Visible to the public Biblio

Filters: Keyword is network traffic  [Clear All Filters]
2020-07-27
Tun, May Thet, Nyaung, Dim En, Phyu, Myat Pwint.  2019.  Performance Evaluation of Intrusion Detection Streaming Transactions Using Apache Kafka and Spark Streaming. 2019 International Conference on Advanced Information Technologies (ICAIT). :25–30.
In the information era, the size of network traffic is complex because of massive Internet-based services and rapid amounts of data. The more network traffic has enhanced, the more cyberattacks have dramatically increased. Therefore, cybersecurity intrusion detection has been a challenge in the current research area in recent years. The Intrusion detection system requires high-level protection and detects modern and complex attacks with more accuracy. Nowadays, big data analytics is the main key to solve marketing, security and privacy in an extremely competitive financial market and government. If a huge amount of stream data flows within a short period time, it is difficult to analyze real-time decision making. Performance analysis is extremely important for administrators and developers to avoid bottlenecks. The paper aims to reduce time-consuming by using Apache Kafka and Spark Streaming. Experiments on the UNSWNB-15 dataset indicate that the integration of Apache Kafka and Spark Streaming can perform better in terms of processing time and fault-tolerance on the huge amount of data. According to the results, the fault tolerance can be provided by the multiple brokers of Kafka and parallel recovery of Spark Streaming. And then, the multiple partitions of Apache Kafka increase the processing time in the integration of Apache Kafka and Spark Streaming.
2020-07-03
Jia, Guanbo, Miller, Paul, Hong, Xin, Kalutarage, Harsha, Ban, Tao.  2019.  Anomaly Detection in Network Traffic Using Dynamic Graph Mining with a Sparse Autoencoder. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :458—465.

Network based attacks on ecommerce websites can have serious economic consequences. Hence, anomaly detection in dynamic network traffic has become an increasingly important research topic in recent years. This paper proposes a novel dynamic Graph and sparse Autoencoder based Anomaly Detection algorithm named GAAD. In GAAD, the network traffic over contiguous time intervals is first modelled as a series of dynamic bipartite graph increments. One mode projection is performed on each bipartite graph increment and the adjacency matrix derived. Columns of the resultant adjacency matrix are then used to train a sparse autoencoder to reconstruct it. The sum of squared errors between the reconstructed approximation and original adjacency matrix is then calculated. An online learning algorithm is then used to estimate a Gaussian distribution that models the error distribution. Outlier error values are deemed to represent anomalous traffic flows corresponding to possible attacks. In the experiment, a network emulator was used to generate representative ecommerce traffic flows over a time period of 225 minutes with five attacks injected, including SYN scans, host emulation and DDoS attacks. ROC curves were generated to investigate the influence of the autoencoder hyper-parameters. It was found that increasing the number of hidden nodes and their activation level, and increasing sparseness resulted in improved performance. Analysis showed that the sparse autoencoder was unable to encode the highly structured adjacency matrix structures associated with attacks, hence they were detected as anomalies. In contrast, SVD and variants, such as the compact matrix decomposition, were found to accurately encode the attack matrices, hence they went undetected.

2020-06-19
Haefner, Kyle, Ray, Indrakshi.  2019.  ComplexIoT: Behavior-Based Trust For IoT Networks. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :56—65.

This work takes a novel approach to classifying the behavior of devices by exploiting the single-purpose nature of IoT devices and analyzing the complexity and variance of their network traffic. We develop a formalized measurement of complexity for IoT devices, and use this measurement to precisely tune an anomaly detection algorithm for each device. We postulate that IoT devices with low complexity lead to a high confidence in their behavioral model and have a correspondingly more precise decision boundary on their predicted behavior. Conversely, complex general purpose devices have lower confidence and a more generalized decision boundary. We show that there is a positive correlation to our complexity measure and the number of outliers found by an anomaly detection algorithm. By tuning this decision boundary based on device complexity we are able to build a behavioral framework for each device that reduces false positive outliers. Finally, we propose an architecture that can use this tuned behavioral model to rank each flow on the network and calculate a trust score ranking of all traffic to and from a device which allows the network to autonomously make access control decisions on a per-flow basis.

