Visible to the public Biblio

Found 264 results

Filters: Keyword is Optimization  [Clear All Filters]
2022-05-19
Li, Haofeng, Meng, Haining, Zheng, Hengjie, Cao, Liqing, Lu, Jie, Li, Lian, Gao, Lin.  2021.  Scaling Up the IFDS Algorithm with Efficient Disk-Assisted Computing. 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). :236–247.
The IFDS algorithm can be memory-intensive, requiring a memory budget of more than 100 GB of RAM for some applications. The large memory requirements significantly restrict the deployment of IFDS-based tools in practise. To improve this, we propose a disk-assisted solution that drastically reduces the memory requirements of traditional IFDS solvers. Our solution saves memory by 1) recomputing instead of memorizing intermediate analysis data, and 2) swapping in-memory data to disk when memory usages reach a threshold. We implement sophisticated scheduling schemes to swap data between memory and disks efficiently. We have developed a new taint analysis tool, DiskDroid, based on our disk-assisted IFDS solver. Compared to FlowDroid, a state-of-the-art IFDS-based taint analysis tool, for a set of 19 apps which take from 10 to 128 GB of RAM by FlowDroid, DiskDroid can analyze them with less than 10GB of RAM at a slight performance improvement of 8.6%. In addition, for 21 apps requiring more than 128GB of RAM by FlowDroid, DiskDroid can analyze each app in 3 hours, under the same memory budget of 10GB. This makes the tool deployable to normal desktop environments. We make the tool publicly available at https://github.com/HaofLi/DiskDroid.
2022-05-05
Zhang, Qiao-Jia, Ye, Qing, Li, Liang, Liu, Si-jie, Chen, Kai-qiang.  2021.  An efficient selective encryption scheme for HEVC based on hyperchaotic Lorenz system. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:683—690.
With the wide application of video information, the protection of video information from illegal access has been widely investigated recently. An efficient selective encryption scheme for high efficiency video coding (HEVC) based on hyperchaotic Lorenz system is proposed. Firstly, the hyperchaotic Lorenz system is discretized and the generated chaotic state values are converted into chaotic pseudorandom sequences for encryption. The important syntax elements in HEVC are then selectively encrypted with the generated stream cipher. The experimental results show that the encrypted video is highly disturbed and the video information cannot be recognized. Through the analysis of objective index results, it is shown that the scheme is both efficient and security.
Pei, Qi, Shin, Seunghee.  2021.  Efficient Split Counter Mode Encryption for NVM. 2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). :93—95.
Emerging non-volatile memory technology enables non-volatile main memory (NVMM) that can provide larger capacity and better energy-saving opportunities than DRAMs. However, its non-volatility raises security concerns, where the data in NVMMs can be taken if the memory is stolen. Memory encryption protects the data by limiting it always stays encrypted outside the processor boundary. However, the decryption latency before the data being used by the processor brings new performance burdens. Unlike DRAM-based main memory, such performance overhead worsens on the NVMM due to the slow latency. In this paper, we will introduce optimizations that can be used to re-design the encryption scheme. In our tests, our two new designs, 3-level split counter mode encryption and 8-block split counter mode encryption, improved performance by 26% and 30% at maximum and by 8% and 9% on average from the original encryption scheme, split counter encryption.
Xue, Nan, Wu, Xiaofan, Gumussoy, Suat, Muenz, Ulrich, Mesanovic, Amer, Dong, Zerui, Bharati, Guna, Chakraborty, Sudipta, Electric, Hawaiian.  2021.  Dynamic Security Optimization for N-1 Secure Operation of Power Systems with 100% Non-Synchronous Generation: First experiences from Hawai'i Island. 2021 IEEE Power Energy Society General Meeting (PESGM). :1—5.

