IoT, its main pillars namely, security, privacy and data protection, and then analyse the state-of-the-art in research and standardisation for each of these subareas. Throughout the paper, we develop and refer to Unmanned Aerial Vehicles (UAVs) as a promising value-added service example of mobile IoT devices. The paper then presents a thorough gap analysis and concludes with recommendations for future work.
2020-12-02
Zhao, Q., Du, P., Gerla, M., Brown, A. J., Kim, J. H..  2018.  Software Defined Multi-Path TCP Solution for Mobile Wireless Tactical Networks. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :1—9.
Naval Battlefield Network communications rely on wireless network technologies to transmit data between different naval entities, such as ships and shore nodes. Existing naval battle networks heavily depend on the satellite communication system using single-path TCP for reliable, non-interactive data. While satisfactory for traditional use cases, this communication model may be inadequate for outlier cases, such as those arising from satellite failure and wireless signal outage. To promote network stability and assurance in such scenarios, the addition of unmanned aerial vehicles to function as relay points can complement network connectivity and alleviate potential strains in adverse conditions. The inherent mobility of aerial vehicles coupled with existing source node movements, however, leads to frequent network handovers with non-negligible overhead and communication interruption, particularly in the present single-path model. In this paper, we propose a solution based on multi-path TCP and software-defined networking, which, when applied to mobile wireless heterogeneous networks, reduces the network handover delay and improves the total throughput for transmissions among various naval entities at sea and littoral. In case of single link failure, the presence of a connectable relay point maintains TCP connectivity and reduces the risk of service interruption. To validate feasibility and to evaluate performance of our solution, we constructed a Mininet- WiFi emulation testbed. Compared against single-path TCP communication methods, execution of the testbed when configured to use multi-path TCP and UAV relays yields demonstrably more stable network handovers with relatively low overhead, greater reliability of network connectivity, and higher overall end-to-end throughput. Because the SDN global controller dynamically adjusts allocations per user, the solution effectively eliminates link congestion and promotes more efficient bandwidth utilization.
2020-12-01
Xie, Y., Bodala, I. P., Ong, D. C., Hsu, D., Soh, H..  2019.  Robot Capability and Intention in Trust-Based Decisions Across Tasks. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :39—47.

In this paper, we present results from a human-subject study designed to explore two facets of human mental models of robots - inferred capability and intention - and their relationship to overall trust and eventual decisions. In particular, we examine delegation situations characterized by uncertainty, and explore how inferred capability and intention are applied across different tasks. We develop an online survey where human participants decide whether to delegate control to a simulated UAV agent. Our study shows that human estimations of robot capability and intent correlate strongly with overall self-reported trust. However, overall trust is not independently sufficient to determine whether a human will decide to trust (delegate) a given task to a robot. Instead, our study reveals that estimations of robot intention, capability, and overall trust are integrated when deciding to delegate. From a broader perspective, these results suggest that calibrating overall trust alone is insufficient; to make correct decisions, humans need (and use) multi-faceted mental models when collaborating with robots across multiple contexts.

2020-10-26
Astaburuaga, Ignacio, Lombardi, Amee, La Torre, Brian, Hughes, Carolyn, Sengupta, Shamik.  2019.  Vulnerability Analysis of AR.Drone 2.0, an Embedded Linux System. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0666–0672.
The goal of this work was to identify and try to solve some of the vulnerabilities present in the AR Drone 2.0 by Parrot. The approach was to identify how the system worked, find and analyze vulnerabilities and flaws in the system as a whole and in the software, and find solutions to those problems. Analyzing the results of some tests showed that the system has an open WiFi network and the communication between the controller and the drone are unencrypted. Analyzing the Linux operating system that the drone uses, we see that "Pairing Mode" is the only way the system protects itself from unauthorized control. This is a feature that can be easily bypassed. Port scans reveal that the system has all the ports for its services open and exposed. This makes it susceptible to attacks like DoS and takeover. This research also focuses on some of the software vulnerabilities, such as Busybox that the drone runs. Lastly, this paper discuses some of the possible methods that can be used to secure the drone. These methods include securing the messages via SSH Tunnel, closing unused ports, and re-implementing the software used by the drone and the controller.
2020-08-03
Maxa, Jean-Aimé, Ben Mahmoud, Mohamed Slim, Larrieu, Nicolas.  2019.  Performance evaluation of a new secure routing protocol for UAV Ad hoc Network. 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). :1–10.