2020-05-26
Fan, Chun-I, Chen, I-Te, Cheng, Chen-Kai, Huang, Jheng-Jia, Chen, Wen-Tsuen.  2018.  FTP-NDN: File Transfer Protocol Based on Re-Encryption for Named Data Network Supporting Nondesignated Receivers. IEEE Systems Journal. 12:473–484.
Due to users' network flow requirement and usage amount nowadays, TCP/IP networks may face various problems. For one, users of video services may access simultaneously the same content, which leads to the host incurring extra costs. Second, although nearby nodes may have the file that a user wants to access, the user cannot directly verify the file itself. This issue will lead the user to connect to a remote host rather than the nearby nodes and causes the network traffic to greatly increase. Therefore, the named data network (NDN), which is based on data itself, was brought about to deal with the aforementioned problems. In NDN, all users can access a file from the nearby nodes, and they can directly verify the file themselves rather than the specific host who holds the file. However, NDN still has no complete standard and secure file transfer protocol to support the ciphertext transmission and the problem of the unknown potential receivers. The straightforward solution is that a sender uses the receiver's public key to encrypt a file before she/he sends the file to NDN nodes. However, it will limit the behavior of users and incur significant storage costs of NDN nodes. This paper presents a complete secure file transfer protocol, which combines the data re-encryption, satisfies the requirement of secure ciphertext transmission, solves the problem of the unknown potential receivers, and saves the significant storage costs of NDN nodes. The proposed protocol is the first one that achieves data confidentiality and solves the problem of the unknown potential receivers in NDN. Finally, we also provide formal security models and proofs for the proposed FTP-NDN.
2020-05-22
Shah, Mujahid, Ahmed, Sheeraz, Saeed, Khalid, Junaid, Muhammad, Khan, Hamayun, Ata-ur-rehman.  2019.  Penetration Testing Active Reconnaissance Phase – Optimized Port Scanning With Nmap Tool. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). :1—6.

Reconnaissance might be the longest phase, sometimes take weeks or months. The black hat makes use of passive information gathering techniques. Once the attacker has sufficient statistics, then the attacker starts the technique of scanning perimeter and internal network devices seeking out open ports and related services. In this paper we are showing traffic accountability and time to complete the specific task during reconnaissance phase active scanning with nmap tool and proposed strategies that how to deal with large volumes of hosts and conserve network traffic as well as time of the specific task.

2020-05-15
Sugrim, Shridatt, Venkatesan, Sridhar, Youzwak, Jason A., Chiang, Cho-Yu J., Chadha, Ritu, Albanese, Massimiliano, Cam, Hasan.  2018.  Measuring the Effectiveness of Network Deception. 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). :142—147.

Cyber reconnaissance is the process of gathering information about a target network for the purpose of compromising systems within that network. Network-based deception has emerged as a promising approach to disrupt attackers' reconnaissance efforts. However, limited work has been done so far on measuring the effectiveness of network-based deception. Furthermore, given that Software-Defined Networking (SDN) facilitates cyber deception by allowing network traffic to be modified and injected on-the-fly, understanding the effectiveness of employing different cyber deception strategies is critical. In this paper, we present a model to study the reconnaissance surface of a network and model the process of gathering information by attackers as interactions with a cyber defensive system that may use deception. To capture the evolution of the attackers' knowledge during reconnaissance, we design a belief system that is updated by using a Bayesian inference method. For the proposed model, we present two metrics based on KL-divergence to quantify the effectiveness of network deception. We tested the model and the two metrics by conducting experiments with a simulated attacker in an SDN-based deception system. The results of the experiments match our expectations, providing support for the model and proposed metrics.

