Visible to the public Biblio

Found 270 results

Filters: Keyword is Optimization  [Clear All Filters]
Spyros, Chatzivasileiadis.  2020.  From Decision Trees and Neural Networks to MILP: Power System Optimization Considering Dynamic Stability Constraints. 2020 European Control Conference (ECC). :594–594.
This work introduces methods that unlock a series of applications for decision trees and neural networks in power system optimization. Capturing constraints that were impossible to capture before in a scalable way, we use decision trees (or neural networks) to extract an accurate representation of the non-convex feasible region which is characterized by both algebraic and differential equations. Applying an exact transformation, we convert the information encoded in the decision trees and the neural networks to linear decision rules that we incorporate as conditional constraints in an optimization problem (MILP or MISOCP). Our approach introduces a framework to unify security considerations with electricity market operations, capturing not only steady-state but also dynamic stability constraints in power system optimization, and has the potential to eliminate redispatching costs, leading to savings of millions of euros per year.
Nougnanke, Kokouvi Benoit, Labit, Yann, Bruyere, Marc, Ferlin, Simone, Aïvodji, Ulrich.  2021.  Learning-based Incast Performance Inference in Software-Defined Data Centers. 2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). :118–125.
Incast traffic is a many-to-one communication pattern used in many applications, including distributed storage, web-search with partition/aggregation design pattern, and MapReduce, commonly in data centers. It is generally composed of short-lived flows that may be queued behind large flows' packets in congested switches where performance degradation is observed. Smart buffering at the switch level is sensed to mitigate this issue by automatically and dynamically adapting to traffic conditions changes in the highly dynamic data center environment. But for this dynamic and smart buffer management to become effectively beneficial for all the traffic, and especially for incast the most critical one, incast performance models that provide insights on how various factors affect it are needed. The literature lacks these types of models. The existing ones are analytical models, which are either tightly coupled with a particular protocol version or specific to certain empirical data. Motivated by this observation, we propose a machine-learning-based incast performance inference. With this prediction capability, smart buffering scheme or other QoS optimization algorithms could anticipate and efficiently optimize system parameters adjustment to achieve optimal performance. Since applying machine learning to networks managed in a distributed fashion is hard, the prediction mechanism will be deployed on an SDN control plane. We could then take advantage of SDN's centralized global view, its telemetry capabilities, and its management flexibility.
Aslanyan, Hayk, Arutunian, Mariam, Keropyan, Grigor, Kurmangaleev, Shamil, Vardanyan, Vahagn.  2020.  BinSide : Static Analysis Framework for Defects Detection in Binary Code. 2020 Ivannikov Memorial Workshop (IVMEM). :3–8.
Software developers make mistakes that can lead to failures of a software product. One approach to detect defects is static analysis: examine code without execution. Currently, various source code static analysis tools are widely used to detect defects. However, source code analysis is not enough. The reason for this is the use of third-party binary libraries, the unprovability of the correctness of all compiler optimizations. This paper introduces BinSide : binary static analysis framework for defects detection. It does interprocedural, context-sensitive and flow-sensitive analysis. The framework uses platform independent intermediate representation and provide opportunity to analyze various architectures binaries. The framework includes value analysis, reaching definition, taint analysis, freed memory analysis, constant folding, and constant propagation engines. It provides API (application programming interface) and can be used to develop new analyzers. Additionally, we used the API to develop checkers for classic buffer overflow, format string, command injection, double free and use after free defects detection.
Lin, Yan, Gao, Debin.  2021.  When Function Signature Recovery Meets Compiler Optimization. 2021 IEEE Symposium on Security and Privacy (SP). :36—52.