UAANET (UAV Ad hoc Network) is defined as an autonomous system made of swarm of UAVs (Unmanned Aerial Vehicle) and GCS (Ground Control Station). Compared to other types of MANET (Mobile Ad hoc network), UAANET have some unique features and bring several challenges. One of them is the design of routing protocol. It must be efficient for creating routes between nodes and dynamically adjusting to the rapidly changing topology. It must also be secure to protect the integrity of the network against malicious attackers. In this paper, we will present the architecture and the performance evaluation (based on both real-life experimental and emulation studies) of a secure routing protocol called SUAP (Secure UAV Ad hoc routing Protocol). SUAP ensures routing services between nodes to exchange real-time traffic and also guarantees message authentication and integrity to protect the network integrity. Additional security mechanisms were added to detect Wormhole attacks. Wormhole attacks represent a high level of risk for UAV ad hoc network and this is the reason why we choose to focus on this specific multi node attack. Through performance evaluation campaign, our results show that SUAP ensures the expected security services against different types of attacks while providing an acceptable quality of service for real-time data exchanges.

Al-Emadi, Sara, Al-Ali, Abdulla, Mohammad, Amr, Al-Ali, Abdulaziz.  2019.  Audio Based Drone Detection and Identification using Deep Learning. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :459–464.
In recent years, unmanned aerial vehicles (UAVs) have become increasingly accessible to the public due to their high availability with affordable prices while being equipped with better technology. However, this raises a great concern from both the cyber and physical security perspectives since UAVs can be utilized for malicious activities in order to exploit vulnerabilities by spying on private properties, critical areas or to carry dangerous objects such as explosives which makes them a great threat to the society. Drone identification is considered the first step in a multi-procedural process in securing physical infrastructure against this threat. In this paper, we present drone detection and identification methods using deep learning techniques such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Convolutional Recurrent Neural Network (CRNN). These algorithms will be utilized to exploit the unique acoustic fingerprints of the flying drones in order to detect and identify them. We propose a comparison between the performance of different neural networks based on our dataset which features audio recorded samples of drone activities. The major contribution of our work is to validate the usage of these methodologies of drone detection and identification in real life scenarios and to provide a robust comparison of the performance between different deep neural network algorithms for this application. In addition, we are releasing the dataset of drone audio clips for the research community for further analysis.
2020-07-16
Xiao, Jiaping, Jiang, Jianchun.  2018.  Real-time Security Evaluation for Unmanned Aircraft Systems under Data-driven Attacks*. 2018 13th World Congress on Intelligent Control and Automation (WCICA). :842—847.

With rapid advances in the fields of the Internet of Things and autonomous systems, the network security of cyber-physical systems(CPS) becomes more and more important. This paper focuses on the real-time security evaluation for unmanned aircraft systems which are cyber-physical systems relying on information communication and control system to achieve autonomous decision making. Our problem formulation is motivated by scenarios involving autonomous unmanned aerial vehicles(UAVs) working continuously under data-driven attacks when in an open, uncertain, and even hostile environment. Firstly, we investigated the state estimation method in CPS integrated with data-driven attacks model, and then proposed a real-time security scoring algorithm to evaluate the security condition of unmanned aircraft systems under different threat patterns, considering the vulnerability of the systems and consequences brought by data attacks. Our simulation in a UAV illustrated the efficiency and reliability of the algorithm.

2020-07-06
Mao, Zhong, Yan, Yujie, Wu, Jiahao, Hajjar, Jerome F., Padir, Taskin.  2019.  Automated Damage Assessment of Critical Infrastructure Using Online Mapping Technique with Small Unmanned Aircraft Systems. 2019 IEEE International Symposium on Technologies for Homeland Security (HST). :1–5.
Rapid inspection and assessment of critical infrastructure after man-made and natural disasters is a matter of homeland security. The primary aim of this paper is to demonstrate the potential of leveraging small Unmanned Aircraft System (sUAS) in support of the rapid recovery of critical infrastructure in the aftermath of catastrophic events. We propose our data collection, detection and assessment system, using a sUAS equipped with a Lidar and a camera. This method provides a solution in fast post-disaster response and assists human responders in damage investigation.
2020-04-13
Nalamati, Mrunalini, Kapoor, Ankit, Saqib, Muhammed, Sharma, Nabin, Blumenstein, Michael.  2019.  Drone Detection in Long-Range Surveillance Videos. 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). :1–6.