This paper presents some of our first experiences and findings in the ARPA-E project ReNew100, which is to develop an operator support system to enable stable operation of power system with 100% non-synchronous (NS) generation. The key to 100% NS system, as found in many recent studies, is to establish the grid frequency reference using grid-forming (GFM) inverters. In this paper, we demonstrate in Electro-Magnetic-Transient (EMT) simulations, based on Hawai'i big island system with 100% NS capacity, that a system can be operated stably with the help of GFM inverters and appropriate controller parameters for the inverters. The dynamic security optimization (DSO) is introduced for optimizing the inverter control parameters to improve stability of the system towards N-1 contingencies. DSO is verified for five critical N-1 contingencies of big island system identified by Hawaiian Electric. The simulation results show significant stability improvement from DSO. The results in this paper share some insight, and provide a promising solution for operating grid in general with high penetration or 100% of NS generation.

2022-05-03
HAMRIOUI, Sofiane, BOKHARI, Samira.  2021.  A new Cybersecurity Strategy for IoE by Exploiting an Optimization Approach. 2021 12th International Conference on Information and Communication Systems (ICICS). :23—28.

Today's companies are increasingly relying on Internet of Everything (IoE) to modernize their operations. The very complexes characteristics of such system expose their applications and their exchanged data to multiples risks and security breaches that make them targets for cyber attacks. The aim of our work in this paper is to provide an cybersecurity strategy whose objective is to prevent and anticipate threats related to the IoE. An economic approach is used in order to help to take decisions according to the reduction of the risks generated by the non definition of the appropriate levels of security. The considered problem have been resolved by exploiting a combinatorial optimization approach with a practical case of knapsack. We opted for a bi-objective modeling under uncertainty with a constraint of cardinality and a given budget to be respected. To guarantee a robustness of our strategy, we have also considered the criterion of uncertainty by taking into account all the possible threats that can be generated by a cyber attacks over IoE. Our strategy have been implemented and simulated under MATLAB environement and its performance results have been compared to those obtained by NSGA-II metaheuristic. Our proposed cyber security strategy recorded a clear improvment of efficiency according to the optimization of the security level and cost parametrs.

2022-04-25
Joseph, Zane, Nyirenda, Clement.  2021.  Deepfake Detection using a Two-Stream Capsule Network. 2021 IST-Africa Conference (IST-Africa). :1–8.
This paper aims to address the problem of Deepfake Detection using a Two-Stream Capsule Network. First we review methods used to create Deepfake content, as well as methods proposed in the literature to detect such Deepfake content. We then propose a novel architecture to detect Deepfakes, which consists of a two-stream Capsule network running in parallel that takes in both RGB images/frames as well as Error Level Analysis images. Results show that the proposed approach exhibits the detection accuracy of 73.39 % and 57.45 % for the Deepfake Detection Challenge (DFDC) and the Celeb-DF datasets respectively. These results are, however, from a preliminary implementation of the proposed approach. As part of future work, population-based optimization techniques such as Particle Swarm Optimization (PSO) will be used to tune the hyper parameters for better performance.
2022-04-22
Iqbal, Talha, Banna, Hasan Ul, Feliachi, Ali.  2021.  AI-Driven Security Constrained Unit Commitment Using Eigen Decomposition And Linear Shift Factors. 2021 North American Power Symposium (NAPS). :01—06.
Unit Commitment (UC) problem is one of the most fundamental constrained optimization problems in the planning and operation of electric power systems and electricity markets. Solving a large-scale UC problem requires a lot of computational effort which can be improved using data driven approaches. In practice, a UC problem is solved multiple times a day with only minor changes in the input data. Hence, this aspect can be exploited by using the historical data to solve the problem. In this paper, an Artificial Intelligence (AI) based approach is proposed to solve a Security Constrained UC problem. The proposed algorithm was tested through simulations on a 4-bus power system and satisfactory results were obtained. The results were compared with those obtained using IBM CPLEX MIQP solver.
2022-04-13
Dimolianis, Marinos, Pavlidis, Adam, Maglaris, Vasilis.  2021.  SYN Flood Attack Detection and Mitigation using Machine Learning Traffic Classification and Programmable Data Plane Filtering. 2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). :126—133.