Matching indirect function callees and callers using function signatures recovered from binary executables (number of arguments and argument types) has been proposed to construct a more fine-grained control-flow graph (CFG) to help control-flow integrity (CFI) enforcement. However, various compiler optimizations may violate calling conventions and result in unmatched function signatures. In this paper, we present eight scenarios in which compiler optimizations impact function signature recovery, and report experimental results with 1,344 real-world applications of various optimization levels. Most interestingly, our experiments show that compiler optimizations have both positive and negative impacts on function signature recovery, e.g., its elimination of redundant instructions at callers makes counting of the number of arguments more accurate, while it hurts argument type matching as the compiler chooses the most efficient (but potentially different) types at callees and callers. To better deal with these compiler optimizations, we propose a set of improved policies and report our more accurate CFG models constructed from the 1,344 applications. We additionally compare our results recovered from binary executables with those extracted from program source and reveal scenarios where compiler optimization makes the task of accurate function signature recovery undecidable.
Kalpana, C., Booba, B..  2021.  Bio-Inspired Firefly Algorithm A Methodical Survey – Swarm Intelligence Algorithm. 2021 International Conference on Computational Intelligence and Computing Applications (ICCICA). :1—7.
In the Swarm Intelligence domain, the firefly algorithm(s) is the most significant algorithm applied in most all optimization areas. FA and variants are easily understood and implemented. FA is capable of solving different domain problems. For solving diverse range of engineering problems requires modified FA or Hybrid FA algorithms, but it is possible additional scope of improvement. In recent times swarm intelligence based intelligent optimization algorithms have been used for Research purposes. FA is one of most important intelligence Swarm algorithm that can be applied for the problems of Global optimization. FA algorithm is capable of achieving best results for complicated issues. In this research study we have discussed and different characteristics of FA and presented brief Review of FA. Along with other metahauristic algorithm we have discussed FA algorithm’s different variant like multi objective, and hybrid. The applications of firefly algorithm are bestowed. The aim of the paper is to give future direction for research in FA.
Singh, Ritesh, Khandelia, Kishan.  2021.  Web-based Computational Tools for Calculating Optimal Testing Pool Size for Diagnostic Tests of Infectious Diseases. 2021 International Conference on Computational Intelligence and Computing Applications (ICCICA). :1—4.
Pooling together samples and testing the resulting mixture is gaining considerable interest as a potential method to markedly increase the rate of testing for SARS-CoV-2, given the resource limited conditions. Such pooling can also be employed for carrying out large scale diagnostic testing of other infectious diseases, especially when the available resources are limited. Therefore, it has become important to design a user-friendly tool to assist clinicians and policy makers, to determine optimal testing pool and sub-pool sizes for their specific scenarios. We have developed such a tool; the calculator web application is available at The algorithms employed are described and analyzed in this paper, and their application to other scientific fields is also discussed. We find that pooling always reduces the expected number of tests in all the conditions, at the cost of test sensitivity. The No sub-pooling optimal pool size calculator will be the most widely applicable one, because limitations of sample quantity will restrict sub-pooling in most conditions.
Li, Haofeng, Meng, Haining, Zheng, Hengjie, Cao, Liqing, Lu, Jie, Li, Lian, Gao, Lin.  2021.  Scaling Up the IFDS Algorithm with Efficient Disk-Assisted Computing. 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). :236–247.
The IFDS algorithm can be memory-intensive, requiring a memory budget of more than 100 GB of RAM for some applications. The large memory requirements significantly restrict the deployment of IFDS-based tools in practise. To improve this, we propose a disk-assisted solution that drastically reduces the memory requirements of traditional IFDS solvers. Our solution saves memory by 1) recomputing instead of memorizing intermediate analysis data, and 2) swapping in-memory data to disk when memory usages reach a threshold. We implement sophisticated scheduling schemes to swap data between memory and disks efficiently. We have developed a new taint analysis tool, DiskDroid, based on our disk-assisted IFDS solver. Compared to FlowDroid, a state-of-the-art IFDS-based taint analysis tool, for a set of 19 apps which take from 10 to 128 GB of RAM by FlowDroid, DiskDroid can analyze them with less than 10GB of RAM at a slight performance improvement of 8.6%. In addition, for 21 apps requiring more than 128GB of RAM by FlowDroid, DiskDroid can analyze each app in 3 hours, under the same memory budget of 10GB. This makes the tool deployable to normal desktop environments. We make the tool publicly available at
Zhang, Qiao-Jia, Ye, Qing, Li, Liang, Liu, Si-jie, Chen, Kai-qiang.  2021.  An efficient selective encryption scheme for HEVC based on hyperchaotic Lorenz system. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:683—690.