The usage of small drones/UAVs has significantly increased recently. Consequently, there is a rising potential of small drones being misused for illegal activities such as terrorism, smuggling of drugs, etc. posing high-security risks. Hence, tracking and surveillance of drones are essential to prevent security breaches. The similarity in the appearance of small drone and birds in complex background makes it challenging to detect drones in surveillance videos. This paper addresses the challenge of detecting small drones in surveillance videos using popular and advanced deep learning-based object detection methods. Different CNN-based architectures such as ResNet-101 and Inception with Faster-RCNN, as well as Single Shot Detector (SSD) model was used for experiments. Due to sparse data available for experiments, pre-trained models were used while training the CNNs using transfer learning. Best results were obtained from experiments using Faster-RCNN with the base architecture of ResNet-101. Experimental analysis on different CNN architectures is presented in the paper, along with the visual analysis of the test dataset.

2019-12-02
Elfar, Mahmoud, Zhu, Haibei, Cummings, M. L., Pajic, Miroslav.  2019.  Security-Aware Synthesis of Human-UAV Protocols. 2019 International Conference on Robotics and Automation (ICRA). :8011–8017.
In this work, we synthesize collaboration protocols for human-unmanned aerial vehicle (H-UAV) command and control systems, where the human operator aids in securing the UAV by intermittently performing geolocation tasks to confirm its reported location. We first present a stochastic game-based model for the system that accounts for both the operator and an adversary capable of launching stealthy false-data injection attacks, causing the UAV to deviate from its path. We also describe a synthesis challenge due to the UAV's hidden-information constraint. Next, we perform human experiments using a developed RESCHU-SA testbed to recognize the geolocation strategies that operators adopt. Furthermore, we deploy machine learning techniques on the collected experimental data to predict the correctness of a geolocation task at a given location based on its geographical features. By representing the model as a delayed-action game and formalizing the system objectives, we utilize off-the-shelf model checkers to synthesize protocols for the human-UAV coalition that satisfy these objectives. Finally, we demonstrate the usefulness of the H-UAV protocol synthesis through a case study where the protocols are experimentally analyzed and further evaluated by human operators.
2019-02-08
Lee, D. ', La, W. Gyu, Kim, H..  2018.  Drone Detection and Identification System Using Artificial Intelligence. 2018 International Conference on Information and Communication Technology Convergence (ICTC). :1131-1133.

As drone attracts much interest, the drone industry has opened their market to ordinary people, making drones to be used in daily lives. However, as it got easier for drone to be used by more people, safety and security issues have raised as accidents are much more likely to happen: colliding into people by losing control or invading secured properties. For safety purposes, it is essential for observers and drone to be aware of an approaching drone. In this paper, we introduce a comprehensive drone detection system based on machine learning. This system is designed to be operable on drones with camera. Based on the camera images, the system deduces location on image and vendor model of drone based on machine classification. The system is actually built with OpenCV library. We collected drone imagery and information for learning process. The system's output shows about 89 percent accuracy.

2019-01-31
Sampigethaya, K., Kopardekar, P., Davis, J..  2018.  Cyber Security of Unmanned Aircraft System Traffic Management (UTM). 2018 Integrated Communications, Navigation, Surveillance Conference (ICNS). :1C1–1–1C1–15.

Millions of small Unmanned Aircraft System (sUAS) aircraft of various shapes and capabilities will soon fly at low altitudes in urban environments for ambitious applications. It is critical to ensure these remotely piloted aircraft fly safely, predictably, and efficiently in this challenging airspace, without endangering themselves and other occupants sharing that airspace or in proximity. Concepts, technologies, processes, and policies to solve this hard problem of UAS Traffic Management (UTM) are being explored. But, cyber security considerations are largely missing. This paper bridges this gap and addresses UTM cyber security needs and issues. It contributes a comprehensive framework to understand, identify, classify, and assess security threats to UTM, including those resulting from sUAS vulnerabilities. Promising threat mitigations, major challenges, and research directions are discussed to secure UTM.

