Visible to the public Biblio

Found 1161 results

Filters: Keyword is compositionality  [Clear All Filters]
Ayub, M. A., Continella, A., Siraj, A..  2020.  An I/O Request Packet (IRP) Driven Effective Ransomware Detection Scheme using Artificial Neural Network. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :319–324.
In recent times, there has been a global surge of ransomware attacks targeted at industries of various types and sizes from retail to critical infrastructure. Ransomware researchers are constantly coming across new kinds of ransomware samples every day and discovering novel ransomware families out in the wild. To mitigate this ever-growing menace, academia and industry-based security researchers have been utilizing unique ways to defend against this type of cyber-attacks. I/O Request Packet (IRP), a low-level file system I/O log, is a newly found research paradigm for defense against ransomware that is being explored frequently. As such in this study, to learn granular level, actionable insights of ransomware behavior, we analyze the IRP logs of 272 ransomware samples belonging to 18 different ransomware families captured during individual execution. We further our analysis by building an effective Artificial Neural Network (ANN) structure for successful ransomware detection by learning the underlying patterns of the IRP logs. We evaluate the ANN model with three different experimental settings to prove the effectiveness of our approach. The model demonstrates outstanding performance in terms of accuracy, precision score, recall score, and F1 score, i.e., in the range of 99.7%±0.2%.
Cheng, J., He, R., Yuepeng, E., Wu, Y., You, J., Li, T..  2020.  Real-Time Encrypted Traffic Classification via Lightweight Neural Networks. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
The fast growth of encrypted traffic puts forward burning requirements on the efficiency of traffic classification. Although deep learning models perform well in the classification, they sacrifice the efficiency to obtain high-precision results. To reduce the resource and time consumption, a novel and lightweight model is proposed in this paper. Our design principle is to “maximize the reuse of thin modules”. A thin module adopts the multi-head attention and the 1D convolutional network. Attributed to the one-step interaction of all packets and the parallelized computation of the multi-head attention mechanism, a key advantage of our model is that the number of parameters and running time are significantly reduced. In addition, the effectiveness and efficiency of 1D convolutional networks are proved in traffic classification. Besides, the proposed model can work well in a real time manner, since only three consecutive packets of a flow are needed. To improve the stability of the model, the designed network is trained with the aid of ResNet, layer normalization and learning rate warmup. The proposed model outperforms the state-of-the-art works based on deep learning on two public datasets. The results show that our model has higher accuracy and running efficiency, while the number of parameters used is 1.8% of the 1D convolutional network and the training time halves.
Bouzar-Benlabiod, L., Rubin, S. H., Belaidi, K., Haddar, N. E..  2020.  RNN-VED for Reducing False Positive Alerts in Host-based Anomaly Detection Systems. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :17–24.
Host-based Intrusion Detection Systems HIDS are often based on anomaly detection. Several studies deal with anomaly detection by analyzing the system-call traces and get good detection rates but also a high rate off alse positives. In this paper, we propose a new anomaly detection approach applied on the system-call traces. The normal behavior learning is done using a Sequence to sequence model based on a Variational Encoder-Decoder (VED) architecture that integrates Recurrent Neural Networks (RNN) cells. We exploit the semantics behind the invoking order of system-calls that are then seen as sentences. A preprocessing phase is added to structure and optimize the model input-data representation. After the learning step, a one-class classification is run to categorize the sequences as normal or abnormal. The architecture may be used for predicting abnormal behaviors. The tests are achieved on the ADFA-LD dataset.
Ameer, S., Benson, J., Sandhu, R..  2020.  The EGRBAC Model for Smart Home IoT. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :457–462.
The Internet of Things (IoT) is enabling smart houses, where multiple users with complex social relationships interact with smart devices. This requires sophisticated access control specification and enforcement models, that are currently lacking. In this paper, we introduce the extended generalized role based access control (EGRBAC) model for smart home IoT. We provide a formal definition for EGRBAC and illustrate its features with a use case. A proof-of-concept demonstration utilizing AWS-IoT Greengrass is discussed in the appendix. EGRBAC is a first step in developing a comprehensive family of access control models for smart home IoT.