Distributed Denial of Service (DDoS) attacks are widely used by malicious actors to disrupt network infrastructures/services. A common attack is TCP SYN Flood that attempts to exhaust memory and processing resources. Typical mitigation mechanisms, i.e. SYN cookies require significant processing resources and generate large rates of backscatter traffic to block them. In this paper, we propose a detection and mitigation schema that focuses on generating and optimizing signature-based rules. To that end, network traffic is monitored and appropriate packet-level data are processed to form signatures i.e. unique combinations of packet field values. These are fed to machine learning models that classify them to malicious/benign. Malicious signatures corresponding to specific destinations identify potential victims. TCP traffic to victims is redirected to high-performance programmable XDPenabled firewalls that filter off ending traffic according to signatures classified as malicious. To enhance mitigation performance malicious signatures are subjected to a reduction process, formulated as a multi-objective optimization problem. Minimization objectives are (i) the number of malicious signatures and (ii) collateral damage on benign traffic. We evaluate our approach in terms of detection accuracy and packet filtering performance employing traces from production environments and high rate generated attack traffic. We showcase that our approach achieves high detection accuracy, significantly reduces the number of filtering rules and outperforms the SYN cookies mechanism in high-speed traffic scenarios.
2022-03-14
Sun, Xinyi, Gu, Shushi, Zhang, Qinyu, Zhang, Ning, Xiang, Wei.  2021.  Asynchronous Coded Caching Strategy With Nonuniform Demands for IoV Networks. 2021 IEEE/CIC International Conference on Communications in China (ICCC). :352—357.
The Internet of Vehicles (IoV) can offer safe and comfortable driving experiences with the cooperation communications between central servers and cache-enabled road side units (RSUs) as edge severs, which also can provide high-speed, high-quality and high-stability communication access for vehicle users (VUs). However, due to the huge popular traffic volume, the burden of backhaul link will be seriously enlarged, which will greatly degrade the service experience of the IoV. In order to alleviate the backhaul load of IoV network, in this paper, we propose an asynchronous coded caching strategy composed of two phases, i.e., content placement and asynchronous coded transmission. The asynchronous request and request deadline are closely considered to design our asynchronous coded transmission algorithm. Also, we derive the close-form expression of average backhaul load under the nonuniform demands of IoV users. Finally, we formulate an optimization problem of minimizing average backhaul load and obtain the optimized content placement vector. Simulation results verify the feasibility of our proposed strategy under the asynchronous situation.
Soares, Luigi, Pereira, Fernando Magno Quintãn.  2021.  Memory-Safe Elimination of Side Channels. 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). :200—210.
A program is said to be isochronous if its running time does not depend on classified information. The programming languages literature contains much work that transforms programs to ensure isochronicity. The current state-of-the-art approach is a code transformation technique due to Wu et al., published in 2018. That technique has an important virtue: it ensures that the transformed program runs exactly the same set of operations, regardless of inputs. However, in this paper we demonstrate that it has also a shortcoming: it might add out-of-bounds memory accesses into programs that were originally memory sound. From this observation, we show how to deliver the same runtime guarantees that Wu et al. provide, in a memory-safe way. In addition to being safer, our LLVM-based implementation is more efficient than its original inspiration, achieving shorter repairing times, and producing code that is smaller and faster.
2022-03-10
Sanyal, Hrithik, Shukla, Sagar, Agrawal, Rajneesh.  2021.  Natural Language Processing Technique for Generation of SQL Queries Dynamically. 2021 6th International Conference for Convergence in Technology (I2CT). :1—6.
Natural Language Processing is being used in every field of human to machine interaction. Database queries although have a confined set of instructions, but still found to be complex and dedicated human resources are required to write, test, optimize and execute structured query language statements. This makes it difficult, time-consuming and many a time inaccurate too. Such difficulties can be overcome if the queries are formed dynamically with standard procedures. In this work, parsing, lexical analysis, synonym detection and formation processes of the natural language processing are being proposed to be used for dynamically generating SQL queries and optimization of them for fast processing with high accuracy. NLP parsing of the user inputted text for retrieving, creation and insertion of data are being proposed to be created dynamically from English text inputs. This will help users of the system to generate reports from the data as per the requirement without the complexities of SQL. The proposed system will not only generate queries dynamically but will also provide high accuracy and performance.
2022-03-08
Jia, Yunsong.  2021.  Design of nearest neighbor search for dynamic interaction points. 2021 2nd International Conference on Big Data and Informatization Education (ICBDIE). :389—393.