2020-05-11
Liu, Weiyou, Liu, Xu, Di, Xiaoqiang, Qi, Hui.  2019.  A novel network intrusion detection algorithm based on Fast Fourier Transformation. 2019 1st International Conference on Industrial Artificial Intelligence (IAI). :1–6.
Deep learning techniques have been widely used in intrusion detection, but their application on convolutional neural networks (CNN) is still immature. The main challenge is how to represent the network traffic to improve performance of the CNN model. In this paper, we propose a network intrusion detection algorithm based on representation learning using Fast Fourier Transformation (FFT), which is first exploration that converts traffic to image by FFT to the best of our knowledge. Each traffic is converted to an image and then the intrusion detection problem is turned to image classification. The experiment results on NSL-KDD dataset show that the classification performence of the algorithm in the CNN model has obvious advantages compared with other algorithms.
Althubiti, Sara A., Jones, Eric Marcell, Roy, Kaushik.  2018.  LSTM for Anomaly-Based Network Intrusion Detection. 2018 28th International Telecommunication Networks and Applications Conference (ITNAC). :1–3.
Due to the massive amount of the network traffic, attackers have a great chance to cause a huge damage to the network system or its users. Intrusion detection plays an important role in ensuring security for the system by detecting the attacks and the malicious activities. In this paper, we utilize CIDDS dataset and apply a deep learning approach, Long-Short-Term Memory (LSTM), to implement intrusion detection system. This research achieves a reasonable accuracy of 0.85.
2020-05-04
Su, Liya, Yao, Yepeng, Lu, Zhigang, Liu, Baoxu.  2019.  Understanding the Influence of Graph Kernels on Deep Learning Architecture: A Case Study of Flow-Based Network Attack Detection. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :312–318.
Flow-based network attack detection technology is able to identify many threats in network traffic. Existing techniques have several drawbacks: i) rule-based approaches are vulnerable because it needs all the signatures defined for the possible attacks, ii) anomaly-based approaches are not efficient because it is easy to find ways to launch attacks that bypass detection, and iii) both rule-based and anomaly-based approaches heavily rely on domain knowledge of networked system and cyber security. The major challenge to existing methods is to understand novel attack scenarios and design a model to detect novel and more serious attacks. In this paper, we investigate network attacks and unveil the key activities and the relationships between these activities. For that reason, we propose methods to understand the network security practices using theoretic concepts such as graph kernels. In addition, we integrate graph kernels over deep learning architecture to exploit the relationship expressiveness among network flows and combine ability of deep neural networks (DNNs) with deep architectures to learn hidden representations, based on the communication representation graph of each network flow in a specific time interval, then the flow-based network attack detection can be done effectively by measuring the similarity between the graphs to two flows. The proposed study provides the effectiveness to obtain insights about network attacks and detect network attacks. Using two real-world datasets which contain several new types of network attacks, we achieve significant improvements in accuracies over existing network attack detection tasks.
2020-04-17
Go, Sharleen Joy Y., Guinto, Richard, Festin, Cedric Angelo M., Austria, Isabel, Ocampo, Roel, Tan, Wilson M..  2019.  An SDN/NFV-Enabled Architecture for Detecting Personally Identifiable Information Leaks on Network Traffic. 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN). :306—311.

The widespread adoption of social networking and cloud computing has transformed today's Internet to a trove of personal information. As a consequence, data breaches are expected to increase in gravity and occurrence. To counteract unintended data disclosure, a great deal of effort has been dedicated in devising methods for uncovering privacy leaks. Existing solutions, however, have not addressed the time- and data-intensive nature of leak detection. The shift from hardware-specific implementation to software-based solutions is the core idea behind the concept of Network Function Virtualization (NFV). On the other hand, the Software Defined Networking (SDN) paradigm is characterized by the decoupling of the forwarding and control planes. In this paper, an SDN/NFV-enabled architecture is proposed for improving the efficiency of leak detection systems. Employing a previously developed identification strategy, Personally Identifiable Information detector (PIID) and load balancer VNFs are packaged and deployed in OpenStack through an NFV MANO. Meanwhile, SDN controllers permit the load balancer to dynamically redistribute traffic among the PIID instances. In a physical testbed, tests are conducted to evaluate the proposed architecture. Experimental results indicate that the proportions of forwarding and parsing on total overhead is influenced by the traffic intensity. Furthermore, an NFV-enabled system with scalability features was found to outperform a non-virtualized implementation in terms of latency (85.1%), packet loss (98.3%) and throughput (8.41%).