Xingjie, F., Guogenp, W., ShiBIN, Z., ChenHAO.  2020.  Industrial Control System Intrusion Detection Model based on LSTM Attack Tree. 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :255–260.
With the rapid development of the Industrial Internet, the network security risks faced by industrial control systems (ICSs) are becoming more and more intense. How to do a good job in the security protection of industrial control systems is extremely urgent. For traditional network security, industrial control systems have some unique characteristics, which results in traditional intrusion detection systems that cannot be directly reused on it. Aiming at the industrial control system, this paper constructs all attack paths from the hacker's perspective through the attack tree model, and uses the LSTM algorithm to identify and classify the attack behavior, and then further classify the attack event by extracting atomic actions. Finally, through the constructed attack tree model, the results are reversed and predicted. The results show that the model has a good effect on attack recognition, and can effectively analyze the hacker attack path and predict the next attack target.
Wang, P., Zhang, J., Wang, S., Wu, D..  2020.  Quantitative Assessment on the Limitations of Code Randomization for Legacy Binaries. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :1–16.
Software development and deployment are generally fast-pacing practices, yet to date there is still a significant amount of legacy software running in various critical industries with years or even decades of lifespans. As the source code of some legacy software became unavailable, it is difficult for maintainers to actively patch the vulnerabilities, leaving the outdated binaries appealing targets of advanced security attacks. One of the most powerful attacks today is code reuse, a technique that can circumvent most existing system-level security facilities. While there have been various countermeasures against code reuse, applying them to sourceless software appears to be exceptionally challenging. Fine-grained code randomization is considered to be an effective strategy to impede modern code-reuse attacks. To apply it to legacy software, a technique called binary rewriting is employed to directly reconstruct binaries without symbol or relocation information. However, we found that current rewriting-based randomization techniques, regardless of their designs and implementations, share a common security defect such that the randomized binaries may remain vulnerable in certain cases. Indeed, our finding does not invalidate fine-grained code randomization as a meaningful defense against code reuse attacks, for it significantly raises the bar for exploits to be successful. Nevertheless, it is critical for the maintainers of legacy software systems to be aware of this problem and obtain a quantitative assessment of the risks in adopting a potentially incomprehensive defense. In this paper, we conducted a systematic investigation into the effectiveness of randomization techniques designed for hardening outdated binaries. We studied various state-of-the-art, fine-grained randomization tools, confirming that all of them can leave a certain part of the retrofitted binary code still reusable. To quantify the risks, we proposed a set of concrete criteria to classify gadgets immune to rewriting-based randomization and investigated their availability and capability.
Westland, T., Niu, N., Jha, R., Kapp, D., Kebede, T..  2020.  Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :37–44.
Automatically generating exploits for attacks receives much attention in security testing and auditing. However, little is known about the continuous effect of automatic attack generation and detection. In this paper, we develop an analytic model to understand the cost-benefit tradeoffs in light of the process of vulnerability discovery. We develop a three-phased model, suggesting that the cumulative malware detection has a productive period before the rate of gain flattens. As the detection mechanisms co-evolve, the gain will likely increase. We evaluate our analytic model by using an anti-virus tool to detect the thousands of Trojans automatically created. The anti-virus scanning results over five months show the validity of the model and point out future research directions.
Walia, K. S., Shenoy, S., Cheng, Y..  2020.  An Empirical Analysis on the Usability and Security of Passwords. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :1–8.
Security and usability are two essential aspects of a system, but they usually move in opposite directions. Sometimes, to achieve security, usability has to be compromised, and vice versa. Password-based authentication systems require both security and usability. However, to increase password security, absurd rules are introduced, which often drive users to compromise the usability of their passwords. Users tend to forget complex passwords and use techniques such as writing them down, reusing them, and storing them in vulnerable ways. Enhancing the strength while maintaining the usability of a password has become one of the biggest challenges for users and security experts. In this paper, we define the pronounceability of a password as a means to measure how easy it is to memorize - an aspect we associate with usability. We examine a dataset of more than 7 million passwords to determine whether the usergenerated passwords are secure. Moreover, we convert the usergenerated passwords into phonemes and measure the pronounceability of the phoneme-based representations. We then establish a relationship between the two and suggest how password creation strategies can be adapted to better align with both security and usability.