This article describes the definition, theoretical derivation, design ideas, and specific implementation of the nearest query algorithm for the acceleration of probabilistic optimization at first, and secondly gives an optimization conclusion that is generally applicable to high-dimensional Minkowski spaces with even-numbered feature parameters. Thirdly the operating efficiency and space sensitivity of this algorithm and the commonly used algorithms are compared from both theoretical and experimental aspects. Finally, the optimization direction is analyzed based on the results.
2022-03-01
Amaran, Sibi, Mohan, R. Madhan.  2021.  Intrusion Detection System Using Optimal Support Vector Machine for Wireless Sensor Networks. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1100–1104.
Wireless sensor networks (WSN) hold numerous battery operated, compact sized, and inexpensive sensor nodes, which are commonly employed to observe the physical parameters in the target environment. As the sensor nodes undergo arbitrary placement in the open areas, there is a higher possibility of affected by distinct kinds of attacks. For resolving the issue, intrusion detection system (IDS) is developed. This paper presents a new optimal Support Vector Machine (OSVM) based IDS in WSN. The presented OSVM model involves the proficient selection of optimal kernels in the SVM model using whale optimization algorithm (WOA) for intrusion detection. Since the SVM kernel gets altered using WOA, the application of OSVM model can be used for the detection of intrusions with proficient results. The performance of the OSVM model has been investigated on the benchmark NSL KDDCup 99 dataset. The resultant simulation values portrayed the effectual results of the OSVM model by obtaining a superior accuracy of 94.09% and detection rate of 95.02%.
2022-02-07
Zang, Shiping, Zhao, Dongyan, Hu, Yi, Hu, Xiaobo, Gao, Ying, Du, Pengcheng, Cheng, Song.  2021.  A High Speed SM3 Algorithm Implementation for Security Chip. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:915–919.
High throughput of crypto circuit is critical for many high performance security applications. The proposed SM3 circuit design breaks the inherent limitation of the conventional algorithm flow by removing the "blocking point" on the critical path, and reorganizes the algebraic structure by adding four parallel compensation operations. In addition, the round expansion architecture, CSA (Carry Save Adder) and pre-calculation are also used in this design. Due to the optimization at both the algorithm level and the circuit level, the synthesized circuit of this design can reach maximum 415MHz operating clock frequency and 6.4Gbps throughput with SMIC 40nm high performance technology. Compared with the conventional implementation method, the throughput performance of the proposed SM3 circuit increases by 97.5% and the chip area of SM3 algorithm area is only increased by 16.2%.
2022-01-31
Zulfa, Mulki Indana, Hartanto, Rudy, Permanasari, Adhistya Erna, Ali, Waleed.  2021.  Web Caching Strategy Optimization Based on Ant Colony Optimization and Genetic Algorithm. 2021 International Seminar on Intelligent Technology and Its Applications (ISITIA). :75—81.
Web caching is a strategy that can be used to speed up website access on the client-side. This strategy is implemented by storing as many popular web objects as possible on the cache server. All web objects stored on a cache server are called cached data. Requests for cached web data on the cache server are much faster than requests directly to the origin server. Not all web objects can fit on the cache server due to their limited capacity. Therefore, optimizing cached data in a web caching strategy will determine which web objects can enter the cache server to have maximum profit. This paper simulates a web caching strategy optimization with a knapsack problem approach using the Ant Colony optimization (ACO), Genetic Algorithm (GA), and a combination of the two. Knapsack profit is seen from the number of web objects that can be entered into the cache server but with the minimum objective function value. The simulation results show that the combination of ACO and GA is faster to produce an optimal solution and is not easily trapped by the local optimum.
El-Allami, Rida, Marchisio, Alberto, Shafique, Muhammad, Alouani, Ihsen.  2021.  Securing Deep Spiking Neural Networks against Adversarial Attacks through Inherent Structural Parameters. 2021 Design, Automation Test in Europe Conference Exhibition (DATE). :774–779.