2018-06-20
Bhunia, S., Sengupta, S..  2017.  Distributed adaptive beam nulling to mitigate jamming in 3D UAV mesh networks. 2017 International Conference on Computing, Networking and Communications (ICNC). :120–125.

With the advancement of unmanned aerial vehicles (UAV), 3D wireless mesh networks will play a crucial role in next generation mission critical wireless networks. Along with providing coverage over difficult terrain, it provides better spectral utilization through 3D spatial reuse. However, being a wireless network, 3D meshes are vulnerable to jamming/disruptive attacks. A jammer can disrupt the communication, as well as control of the network by intelligently causing interference to a set of nodes. This paper presents a distributed mechanism of avoiding jamming attacks by means of 3D spatial filtering where adaptive beam nulling is used to keep the jammer in null region in order to bypass jamming. Kalman filter based tracking mechanism is used to estimate the most likely trajectory of the jammer from noisy observation of the jammer's position. A beam null border is determined by calculating confidence region of jammer's current and next position estimates. An optimization goal is presented to calculate optimal beam null that minimizes the number of deactivated links while maximizing the higher value of confidence for keeping the jammer inside the null. The survivability of a 3D mesh network with a mobile jammer is studied through simulation that validates an 96.65% reduction in the number of jammed nodes.

2018-05-02
Clifford, J., Garfield, K., Towhidnejad, M., Neighbors, J., Miller, M., Verenich, E., Staskevich, G..  2017.  Multi-layer model of swarm intelligence for resilient autonomous systems. 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC). :1–4.

Embry-Riddle Aeronautical University (ERAU) is working with the Air Force Research Lab (AFRL) to develop a distributed multi-layer autonomous UAS planning and control technology for gathering intelligence in Anti-Access Area Denial (A2/AD) environments populated by intelligent adaptive adversaries. These resilient autonomous systems are able to navigate through hostile environments while performing Intelligence, Surveillance, and Reconnaissance (ISR) tasks, and minimizing the loss of assets. Our approach incorporates artificial life concepts, with a high-level architecture divided into three biologically inspired layers: cyber-physical, reactive, and deliberative. Each layer has a dynamic level of influence over the behavior of the agent. Algorithms within the layers act on a filtered view of reality, abstracted in the layer immediately below. Each layer takes input from the layer below, provides output to the layer above, and provides direction to the layer below. Fast-reactive control systems in lower layers ensure a stable environment supporting cognitive function on higher layers. The cyber-physical layer represents the central nervous system of the individual, consisting of elements of the vehicle that cannot be changed such as sensors, power plant, and physical configuration. On the reactive layer, the system uses an artificial life paradigm, where each agent interacts with the environment using a set of simple rules regarding wants and needs. Information is communicated explicitly via message passing and implicitly via observation and recognition of behavior. In the deliberative layer, individual agents look outward to the group, deliberating on efficient resource management and cooperation with other agents. Strategies at all layers are developed using machine learning techniques such as Genetic Algorithm (GA) or NN applied to system training that takes place prior to the mission.

2018-02-06
Brust, M. R., Zurad, M., Hentges, L., Gomes, L., Danoy, G., Bouvry, P..  2017.  Target Tracking Optimization of UAV Swarms Based on Dual-Pheromone Clustering. 2017 3rd IEEE International Conference on Cybernetics (CYBCONF). :1–8.

Unmanned Aerial Vehicles (UAVs) are autonomous aircraft that, when equipped with wireless communication interfaces, can share data among themselves when in communication range. Compared to single UAVs, using multiple UAVs as a collaborative swarm is considerably more effective for target tracking, reconnaissance, and surveillance missions because of their capacity to tackle complex problems synergistically. Success rates in target detection and tracking depend on map coverage performance, which in turn relies on network connectivity between UAVs to propagate surveillance results to avoid revisiting already observed areas. In this paper, we consider the problem of optimizing three objectives for a swarm of UAVs: (a) target detection and tracking, (b) map coverage, and (c) network connectivity. Our approach, Dual-Pheromone Clustering Hybrid Approach (DPCHA), incorporates a multi-hop clustering and a dual-pheromone ant-colony model to optimize these three objectives. Clustering keeps stable overlay networks, while attractive and repulsive pheromones mark areas of detected targets and visited areas. Additionally, DPCHA introduces a disappearing target model for dealing with temporarily invisible targets. Extensive simulations show that DPCHA produces significant improvements in the assessment of coverage fairness, cluster stability, and connection volatility. We compared our approach with a pure dual- pheromone approach and a no-base model, which removes the base station from the model. Results show an approximately 50% improvement in map coverage compared to the pure dual-pheromone approach.