Ekşim, A., Demirci, T..  2020.  Ultimate Secrecy in Cooperative and Multi-hop Wireless Communications. 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science. :1–4.
In this work, communication secrecy in cooperative and multi-hop wireless communications for various radio frequencies are examined. Attenuation lines and ranges of both detection and ultimate secrecy regions were calculated for cooperative communication channel and multi-hop channel with various number of hops. From results, frequency ranges with the highest potential to apply bandwidth saving method known as frequency reuse were determined and compared to point-to-point channel. Frequencies with the highest attenuation were derived and their ranges of both detection and ultimate secrecy are calculated. Point-to-point, cooperative and multi-hop channels were compared in terms of ultimate secrecy ranges. Multi-hop channel measurements were made with different number of hops and the relation between the number of hops and communication security is examined. Ultimate secrecy ranges were calculated up to 1 Terahertz and found to be less than 13 meters between 550-565 GHz frequency range. Therefore, for short-range wireless communication systems such as indoor and in-device communication systems (board-to-board or chip-to-chip communications), it is shown that various bands in the Terahertz band can be used to reuse the same frequency in different locations to obtain high security and high bandwidth.
Feng, X., Wang, D., Lin, Z., Kuang, X., Zhao, G..  2020.  Enhancing Randomization Entropy of x86-64 Code while Preserving Semantic Consistency. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1–12.
Code randomization is considered as the basis of mitigation against code reuse attacks, fundamentally supporting some recent proposals such as execute-only memory (XOM) that aims at dynamic return-oriented programming (ROP) attacks. However, existing code randomization methods are hard to achieve a good balance between high-randomization entropy and semantic consistency. In particular, they always ignore code semantic consistency, incurring performance loss and incompatibility with current security schemes, e.g., control flow integrity (CFI). In this paper, we present an enhanced code randomization method termed as HCRESC, which can improve the randomization entropy significantly, meanwhile ensure the semantic consistency between variants and the original code. HCRESC reschedules instructions within the range of functions rather than basic blocks, thus producing more variants of the original code and preserving the code's semantic. We implement HCRESC on Linux platform of x86-64 architecture and demonstrate that HCRESC can increase the randomization entropy of x86-64 code over than 120% compared with existing methods while ensuring control flow and size of the code unaltered.
Zhang, S., Ma, X..  2020.  A General Difficulty Control Algorithm for Proof-of-Work Based Blockchains. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3077–3081.
Designing an efficient difficulty control algorithm is an essential problem in Proof-of-Work (PoW) based blockchains because the network hash rate is randomly changing. This paper proposes a general difficulty control algorithm and provides insights for difficulty adjustment rules for PoW based blockchains. The proposed algorithm consists a two-layer neural network. It has low memory cost, meanwhile satisfying the fast-updating and low volatility requirements for difficulty adjustment. Real data from Ethereum are used in the simulations to prove that the proposed algorithm has better performance for the control of the block difficulty.
Dorri, A., Jurdak, R..  2020.  Tree-Chain: A Fast Lightweight Consensus Algorithm for IoT Applications. 2020 IEEE 45th Conference on Local Computer Networks (LCN). :369–372.
Blockchain has received tremendous attention in non-monetary applications including the Internet of Things (IoT) due to its salient features including decentralization, security, auditability, and anonymity. Most conventional blockchains rely on computationally expensive validator selection and consensus algorithms, have limited throughput, and high transaction delays. In this paper, we propose tree-chain a scalable fast blockchain instantiation that introduces two levels of randomization among the validators: i) transaction level where the validator of each transaction is selected randomly based on the most significant characters of the hash function output (known as consensus code), and ii) blockchain level where validator is randomly allocated to a particular consensus code based on the hash of their public key. Tree-chain introduces parallel chain branches where each validator commits the corresponding transactions in a unique ledger.
Li, J., Wang, X., Liu, S..  2020.  Hash Retrieval Method for Recaptured Images Based on Convolutional Neural Network. 2020 2nd World Symposium on Artificial Intelligence (WSAI). :79–83.
