Sikder, Md Nazmul Kabir, Batarseh, Feras A., Wang, Pei, Gorentala, Nitish.
2022.
Model-Agnostic Scoring Methods for Artificial Intelligence Assurance. 2022 IEEE 29th Annual Software Technology Conference (STC). :9–18.
State of the art Artificial Intelligence Assurance (AIA) methods validate AI systems based on predefined goals and standards, are applied within a given domain, and are designed for a specific AI algorithm. Existing works do not provide information on assuring subjective AI goals such as fairness and trustworthiness. Other assurance goals are frequently required in an intelligent deployment, including explainability, safety, and security. Accordingly, issues such as value loading, generalization, context, and scalability arise; however, achieving multiple assurance goals without major trade-offs is generally deemed an unattainable task. In this manuscript, we present two AIA pipelines that are model-agnostic, independent of the domain (such as: healthcare, energy, banking), and provide scores for AIA goals including explainability, safety, and security. The two pipelines: Adversarial Logging Scoring Pipeline (ALSP) and Requirements Feedback Scoring Pipeline (RFSP) are scalable and tested with multiple use cases, such as a water distribution network and a telecommunications network, to illustrate their benefits. ALSP optimizes models using a game theory approach and it also logs and scores the actions of an AI model to detect adversarial inputs, and assures the datasets used for training. RFSP identifies the best hyper-parameters using a Bayesian approach and provides assurance scores for subjective goals such as ethical AI using user inputs and statistical assurance measures. Each pipeline has three algorithms that enforce the final assurance scores and other outcomes. Unlike ALSP (which is a parallel process), RFSP is user-driven and its actions are sequential. Data are collected for experimentation; the results of both pipelines are presented and contrasted.
Luo, Zhengwu, Wang, Lina, Wang, Run, Yang, Kang, Ye, Aoshuang.
2022.
Improving Robustness Verification of Neural Networks with General Activation Functions via Branching and Optimization. 2022 International Joint Conference on Neural Networks (IJCNN). :1–8.
Robustness verification of neural networks (NNs) is a challenging and significant problem, which draws great attention in recent years. Existing researches have shown that bound propagation is a scalable and effective method for robustness verification, and it can be implemented on GPUs and TPUs to get parallelized. However, the bound propagation methods naturally produce weak bound due to linear relaxations on the neurons, which may cause failure in verification. Although tightening techniques for simple ReLU networks have been explored, they are not applicable for NNs with general activation functions such as Sigmoid and Tanh. Improving robustness verification on these NNs is still challenging. In this paper, we propose a Branch-and-Bound (BaB) style method to address this problem. The proposed BaB procedure improves the weak bound by splitting the input domain of neurons into sub-domains and solving the corresponding sub-problems. We propose a generic heuristic function to determine the priority of neuron splitting by scoring the relaxation and impact of neurons. Moreover, we combine bound optimization with the BaB procedure to improve the weak bound. Experimental results demonstrate that the proposed method gains up to 35% improvement compared to the state-of-art CROWN method on Sigmoid and Tanh networks.
ISSN: 2161-4407