With the wide application of video information, the protection of video information from illegal access has been widely investigated recently. An efficient selective encryption scheme for high efficiency video coding (HEVC) based on hyperchaotic Lorenz system is proposed. Firstly, the hyperchaotic Lorenz system is discretized and the generated chaotic state values are converted into chaotic pseudorandom sequences for encryption. The important syntax elements in HEVC are then selectively encrypted with the generated stream cipher. The experimental results show that the encrypted video is highly disturbed and the video information cannot be recognized. Through the analysis of objective index results, it is shown that the scheme is both efficient and security.
Pei, Qi, Shin, Seunghee.  2021.  Efficient Split Counter Mode Encryption for NVM. 2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). :93—95.
Emerging non-volatile memory technology enables non-volatile main memory (NVMM) that can provide larger capacity and better energy-saving opportunities than DRAMs. However, its non-volatility raises security concerns, where the data in NVMMs can be taken if the memory is stolen. Memory encryption protects the data by limiting it always stays encrypted outside the processor boundary. However, the decryption latency before the data being used by the processor brings new performance burdens. Unlike DRAM-based main memory, such performance overhead worsens on the NVMM due to the slow latency. In this paper, we will introduce optimizations that can be used to re-design the encryption scheme. In our tests, our two new designs, 3-level split counter mode encryption and 8-block split counter mode encryption, improved performance by 26% and 30% at maximum and by 8% and 9% on average from the original encryption scheme, split counter encryption.
Xue, Nan, Wu, Xiaofan, Gumussoy, Suat, Muenz, Ulrich, Mesanovic, Amer, Dong, Zerui, Bharati, Guna, Chakraborty, Sudipta, Electric, Hawaiian.  2021.  Dynamic Security Optimization for N-1 Secure Operation of Power Systems with 100% Non-Synchronous Generation: First experiences from Hawai'i Island. 2021 IEEE Power Energy Society General Meeting (PESGM). :1—5.

This paper presents some of our first experiences and findings in the ARPA-E project ReNew100, which is to develop an operator support system to enable stable operation of power system with 100% non-synchronous (NS) generation. The key to 100% NS system, as found in many recent studies, is to establish the grid frequency reference using grid-forming (GFM) inverters. In this paper, we demonstrate in Electro-Magnetic-Transient (EMT) simulations, based on Hawai'i big island system with 100% NS capacity, that a system can be operated stably with the help of GFM inverters and appropriate controller parameters for the inverters. The dynamic security optimization (DSO) is introduced for optimizing the inverter control parameters to improve stability of the system towards N-1 contingencies. DSO is verified for five critical N-1 contingencies of big island system identified by Hawaiian Electric. The simulation results show significant stability improvement from DSO. The results in this paper share some insight, and provide a promising solution for operating grid in general with high penetration or 100% of NS generation.

HAMRIOUI, Sofiane, BOKHARI, Samira.  2021.  A new Cybersecurity Strategy for IoE by Exploiting an Optimization Approach. 2021 12th International Conference on Information and Communication Systems (ICICS). :23—28.