For the purpose of outdoor advertising market researching, AD images are recaptured and uploaded everyday for statistics. But the quality of the recaptured advertising images are often affected by conditions such as angle, distance, and light during the shooting process, which consequently reduce either the speed or the accuracy of the retrieving algorithm. In this paper, we proposed a hash retrieval method based on convolutional neural networks for recaptured images. The basic idea is to add a hash layer to the convolutional neural network and then extract the binary hash code output by the hash layer to perform image retrieval in lowdimensional Hamming space. Experimental results show that the retrieval performance is improved compared with the current commonly used hash retrieval methods.
Al-Janabi, S. I. Ali, Al-Janabi, S. T. Faraj, Al-Khateeb, B..  2020.  Image Classification using Convolution Neural Network Based Hash Encoding and Particle Swarm Optimization. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI). :1–5.
Image Retrieval (IR) has become one of the main problems facing computer society recently. To increase computing similarities between images, hashing approaches have become the focus of many programmers. Indeed, in the past few years, Deep Learning (DL) has been considered as a backbone for image analysis using Convolutional Neural Networks (CNNs). This paper aims to design and implement a high-performance image classifier that can be used in several applications such as intelligent vehicles, face recognition, marketing, and many others. This work considers experimentation to find the sequential model's best configuration for classifying images. The best performance has been obtained from two layers' architecture; the first layer consists of 128 nodes, and the second layer is composed of 32 nodes, where the accuracy reached up to 0.9012. The proposed classifier has been achieved using CNN and the data extracted from the CIFAR-10 dataset by the inception model, which are called the Transfer Values (TRVs). Indeed, the Particle Swarm Optimization (PSO) algorithm is used to reduce the TRVs. In this respect, the work focus is to reduce the TRVs to obtain high-performance image classifier models. Indeed, the PSO algorithm has been enhanced by using the crossover technique from genetic algorithms. This led to a reduction of the complexity of models in terms of the number of parameters used and the execution time.
Grochol, D., Sekanina, L..  2020.  Evolutionary Design of Hash Functions for IPv6 Network Flow Hashing. 2020 IEEE Congress on Evolutionary Computation (CEC). :1–8.
Fast and high-quality network flow hashing is an essential operation in many high-speed network systems such as network monitoring probes. We propose a multi-objective evolutionary design method capable of evolving hash functions for IPv4 and IPv6 flow hashing. Our approach combines Cartesian genetic programming (CGP) with Non-dominated sorting genetic algorithm II (NSGA-II) and aims to optimize not only the quality of hashing, but also the execution time of the hash function. The evolved hash functions are evaluated on real data sets collected in computer network and compared against other evolved and conventionally created hash functions.
Salim, M. N., Hutahaean, I. W., Susanti, B. H..  2020.  Fixed Point Attack on Lin et al.’s Modified Hash Function Scheme based on SMALLPRESENT-[8] Algorithm. 2020 International Conference on ICT for Smart Society (ICISS). CFP2013V-ART:1–7.
Lin et al.'s scheme is a hash function Message Authentication Codes (MAC) block cipher based scheme that's composed of the compression function. Fixed point messages have been found on SMALLPRESENT-[s] algorithm. The vulnerability of block cipher algorithm against fixed point attacks can affect the vulnerability of block cipher based hash function schemes. This paper applies fixed point attack against Lin et al.'s modified scheme based on SMALLPRESENT-[8] algorithm. Fixed point attack was done using fixed point message from SMALLPRESENT-[8] algorithm which used as Initial Value (IV) on the scheme branch. The attack result shows that eight fixed point messages are successfully discovered on the B1 branch. The fixed point messages discovery on B1 and B2 branches form 18 fixed point messages on Lin et al.'s modified scheme with different IVs and keys. The discovery of fixed point messages shows that Lin et al.'s modified scheme is vulnerable to fixed point attack.
Ye, F..  2020.  Research and Application of Improved APRIORI Algorithm Based on Hash Technology. 2020 Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :64–67.