Deep Learning (DL) algorithms have gained popularity owing to their practical problem-solving capacity. However, they suffer from a serious integrity threat, i.e., their vulnerability to adversarial attacks. In the quest for DL trustworthiness, recent works claimed the inherent robustness of Spiking Neural Networks (SNNs) to these attacks, without considering the variability in their structural spiking parameters. This paper explores the security enhancement of SNNs through internal structural parameters. Specifically, we investigate the SNNs robustness to adversarial attacks with different values of the neuron's firing voltage thresholds and time window boundaries. We thoroughly study SNNs security under different adversarial attacks in the strong white-box setting, with different noise budgets and under variable spiking parameters. Our results show a significant impact of the structural parameters on the SNNs' security, and promising sweet spots can be reached to design trustworthy SNNs with 85% higher robustness than a traditional non-spiking DL system. To the best of our knowledge, this is the first work that investigates the impact of structural parameters on SNNs robustness to adversarial attacks. The proposed contributions and the experimental framework is available online 11https://github.com/rda-ela/SNN-Adversarial-Attacks to the community for reproducible research.
2022-01-10
Gaur, Manvika, Gupta, Ritu, Singh, Abhilasha.  2021.  Use of AES Algorithm in Development of SMS Application on Android Platform. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1–5.
Encrypting the data when it comes to security from foreign intrusions is necessary. Being such a vast field the search for the perfect algorithm is crucial. Such an algorithm which is feasible, scalable and most importantly not easy to crack is the ideal algorithm for its use, in the application ``CRYPTOSMS''.SMS (Short messaging service) is not encrypted end to end like WhatsApp. So, to solve the problem of security, CRYPTOSMS was created so that all the messages sent and received are secured. This paper includes the search for the ideal algorithm for the application by comparison with other algorithms and how it is used in making of the application.
2021-11-30
Wang, Zhanle, Munawar, Usman, Paranjape, Raman.  2020.  Stochastic Optimization for Residential Demand Response under Time of Use. 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020). :1–6.
Demand response (DR) is one of the most economical methods for peak demand reduction, renewable energy integration and ancillary service support. Residential electrical energy consumption takes approximately 33% of the total electricity usage and hence has great potentials in DR applications. However, residential DR encounters various challenges such as small individual magnitude, stochastic consuming patterns and privacy issues. In this study, we propose a stochastic optimal mechanism to tackle these issues and try to reveal the benefits from residential DR implementation. Stochastic residential load (SRL) models, a generation cost prediction (GCP) model and a stochastic optimal load aggregation (SOLA) model are developed. A set of uniformly distributed scalers is introduced into the SOLA model to efficiently avoid the peak demand rebound problem in DR applications. The SOLA model is further transformed into a deterministic LP model. Time-of-Use (TOU) tariff is adopted as the price structure because of its similarity and popularity. Case studies show that the proposed mechanism can significantly reduce the peak-to-average power ratio (PAPR) of the load profile as well as the electrical energy cost. Furthermore, the impacts of consumers' participation levels in the DR program are investigated. Simulation results show that the 50% participation level appears as the best case in terms system stability. With the participation level of 80%, consumers' electrical energy cost is minimized. The proposed mechanism can be used by a residential load aggregator (LA) or a utility to plan a DR program, predict its impacts, and aggregate residential loads to minimize the electrical energy cost.
Shateri, Mohammadhadi, Messina, Francisco, Piantanida, Pablo, Labeau, Fabrice.  2020.  On the Impact of Side Information on Smart Meter Privacy-Preserving Methods. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–6.
Smart meters (SMs) can pose privacy threats for consumers, an issue that has received significant attention in recent years. This paper studies the impact of Side Information (SI) on the performance of possible attacks to real-time privacy-preserving algorithms for SMs. In particular, we consider a deep adversarial learning framework, in which the desired releaser, which is a Recurrent Neural Network (RNN), is trained by fighting against an adversary network until convergence. To define the objective for training, two different approaches are considered: the Causal Adversarial Learning (CAL) and the Directed Information (DI)-based learning. The main difference between these approaches relies on how the privacy term is measured during the training process. The releaser in the CAL method, disposing of supervision from the actual values of the private variables and feedback from the adversary performance, tries to minimize the adversary log-likelihood. On the other hand, the releaser in the DI approach completely relies on the feedback received from the adversary and is optimized to maximize its uncertainty. The performance of these two algorithms is evaluated empirically using real-world SMs data, considering an attacker with access to SI (e.g., the day of the week) that tries to infer the occupancy status from the released SMs data. The results show that, although they perform similarly when the attacker does not exploit the SI, in general, the CAL method is less sensitive to the inclusion of SI. However, in both cases, privacy levels are significantly affected, particularly when multiple sources of SI are included.