2020-04-13
Papachristou, Konstantinos, Theodorou, Traianos, Papadopoulos, Stavros, Protogerou, Aikaterini, Drosou, Anastasios, Tzovaras, Dimitrios.  2019.  Runtime and Routing Security Policy Verification for Enhanced Quality of Service of IoT Networks. 2019 Global IoT Summit (GIoTS). :1–6.
The Internet of Things (IoT) is growing rapidly controlling and connecting thousands of devices every day. The increased number of interconnected devices increase the network traffic leading to energy and Quality of Service efficiency problems of the IoT network. Therefore, IoT platforms and networks are susceptible to failures and attacks that have significant economic and security consequences. In this regard, implementing effective secure IoT platforms and networks are valuable for both the industry and society. In this paper, we propose two frameworks that aim to verify a number of security policies related to runtime information of the network and dynamic flow routing paths, respectively. The underlying rationale is to allow the operator of an IoT network in order to have an overall control of the network and to define different policies based on the demands of the network and the use cases (e.g., achieving more secure or faster network).
2020-04-06
Haoliang, Sun, Dawei, Wang, Ying, Zhang.  2019.  K-Means Clustering Analysis Based on Adaptive Weights for Malicious Code Detection. 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN). :652—656.

Nowadays, a major challenge to network security is malicious codes. However, manual extraction of features is one of the characteristics of traditional detection techniques, which is inefficient. On the other hand, the features of the content and behavior of the malicious codes are easy to change, resulting in more inefficiency of the traditional techniques. In this paper, a K-Means Clustering Analysis is proposed based on Adaptive Weights (AW-MMKM). Identifying malicious codes in the proposed method is based on four types of network behavior that can be extracted from network traffic, including active, fault, network scanning, and page behaviors. The experimental results indicate that the AW-MMKM can detect malicious codes efficiently with higher accuracy.

Khan, Riaz Ullah, Kumar, Rajesh, Alazab, Mamoun, Zhang, Xiaosong.  2019.  A Hybrid Technique To Detect Botnets, Based on P2P Traffic Similarity. 2019 Cybersecurity and Cyberforensics Conference (CCC). :136–142.
The botnet has been one of the most common threats to the network security since it exploits multiple malicious codes like worm, Trojans, Rootkit, etc. These botnets are used to perform the attacks, send phishing links, and/or provide malicious services. It is difficult to detect Peer-to-peer (P2P) botnets as compare to IRC (Internet Relay Chat), HTTP (HyperText Transfer Protocol) and other types of botnets because of having typical features of the centralization and distribution. To solve these problems, we propose an effective two-stage traffic classification method to detect P2P botnet traffic based on both non-P2P traffic filtering mechanism and machine learning techniques on conversation features. At the first stage, we filter non-P2P packages to reduce the amount of network traffic through well-known ports, DNS query, and flow counting. At the second stage, we extract conversation features based on data flow features and flow similarity. We detected P2P botnets successfully, by using Machine Learning Classifiers. Experimental evaluations show that our two-stage detection method has a higher accuracy than traditional P2P botnet detection methods.
2020-02-26
Almohaimeed, Abdulrahman, Asaduzzaman, Abu.  2019.  Incorporating Monitoring Points in SDN to Ensure Trusted Links Against Misbehaving Traffic Flows. 2019 Fifth Conference on Mobile and Secure Services (MobiSecServ). :1–4.