Apriori Algorithm is the most Classic Association Rule Mining Algorithm, which has unique advantages, but it also has some disadvantages such as high overhead. This paper first describes Apriori Algorithm, points out its shortcomings, introduces related concepts, and then proposes a method based on Hash technology and compressed combination item set technology to improve APRIORI algorithm. This paper introduces the basic idea and the concrete process of the improvement in detail, analyzes the efficiency of the improved algorithm by the experiment, and advances the application of the improved algorithm in the library personalized service.
Mar, Z., Oo, K. K..  2020.  An Improvement of Apriori Mining Algorithm using Linked List Based Hash Table. 2020 International Conference on Advanced Information Technologies (ICAIT). :165–169.
Today, the huge amount of data was using in organizations around the world. This huge amount of data needs to process so that we can acquire useful information. Consequently, a number of industry enterprises discovered great information from shopper purchases found in any respect times. In data mining, the most important algorithms for find frequent item sets from large database is Apriori algorithm and discover the knowledge using the association rule. Apriori algorithm was wasted times for scanning the whole database and searching the frequent item sets and inefficient of memory requirement when large numbers of transactions are in consideration. The improved Apriori algorithm is adding and calculating third threshold may increase the overhead. So, in the aims of proposed research, Improved Apriori algorithm with LinkedList and hash tabled is used to mine frequent item sets from the transaction large amount of database. This method includes database is scanning with Improved Apriori algorithm and frequent 1-item sets counts with using the hash table. Then, in the linked list saved the next frequent item sets and scanning the database. The hash table used to produce the frequent 2-item sets Therefore, the database scans the only two times and necessary less processing time and memory space.
Feng, G., Zhang, C., Si, Y., Lang, L..  2020.  An Encryption and Decryption Algorithm Based on Random Dynamic Hash and Bits Scrambling. 2020 International Conference on Communications, Information System and Computer Engineering (CISCE). :317–320.
This paper proposes a stream cipher algorithm. Its main principle is conducting the binary random dynamic hash with the help of key. At the same time of calculating the hash mapping address of plaintext, change the value of plaintext through bits scrambling, and then map it to the ciphertext space. This encryption method has strong randomness, and the design of hash functions and bits scrambling is flexible and diverse, which can constitute a set of encryption and decryption methods. After testing, the code evenness of the ciphertext obtained using this method is higher than that of the traditional method under some extreme conditions..
Brazhnikov, S..  2020.  A Hardware Implementation of the SHA2 Hash Algorithms Using CMOS 28nm Technology. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1784–1786.
This article presents a hardware implementation review of a popular family of hash algorithms: Secure Hash Algorithm 2 (SHA2). It presents various schematic solutions and their assessments for 28 nm CMOS technology. Using this paper we can estimate the expected performance of the hardware hash accelerator based on the IC.
Yilmaz, I., Masum, R., Siraj, A..  2020.  Addressing Imbalanced Data Problem with Generative Adversarial Network For Intrusion Detection. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :25–30.

Machine learning techniques help to understand underlying patterns in datasets to develop defense mechanisms against cyber attacks. Multilayer Perceptron (MLP) technique is a machine learning technique used in detecting attack vs. benign data. However, it is difficult to construct any effective model when there are imbalances in the dataset that prevent proper classification of attack samples in data. In this research, we use UGR'16 dataset to conduct data wrangling initially. This technique helps to prepare a test set from the original dataset to train the neural network model effectively. We experimented with a series of inputs of varying sizes (i.e. 10000, 50000, 1 million) to observe the performance of the MLP neural network model with distribution of features over accuracy. Later, we use Generative Adversarial Network (GAN) model that produces samples of different attack labels (e.g. blacklist, anomaly spam, ssh scan) for balancing the dataset. These samples are generated based on data from the UGR'16 dataset. Further experiments with MLP neural network model shows that a balanced attack sample dataset, made possible with GAN, produces more accurate results than an imbalanced one.

Kumar, S. A., Kumar, A., Bajaj, V., Singh, G. K..  2020.  An Improved Fuzzy Min–Max Neural Network for Data Classification. IEEE Transactions on Fuzzy Systems. 28:1910–1924.