Today's companies are increasingly relying on Internet of Everything (IoE) to modernize their operations. The very complexes characteristics of such system expose their applications and their exchanged data to multiples risks and security breaches that make them targets for cyber attacks. The aim of our work in this paper is to provide an cybersecurity strategy whose objective is to prevent and anticipate threats related to the IoE. An economic approach is used in order to help to take decisions according to the reduction of the risks generated by the non definition of the appropriate levels of security. The considered problem have been resolved by exploiting a combinatorial optimization approach with a practical case of knapsack. We opted for a bi-objective modeling under uncertainty with a constraint of cardinality and a given budget to be respected. To guarantee a robustness of our strategy, we have also considered the criterion of uncertainty by taking into account all the possible threats that can be generated by a cyber attacks over IoE. Our strategy have been implemented and simulated under MATLAB environement and its performance results have been compared to those obtained by NSGA-II metaheuristic. Our proposed cyber security strategy recorded a clear improvment of efficiency according to the optimization of the security level and cost parametrs.

Joseph, Zane, Nyirenda, Clement.  2021.  Deepfake Detection using a Two-Stream Capsule Network. 2021 IST-Africa Conference (IST-Africa). :1–8.
This paper aims to address the problem of Deepfake Detection using a Two-Stream Capsule Network. First we review methods used to create Deepfake content, as well as methods proposed in the literature to detect such Deepfake content. We then propose a novel architecture to detect Deepfakes, which consists of a two-stream Capsule network running in parallel that takes in both RGB images/frames as well as Error Level Analysis images. Results show that the proposed approach exhibits the detection accuracy of 73.39 % and 57.45 % for the Deepfake Detection Challenge (DFDC) and the Celeb-DF datasets respectively. These results are, however, from a preliminary implementation of the proposed approach. As part of future work, population-based optimization techniques such as Particle Swarm Optimization (PSO) will be used to tune the hyper parameters for better performance.
Iqbal, Talha, Banna, Hasan Ul, Feliachi, Ali.  2021.  AI-Driven Security Constrained Unit Commitment Using Eigen Decomposition And Linear Shift Factors. 2021 North American Power Symposium (NAPS). :01—06.
Unit Commitment (UC) problem is one of the most fundamental constrained optimization problems in the planning and operation of electric power systems and electricity markets. Solving a large-scale UC problem requires a lot of computational effort which can be improved using data driven approaches. In practice, a UC problem is solved multiple times a day with only minor changes in the input data. Hence, this aspect can be exploited by using the historical data to solve the problem. In this paper, an Artificial Intelligence (AI) based approach is proposed to solve a Security Constrained UC problem. The proposed algorithm was tested through simulations on a 4-bus power system and satisfactory results were obtained. The results were compared with those obtained using IBM CPLEX MIQP solver.
Dimolianis, Marinos, Pavlidis, Adam, Maglaris, Vasilis.  2021.  SYN Flood Attack Detection and Mitigation using Machine Learning Traffic Classification and Programmable Data Plane Filtering. 2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). :126—133.
Distributed Denial of Service (DDoS) attacks are widely used by malicious actors to disrupt network infrastructures/services. A common attack is TCP SYN Flood that attempts to exhaust memory and processing resources. Typical mitigation mechanisms, i.e. SYN cookies require significant processing resources and generate large rates of backscatter traffic to block them. In this paper, we propose a detection and mitigation schema that focuses on generating and optimizing signature-based rules. To that end, network traffic is monitored and appropriate packet-level data are processed to form signatures i.e. unique combinations of packet field values. These are fed to machine learning models that classify them to malicious/benign. Malicious signatures corresponding to specific destinations identify potential victims. TCP traffic to victims is redirected to high-performance programmable XDPenabled firewalls that filter off ending traffic according to signatures classified as malicious. To enhance mitigation performance malicious signatures are subjected to a reduction process, formulated as a multi-objective optimization problem. Minimization objectives are (i) the number of malicious signatures and (ii) collateral damage on benign traffic. We evaluate our approach in terms of detection accuracy and packet filtering performance employing traces from production environments and high rate generated attack traffic. We showcase that our approach achieves high detection accuracy, significantly reduces the number of filtering rules and outperforms the SYN cookies mechanism in high-speed traffic scenarios.