The growing trend toward information technology increases the amount of data travelling over the network links. The problem of detecting anomalies in data streams has increased with the growth of internet connectivity. Software-Defined Networking (SDN) is a new concept of computer networking that can adapt and support these growing trends. However, the centralized nature of the SDN design is challenged by the need for an efficient method for traffic monitoring against traffic anomalies caused by misconfigured devices or ongoing attacks. In this paper, we propose a new model for traffic behavior monitoring that aims to ensure trusted communication links between the network devices. The main objective of this model is to confirm that the behavior of the traffic streams matches the instructions provided by the SDN controller, which can help to increase the trust between the SDN controller and its covered infrastructure components. According to our preliminary implementation, the behavior monitoring unit is able to read all traffic information and perform a validation process that reports any mismatching traffic to the controller.

2020-02-17
Ullah, Imtiaz, Mahmoud, Qusay H..  2019.  A Two-Level Hybrid Model for Anomalous Activity Detection in IoT Networks. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–6.
In this paper we propose a two-level hybrid anomalous activity detection model for intrusion detection in IoT networks. The level-1 model uses flow-based anomaly detection, which is capable of classifying the network traffic as normal or anomalous. The flow-based features are extracted from the CICIDS2017 and UNSW-15 datasets. If an anomaly activity is detected then the flow is forwarded to the level-2 model to find the category of the anomaly by deeply examining the contents of the packet. The level-2 model uses Recursive Feature Elimination (RFE) to select significant features and Synthetic Minority Over-Sampling Technique (SMOTE) for oversampling and Edited Nearest Neighbors (ENN) for cleaning the CICIDS2017 and UNSW-15 datasets. Our proposed model precision, recall and F score for level-1 were measured 100% for the CICIDS2017 dataset and 99% for the UNSW-15 dataset, while the level-2 model precision, recall, and F score were measured at 100 % for the CICIDS2017 dataset and 97 % for the UNSW-15 dataset. The predictor we introduce in this paper provides a solid framework for the development of malicious activity detection in IoT networks.
2020-01-28
Monaco, John V..  2019.  Feasibility of a Keystroke Timing Attack on Search Engines with Autocomplete. 2019 IEEE Security and Privacy Workshops (SPW). :212–217.
Many websites induce the browser to send network traffic in response to user input events. This includes websites with autocomplete, a popular feature on search engines that anticipates the user's query while they are typing. Websites with this functionality require HTTP requests to be made as the query input field changes, such as when the user presses a key. The browser responds to input events by generating network traffic to retrieve the search predictions. The traffic emitted by the client can expose the timings of keyboard input events which may lead to a keylogging side channel attack whereby the query is revealed through packet inter-arrival times. We investigate the feasibility of such an attack on several popular search engines by characterizing the behavior of each website and measuring information leakage at the network level. Three out of the five search engines we measure preserve the mutual information between keystrokes and timings to within 1% of what it is on the host. We describe the ways in which two search engines mitigate this vulnerability with minimal effects on usability.
2020-01-27
Taher, Kazi Abu, Mohammed Yasin Jisan, Billal, Rahman, Md. Mahbubur.  2019.  Network Intrusion Detection using Supervised Machine Learning Technique with Feature Selection. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :643–646.
A novel supervised machine learning system is developed to classify network traffic whether it is malicious or benign. To find the best model considering detection success rate, combination of supervised learning algorithm and feature selection method have been used. Through this study, it is found that Artificial Neural Network (ANN) based machine learning with wrapper feature selection outperform support vector machine (SVM) technique while classifying network traffic. To evaluate the performance, NSL-KDD dataset is used to classify network traffic using SVM and ANN supervised machine learning techniques. Comparative study shows that the proposed model is efficient than other existing models with respect to intrusion detection success rate.
2020-01-21
Shen, Qili, Wu, Jun, Li, Jianhua.  2019.  Edge Learning Based Green Content Distribution for Information-Centric Internet of Things. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP). :67–70.
Being the revolutionary future networking architecture, information-centric networking (ICN) conducts network distribution based on content, which is ideally suitable for Internet of things (IoT). With the rapid growth of network traffic, compared to the conventional IoT, information-centric Internet of things (IC-IoT) is expected to provide users with the better satisfaction of the network quality of service (QoS). However, due to IC-IoT requirements of low latency, large data volume, marginalization, and intelligent processing, it urgently needs an efficient content distribution system. In this paper, we propose an edge learning based green content distribution scheme for IC-IoT. We implement intelligent path selection based on decision tree and edge calculation. Moreover, we apply distributed coding based content transmission to enhance the speed and recovery capability of content. Meanwhile, we have verified the effectiveness and performance of this scheme based on a large number of simulation experiments. The work of this paper is of great significance to improve the efficiency and flexibility of content distribution in IC-IoT.
2020-01-02
Mar\'ın, Gonzalo, Casas, Pedro, Capdehourat, Germán.  2019.  Deep in the Dark - Deep Learning-Based Malware Traffic Detection Without Expert Knowledge. 2019 IEEE Security and Privacy Workshops (SPW). :36–42.