Hyperbox classifier is an efficient tool for modern pattern classification problems due to its transparency and rigorous use of Euclidian geometry. Fuzzy min-max (FMM) network efficiently implements the hyperbox classifier, and has been modified several times to yield better classification accuracy. However, the obtained accuracy is not up to the mark. Therefore, in this paper, a new improved FMM (IFMM) network is proposed to increase the accuracy rate. In the proposed IFMM network, a modified constraint is employed to check the expandability of a hyperbox. It also uses semiperimeter of the hyperbox along with k-nearest mechanism to select the expandable hyperbox. In the proposed IFMM, the contraction rules of conventional FMM and enhanced FMM (EFMM) are also modified using semiperimeter of a hyperbox in order to balance the size of both overlapped hyperboxes. Experimental results show that the proposed IFMM network outperforms the FMM, k-nearest FMM, and EFMM by yielding more accuracy rate with less number of hyperboxes. The proposed methods are also applied to histopathological images to know the best magnification factor for classification.
Li, C.-Y., Chang, C.-H., Lu, D.-Y..  2020.  Full-Duplex Self-Recovery Optical Fibre Transport System Based on a Passive Single-Line Bidirectional Optical Add/Drop Multiplexer. IEEE Photonics Journal. 12:1–10.
A full-duplex self-recovery optical fibre transport system is proposed on the basis of a novel passive single-line bidirectional optical add/drop multiplexer (SBOADM). This system aims to achieve an access network with low complexity and network protection capability. Polarisation division multiplexing technique, optical double-frequency application and wavelength reuse method are also employed in the transport system to improve wavelength utilisation efficiency and achieve colourless optical network unit. When the network comprises a hybrid tree-ring topology, the downstream signals can be bidirectionally transmitted and the upstream signals can continuously be sent back to the central office in the reverse pathways due to the remarkable routing function of the SBOADM. Thus, no complicated optical multiplexer/de-multiplexer components or massive optical switches are required in the transport system. If a fibre link failure occurs in the ring topology, then the blocked network connections can be recovered by switching only a single optical switch preinstalled in the remote node. Simulation results show that the proposed architecture can recover the network function effectively and provide identical transmission performance to overcome the impact of a breakpoint in the network. The proposed transport system presents remarkable flexibility and convenience in expandability and breakpoint self-recovery.
Yang, S., Liu, S., Huang, J., Su, H., Wang, H..  2020.  Control Conflict Suppressing and Stability Improving for an MMC Distributed Control System. IEEE Transactions on Power Electronics. 35:13735–13747.
Compared with traditional centralized control strategies, the distributed control systems significantly improve the flexibility and expandability of an modular multilevel converter (MMC). However, the stability issue in the MMC distributed control system with the presence of control loop coupling interactions is rarely discussed in existing research works. This article is to improve the stability of an MMC distributed control system by inhibiting the control conflict due to the coupling interactions among control loops with incomplete control information. By modeling the MMC distributed control system, the control loop coupling interactions are analyzed and the essential cause of control conflict is revealed. Accordingly, a control parameter design principle is proposed to effectively suppress the disturbances from the targeted control conflict and improve the MMC system stability. The rationality of the theoretical analysis and the effectiveness of the control parameter design principle are confirmed by simulation and experimental results.
Li, Y., Zhou, W., Wang, H..  2020.  F-DPC: Fuzzy Neighborhood-Based Density Peak Algorithm. IEEE Access. 8:165963–165972.
Clustering is a concept in data mining, which divides a data set into different classes or clusters according to a specific standard, making the similarity of data objects in the same cluster as large as possible. Clustering by fast search and find of density peaks (DPC) is a novel clustering algorithm based on density. It is simple and novel, only requiring fewer parameters to achieve better clustering effect, without the requirement for iterative solution. And it has expandability and can detect the clustering of any shape. However, DPC algorithm still has some defects, such as it employs the clear neighborhood relations to calculate local density, so it cannot identify the neighborhood membership of different values of points from the distance of points and It is impossible to accurately cluster the data of the multi-density peak. The fuzzy neighborhood density peak clustering algorithm is proposed for this shortcoming (F-DPC): novel local density is defined by the fuzzy neighborhood relationship. The fuzzy set theory can be used to make the fuzzy neighborhood function of local density more sensitive, so that the clustering for data set of various shapes and densities is more robust. Experiments show that the algorithm has high accuracy and robustness.