MüUller, W., Kuwertz, A., Mühlenberg, D., Sander, J..  2017.  Semantic Information Fusion to Enhance Situational Awareness in Surveillance Scenarios. 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). :397–402.

In recent years, the usage of unmanned aircraft systems (UAS) for security-related purposes has increased, ranging from military applications to different areas of civil protection. The deployment of UAS can support security forces in achieving an enhanced situational awareness. However, in order to provide useful input to a situational picture, sensor data provided by UAS has to be integrated with information about the area and objects of interest from other sources. The aim of this study is to design a high-level data fusion component combining probabilistic information processing with logical and probabilistic reasoning, to support human operators in their situational awareness and improving their capabilities for making efficient and effective decisions. To this end, a fusion component based on the ISR (Intelligence, Surveillance and Reconnaissance) Analytics Architecture (ISR-AA) [1] is presented, incorporating an object-oriented world model (OOWM) for information integration, an expressive knowledge model and a reasoning component for detection of critical events. Approaches for translating the information contained in the OOWM into either an ontology for logical reasoning or a Markov logic network for probabilistic reasoning are presented.

2018-02-02
Akram, R. N., Markantonakis, K., Mayes, K., Habachi, O., Sauveron, D., Steyven, A., Chaumette, S..  2017.  Security, privacy and safety evaluation of dynamic and static fleets of drones. 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC). :1–12.

Interconnected everyday objects, either via public or private networks, are gradually becoming reality in modern life - often referred to as the Internet of Things (IoT) or Cyber-Physical Systems (CPS). One stand-out example are those systems based on Unmanned Aerial Vehicles (UAVs). Fleets of such vehicles (drones) are prophesied to assume multiple roles from mundane to high-sensitive applications, such as prompt pizza or shopping deliveries to the home, or to deployment on battlefields for battlefield and combat missions. Drones, which we refer to as UAVs in this paper, can operate either individually (solo missions) or as part of a fleet (group missions), with and without constant connection with a base station. The base station acts as the command centre to manage the drones' activities; however, an independent, localised and effective fleet control is necessary, potentially based on swarm intelligence, for several reasons: 1) an increase in the number of drone fleets; 2) fleet size might reach tens of UAVs; 3) making time-critical decisions by such fleets in the wild; 4) potential communication congestion and latency; and 5) in some cases, working in challenging terrains that hinders or mandates limited communication with a control centre, e.g. operations spanning long period of times or military usage of fleets in enemy territory. This self-aware, mission-focused and independent fleet of drones may utilise swarm intelligence for a), air-traffic or flight control management, b) obstacle avoidance, c) self-preservation (while maintaining the mission criteria), d) autonomous collaboration with other fleets in the wild, and e) assuring the security, privacy and safety of physical (drones itself) and virtual (data, software) assets. In this paper, we investigate the challenges faced by fleet of drones and propose a potential course of action on how to overcome them.

Whelihan, D., Vai, M., Evanich, N., Kwak, K. J., Li, J., Britton, M., Frantz, B., Hadcock, D., Lynch, M., Schafer, D. et al..  2017.  Designing agility and resilience into embedded systems. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :249–254.

Cyber-Physical Systems (CPS) such as Unmanned Aerial Systems (UAS) sense and actuate their environment in pursuit of a mission. The attack surface of these remotely located, sensing and communicating devices is both large, and exposed to adversarial actors, making mission assurance a challenging problem. While best-practice security policies should be followed, they are rarely enough to guarantee mission success as not all components in the system may be trusted and the properties of the environment (e.g., the RF environment) may be under the control of the attacker. CPS must thus be built with a high degree of resilience to mitigate threats that security cannot alleviate. In this paper, we describe the Agile and Resilient Embedded Systems (ARES) methodology and metric set. The ARES methodology pursues cyber security and resilience (CSR) as high level system properties to be developed in the context of the mission. An analytic process guides system developers in defining mission objectives, examining principal issues, applying CSR technologies, and understanding their interactions.