Visible to the public Biblio

Filters: Keyword is untrusted relay  [Clear All Filters]
2019-12-30
Shirasaki, Yusuke, Takyu, Osamu, Fujii, Takeo, Ohtsuki, Tomoaki, Sasamori, Fumihito, Handa, Shiro.  2018.  Consideration of security for PLNC with untrusted relay in game theoretic perspective. 2018 IEEE Radio and Wireless Symposium (RWS). :109–112.
A physical layer network coding (PLNC) is a highly efficient scheme for exchanging information between two nodes. Since the relay receives the interfered signal between two signals sent by two nodes, it hardly decodes any information from received signal. Therefore, the secure wireless communication link to the untrusted relay is constructed. The two nodes optimize the transmit power control for maximizing the secure capacity but these depend on the channel state information informed by the relay station. Therefore, the untrusted relay disguises the informed CSI for exploiting the information from two nodes. This paper constructs the game of two optimizations between the legitimate two nodes and the untrusted relay for clarifying the security of PLNC with untrusted relay.
2017-04-03
Zenger, Christian T., Zimmer, Jan, Pietersz, Mario, Driessen, Benedikt, Paar, Christof.  2016.  Constructive and Destructive Aspects of Adaptive Wormholes for the 5G Tactile Internet. Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :109–120.

In this work, we constructively combine adaptive wormholes with channel-reciprocity based key establishment (CRKE), which has been proposed as a lightweight security solution for IoT devices and might be even more important for the 5G Tactile Internet and its embedded low-end devices. We present a new secret key generation protocol where two parties compute shared cryptographic keys under narrow-band multi-path fading models over a delayed digital channel. The proposed approach furthermore enables distance-bounding the key establishment process via the coherence time dependencies of the wireless channel. Our scheme is thoroughly evaluated both theoretically and practically. For the latter, we used a testbed based on the IEEE 802.15.4 standard and performed extensive experiments in a real-world manufacturing environment. Additionally, we demonstrate adaptive wormhole attacks (AWOAs) and their consequences on several physical-layer security schemes. Furthermore, we proposed a countermeasure that minimizes the risk of AWOAs.