With the ever-growing occurrence of networking attacks, robust network security systems are essential to prevent and mitigate their harming effects. In recent years, machine learning-based systems have gain popularity for network security applications, usually considering the application of shallow models, where a set of expert handcrafted features are needed to pre-process the data before training. The main problem with this approach is that handcrafted features can fail to perform well given different kinds of scenarios and problems. Deep Learning models can solve this kind of issues using their ability to learn feature representations from input raw or basic, non-processed data. In this paper we explore the power of deep learning models on the specific problem of detection and classification of malware network traffic, using different representations for the input data. As a major advantage as compared to the state of the art, we consider raw measurements coming directly from the stream of monitored bytes as the input to the proposed models, and evaluate different raw-traffic feature representations, including packet and flow-level ones. Our results suggest that deep learning models can better capture the underlying statistics of malicious traffic as compared to classical, shallow-like models, even while operating in the dark, i.e., without any sort of expert handcrafted inputs.

2019-12-18
Dincalp, Uygar, Güzel, Mehmet Serdar, Sevine, Omer, Bostanci, Erkan, Askerzade, Iman.  2018.  Anomaly Based Distributed Denial of Service Attack Detection and Prevention with Machine Learning. 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). :1-4.

Everyday., the DoS/DDoS attacks are increasing all over the world and the ways attackers are using changing continuously. This increase and variety on the attacks are affecting the governments, institutions, organizations and corporations in a bad way. Every successful attack is causing them to lose money and lose reputation in return. This paper presents an introduction to a method which can show what the attack and where the attack based on. This is tried to be achieved with using clustering algorithm DBSCAN on network traffic because of the change and variety in attack vectors.

Lawal, Babatunde Hafis, Nuray, A. T..  2018.  Real-time detection and mitigation of distributed denial of service (DDoS) attacks in software defined networking (SDN). 2018 26th Signal Processing and Communications Applications Conference (SIU). :1–4.
The emergence of Software Defined Network (SDN) and its promises in networking technology has gotten every stakeholder excited. However, it is believed that every technological development comes with its own challenges of which the most prominent in this case is security. This paper presents a real time detection of the distributed denial of service (DDoS) attacks on the SDN and a control method based on the sFlow mitigation technology. sFlow analyses samples of packets collected from the network traffic and generates handling rules to be sent to the controller in case of an attack detection. The implementation was done by emulating the network in Mininet which runs on a Virtual Machine (VM) and it was shown that the proposed method effectively detects and mitigates DDoS attacks.
2019-12-16
McDermott, Christopher D., Jeannelle, Bastien, Isaacs, John P..  2019.  Towards a Conversational Agent for Threat Detection in the Internet of Things. 2019 International Conference on Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.