Sun, Xinyi, Gu, Shushi, Zhang, Qinyu, Zhang, Ning, Xiang, Wei.  2021.  Asynchronous Coded Caching Strategy With Nonuniform Demands for IoV Networks. 2021 IEEE/CIC International Conference on Communications in China (ICCC). :352—357.
The Internet of Vehicles (IoV) can offer safe and comfortable driving experiences with the cooperation communications between central servers and cache-enabled road side units (RSUs) as edge severs, which also can provide high-speed, high-quality and high-stability communication access for vehicle users (VUs). However, due to the huge popular traffic volume, the burden of backhaul link will be seriously enlarged, which will greatly degrade the service experience of the IoV. In order to alleviate the backhaul load of IoV network, in this paper, we propose an asynchronous coded caching strategy composed of two phases, i.e., content placement and asynchronous coded transmission. The asynchronous request and request deadline are closely considered to design our asynchronous coded transmission algorithm. Also, we derive the close-form expression of average backhaul load under the nonuniform demands of IoV users. Finally, we formulate an optimization problem of minimizing average backhaul load and obtain the optimized content placement vector. Simulation results verify the feasibility of our proposed strategy under the asynchronous situation.
Soares, Luigi, Pereira, Fernando Magno Quintãn.  2021.  Memory-Safe Elimination of Side Channels. 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). :200—210.
A program is said to be isochronous if its running time does not depend on classified information. The programming languages literature contains much work that transforms programs to ensure isochronicity. The current state-of-the-art approach is a code transformation technique due to Wu et al., published in 2018. That technique has an important virtue: it ensures that the transformed program runs exactly the same set of operations, regardless of inputs. However, in this paper we demonstrate that it has also a shortcoming: it might add out-of-bounds memory accesses into programs that were originally memory sound. From this observation, we show how to deliver the same runtime guarantees that Wu et al. provide, in a memory-safe way. In addition to being safer, our LLVM-based implementation is more efficient than its original inspiration, achieving shorter repairing times, and producing code that is smaller and faster.
Sanyal, Hrithik, Shukla, Sagar, Agrawal, Rajneesh.  2021.  Natural Language Processing Technique for Generation of SQL Queries Dynamically. 2021 6th International Conference for Convergence in Technology (I2CT). :1—6.
Natural Language Processing is being used in every field of human to machine interaction. Database queries although have a confined set of instructions, but still found to be complex and dedicated human resources are required to write, test, optimize and execute structured query language statements. This makes it difficult, time-consuming and many a time inaccurate too. Such difficulties can be overcome if the queries are formed dynamically with standard procedures. In this work, parsing, lexical analysis, synonym detection and formation processes of the natural language processing are being proposed to be used for dynamically generating SQL queries and optimization of them for fast processing with high accuracy. NLP parsing of the user inputted text for retrieving, creation and insertion of data are being proposed to be created dynamically from English text inputs. This will help users of the system to generate reports from the data as per the requirement without the complexities of SQL. The proposed system will not only generate queries dynamically but will also provide high accuracy and performance.
Jia, Yunsong.  2021.  Design of nearest neighbor search for dynamic interaction points. 2021 2nd International Conference on Big Data and Informatization Education (ICBDIE). :389—393.
This article describes the definition, theoretical derivation, design ideas, and specific implementation of the nearest query algorithm for the acceleration of probabilistic optimization at first, and secondly gives an optimization conclusion that is generally applicable to high-dimensional Minkowski spaces with even-numbered feature parameters. Thirdly the operating efficiency and space sensitivity of this algorithm and the commonly used algorithms are compared from both theoretical and experimental aspects. Finally, the optimization direction is analyzed based on the results.
Amaran, Sibi, Mohan, R. Madhan.  2021.  Intrusion Detection System Using Optimal Support Vector Machine for Wireless Sensor Networks. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1100–1104.