A conversational agent to detect anomalous traffic in consumer IoT networks is presented. The agent accepts two inputs in the form of user speech received by Amazon Alexa enabled devices, and classified IDS logs stored in a DynamoDB Table. Aural analysis is used to query the database of network traffic, and respond accordingly. In doing so, this paper presents a solution to the problem of making consumers situationally aware when their IoT devices are infected, and anomalous traffic has been detected. The proposed conversational agent addresses the issue of how to present network information to non-technical users, for better comprehension, and improves awareness of threats derived from the mirai botnet malware.

2019-08-05
He, X., Zhang, Q., Han, Z..  2018.  The Hamiltonian of Data Center Network BCCC. 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS). :147–150.

With the development of cloud computing the topology properties of data center network are important to the computing resources. Recently a data center network structure - BCCC is proposed, which is recursively built structure with many good properties. and expandability. The Hamiltonian and expandability in data center network structure plays an extremely important role in network communication. This paper described the Hamiltonian and expandability of the expandable data center network for BCCC structure, the important role of Hamiltonian and expandability in network traffic.

2019-05-01
Naik, N., Jenkins, P., Kerby, B., Sloane, J., Yang, L..  2018.  Fuzzy Logic Aided Intelligent Threat Detection in Cisco Adaptive Security Appliance 5500 Series Firewalls. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1-8.

Cisco Adaptive Security Appliance (ASA) 5500 Series Firewall is amongst the most popular and technically advanced for securing organisational networks and systems. One of its most valuable features is its threat detection function which is available on every version of the firewall running a software version of 8.0(2) or higher. Threat detection operates at layers 3 and 4 to determine a baseline for network traffic, analysing packet drop statistics and generating threat reports based on traffic patterns. Despite producing a large volume of statistical information relating to several security events, further effort is required to mine and visually report more significant information and conclude the security status of the network. There are several commercial off-the-shelf tools available to undertake this task, however, they are expensive and may require a cloud subscription. Furthermore, if the information transmitted over the network is sensitive or requires confidentiality, the involvement of a third party or a third-party tool may place organisational security at risk. Therefore, this paper presents a fuzzy logic aided intelligent threat detection solution, which is a cost-free, intuitive and comprehensible solution, enhancing and simplifying the threat detection process for all. In particular, it employs a fuzzy reasoning system based on the threat detection statistics, and presents results/threats through a developed dashboard user interface, for ease of understanding for administrators and users. The paper further demonstrates the successful utilisation of a fuzzy reasoning system for selected and prioritised security events in basic threat detection, although it can be extended to encompass more complex situations, such as complete basic threat detection, advanced threat detection, scanning threat detection, and customised feature based threat detection.

2019-04-05
Bapat, R., Mandya, A., Liu, X., Abraham, B., Brown, D. E., Kang, H., Veeraraghavan, M..  2018.  Identifying Malicious Botnet Traffic Using Logistic Regression. 2018 Systems and Information Engineering Design Symposium (SIEDS). :266-271.

An important source of cyber-attacks is malware, which proliferates in different forms such as botnets. The botnet malware typically looks for vulnerable devices across the Internet, rather than targeting specific individuals, companies or industries. It attempts to infect as many connected devices as possible, using their resources for automated tasks that may cause significant economic and social harm while being hidden to the user and device. Thus, it becomes very difficult to detect such activity. A considerable amount of research has been conducted to detect and prevent botnet infestation. In this paper, we attempt to create a foundation for an anomaly-based intrusion detection system using a statistical learning method to improve network security and reduce human involvement in botnet detection. We focus on identifying the best features to detect botnet activity within network traffic using a lightweight logistic regression model. The network traffic is processed by Bro, a popular network monitoring framework which provides aggregate statistics about the packets exchanged between a source and destination over a certain time interval. These statistics serve as features to a logistic regression model responsible for classifying malicious and benign traffic. Our model is easy to implement and simple to interpret. We characterized and modeled 8 different botnet families separately and as a mixed dataset. Finally, we measured the performance of our model on multiple parameters using F1 score, accuracy and Area Under Curve (AUC).