Wireless sensor networks (WSN) hold numerous battery operated, compact sized, and inexpensive sensor nodes, which are commonly employed to observe the physical parameters in the target environment. As the sensor nodes undergo arbitrary placement in the open areas, there is a higher possibility of affected by distinct kinds of attacks. For resolving the issue, intrusion detection system (IDS) is developed. This paper presents a new optimal Support Vector Machine (OSVM) based IDS in WSN. The presented OSVM model involves the proficient selection of optimal kernels in the SVM model using whale optimization algorithm (WOA) for intrusion detection. Since the SVM kernel gets altered using WOA, the application of OSVM model can be used for the detection of intrusions with proficient results. The performance of the OSVM model has been investigated on the benchmark NSL KDDCup 99 dataset. The resultant simulation values portrayed the effectual results of the OSVM model by obtaining a superior accuracy of 94.09% and detection rate of 95.02%.
Zang, Shiping, Zhao, Dongyan, Hu, Yi, Hu, Xiaobo, Gao, Ying, Du, Pengcheng, Cheng, Song.  2021.  A High Speed SM3 Algorithm Implementation for Security Chip. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:915–919.
High throughput of crypto circuit is critical for many high performance security applications. The proposed SM3 circuit design breaks the inherent limitation of the conventional algorithm flow by removing the "blocking point" on the critical path, and reorganizes the algebraic structure by adding four parallel compensation operations. In addition, the round expansion architecture, CSA (Carry Save Adder) and pre-calculation are also used in this design. Due to the optimization at both the algorithm level and the circuit level, the synthesized circuit of this design can reach maximum 415MHz operating clock frequency and 6.4Gbps throughput with SMIC 40nm high performance technology. Compared with the conventional implementation method, the throughput performance of the proposed SM3 circuit increases by 97.5% and the chip area of SM3 algorithm area is only increased by 16.2%.
Zulfa, Mulki Indana, Hartanto, Rudy, Permanasari, Adhistya Erna, Ali, Waleed.  2021.  Web Caching Strategy Optimization Based on Ant Colony Optimization and Genetic Algorithm. 2021 International Seminar on Intelligent Technology and Its Applications (ISITIA). :75—81.
Web caching is a strategy that can be used to speed up website access on the client-side. This strategy is implemented by storing as many popular web objects as possible on the cache server. All web objects stored on a cache server are called cached data. Requests for cached web data on the cache server are much faster than requests directly to the origin server. Not all web objects can fit on the cache server due to their limited capacity. Therefore, optimizing cached data in a web caching strategy will determine which web objects can enter the cache server to have maximum profit. This paper simulates a web caching strategy optimization with a knapsack problem approach using the Ant Colony optimization (ACO), Genetic Algorithm (GA), and a combination of the two. Knapsack profit is seen from the number of web objects that can be entered into the cache server but with the minimum objective function value. The simulation results show that the combination of ACO and GA is faster to produce an optimal solution and is not easily trapped by the local optimum.
El-Allami, Rida, Marchisio, Alberto, Shafique, Muhammad, Alouani, Ihsen.  2021.  Securing Deep Spiking Neural Networks against Adversarial Attacks through Inherent Structural Parameters. 2021 Design, Automation Test in Europe Conference Exhibition (DATE). :774–779.
Deep Learning (DL) algorithms have gained popularity owing to their practical problem-solving capacity. However, they suffer from a serious integrity threat, i.e., their vulnerability to adversarial attacks. In the quest for DL trustworthiness, recent works claimed the inherent robustness of Spiking Neural Networks (SNNs) to these attacks, without considering the variability in their structural spiking parameters. This paper explores the security enhancement of SNNs through internal structural parameters. Specifically, we investigate the SNNs robustness to adversarial attacks with different values of the neuron's firing voltage thresholds and time window boundaries. We thoroughly study SNNs security under different adversarial attacks in the strong white-box setting, with different noise budgets and under variable spiking parameters. Our results show a significant impact of the structural parameters on the SNNs' security, and promising sweet spots can be reached to design trustworthy SNNs with 85% higher robustness than a traditional non-spiking DL system. To the best of our knowledge, this is the first work that investigates the impact of structural parameters on SNNs robustness to adversarial attacks. The proposed contributions and the experimental framework is available online 11 to the community for reproducible research.
Gaur, Manvika, Gupta, Ritu, Singh, Abhilasha.  2021.  Use of AES Algorithm in Development of SMS Application on Android Platform. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1–5.
Encrypting the data when it comes to security from foreign intrusions is necessary. Being such a vast field the search for the perfect algorithm is crucial. Such an algorithm which is feasible, scalable and most importantly not easy to crack is the ideal algorithm for its use, in the application ``CRYPTOSMS''.SMS (Short messaging service) is not encrypted end to end like WhatsApp. So, to solve the problem of security, CRYPTOSMS was created so that all the messages sent and received are secured. This paper includes the search for the ideal algorithm for the application by comparison with other algorithms and how it is used in making of the application.
Wang, Zhanle, Munawar, Usman, Paranjape, Raman.  2020.  Stochastic Optimization for Residential Demand Response under Time of Use. 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020). :1–6.
Demand response (DR) is one of the most economical methods for peak demand reduction, renewable energy integration and ancillary service support. Residential electrical energy consumption takes approximately 33% of the total electricity usage and hence has great potentials in DR applications. However, residential DR encounters various challenges such as small individual magnitude, stochastic consuming patterns and privacy issues. In this study, we propose a stochastic optimal mechanism to tackle these issues and try to reveal the benefits from residential DR implementation. Stochastic residential load (SRL) models, a generation cost prediction (GCP) model and a stochastic optimal load aggregation (SOLA) model are developed. A set of uniformly distributed scalers is introduced into the SOLA model to efficiently avoid the peak demand rebound problem in DR applications. The SOLA model is further transformed into a deterministic LP model. Time-of-Use (TOU) tariff is adopted as the price structure because of its similarity and popularity. Case studies show that the proposed mechanism can significantly reduce the peak-to-average power ratio (PAPR) of the load profile as well as the electrical energy cost. Furthermore, the impacts of consumers' participation levels in the DR program are investigated. Simulation results show that the 50% participation level appears as the best case in terms system stability. With the participation level of 80%, consumers' electrical energy cost is minimized. The proposed mechanism can be used by a residential load aggregator (LA) or a utility to plan a DR program, predict its impacts, and aggregate residential loads to minimize the electrical energy cost.
Shateri, Mohammadhadi, Messina, Francisco, Piantanida, Pablo, Labeau, Fabrice.  2020.  On the Impact of Side Information on Smart Meter Privacy-Preserving Methods. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–6.
Smart meters (SMs) can pose privacy threats for consumers, an issue that has received significant attention in recent years. This paper studies the impact of Side Information (SI) on the performance of possible attacks to real-time privacy-preserving algorithms for SMs. In particular, we consider a deep adversarial learning framework, in which the desired releaser, which is a Recurrent Neural Network (RNN), is trained by fighting against an adversary network until convergence. To define the objective for training, two different approaches are considered: the Causal Adversarial Learning (CAL) and the Directed Information (DI)-based learning. The main difference between these approaches relies on how the privacy term is measured during the training process. The releaser in the CAL method, disposing of supervision from the actual values of the private variables and feedback from the adversary performance, tries to minimize the adversary log-likelihood. On the other hand, the releaser in the DI approach completely relies on the feedback received from the adversary and is optimized to maximize its uncertainty. The performance of these two algorithms is evaluated empirically using real-world SMs data, considering an attacker with access to SI (e.g., the day of the week) that tries to infer the occupancy status from the released SMs data. The results show that, although they perform similarly when the attacker does not exploit the SI, in general, the CAL method is less sensitive to the inclusion of SI. However, in both cases, privacy levels are significantly affected, particularly when multiple sources of SI are included.