Li, Gangqiang, Wu, Sissi Xiaoxiao, Zhang, Shengli, Li, Qiang.  2020.  Detect Insider Attacks Using CNN in Decentralized Optimization. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8758–8762.
This paper studies the security issue of a gossip-based distributed projected gradient (DPG) algorithm, when it is applied for solving a decentralized multi-agent optimization. It is known that the gossip-based DPG algorithm is vulnerable to insider attacks because each agent locally estimates its (sub)gradient without any supervision. This work leverages the convolutional neural network (CNN) to perform the detection and localization of the insider attackers. Compared to the previous work, CNN can learn appropriate decision functions from the original state information without preprocessing through artificially designed rules, thereby alleviating the dependence on complex pre-designed models. Simulation results demonstrate that the proposed CNN-based approach can effectively improve the performance of detecting and localizing malicious agents, as compared with the conventional pre-designed score-based model.
2021-11-29
Gao, Yang, Wu, Weniun, Dong, Junyu, Yin, Yufeng, Si, Pengbo.  2020.  Deep Reinforcement Learning Based Node Pairing Scheme in Edge-Chain for IoT Applications. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
Nowadays, the Internet of Things (IoT) is playing an important role in our life. This inevitably generates mass data and requires a more secure transmission. As blockchain technology can build trust in a distributed environment and ensure the data traceability and tamper resistance, it is a promising way to support IoT data transmission and sharing. In this paper, edge computing is considered to provide adequate resources for end users to offload computing tasks in the blockchain enabled IoT system, and the node pairing problem between end users and edge computing servers is researched with the consideration of wireless channel quality and the service quality. From the perspective of the end users, the objective optimization is designed to maximize the profits and minimize the payments for completing the tasks and ensuring the resource limits of the edge servers at the same time. The deep reinforcement learning (DRL) method is utilized to train an intelligent strategy, and the policy gradient based node pairing (PG-NP) algorithm is proposed. Through a deep neural network, the well-trained policy matched the system states to the optimal actions. The REINFORCE algorithm with baseline is applied to train the policy network. According to the training results, as the comparison strategies are max-credit, max-SINR, random and max-resource, the PG-NP algorithm performs about 57% better than the second-best method. And testing results show that PGNP also has a good generalization ability which is negatively correlated with the training performance to a certain extend.
Sapountzis, Nikolaos, Sun, Ruimin, Wei, Xuetao, Jin, Yier, Crandall, Jedidiah, Oliveira, Daniela.  2020.  MITOS: Optimal Decisioning for the Indirect Flow Propagation Dilemma in Dynamic Information Flow Tracking Systems. 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). :1090–1100.
Dynamic Information Flow Tracking (DIFT), also called Dynamic Taint Analysis (DTA), is a technique for tracking the information as it flows through a program's execution. Specifically, some inputs or data get tainted and then these taint marks (tags) propagate usually at the instruction-level. While DIFT has been a fundamental concept in computer and network security for the past decade, it still faces open challenges that impede its widespread application in practice; one of them being the indirect flow propagation dilemma: should the tags involved in an indirect flow, e.g., in a control or address dependency, be propagated? Propagating all these tags, as is done for direct flows, leads to overtainting (all taintable objects become tainted), while not propagating them leads to undertainting (information flow becomes incomplete). In this paper, we analytically model that decisioning problem for indirect flows, by considering various tradeoffs including undertainting versus overtainting, importance of heterogeneous code semantics and context. Towards tackling this problem, we design MITOS, a distributed-optimization algorithm, that: decides about the propagation of indirect flows by properly weighting all these tradeoffs, is of low-complexity, is scalable, is able to flexibly adapt to different application scenarios and security needs of large distributed systems. Additionally, MITOS is applicable to most DIFT systems that consider an arbitrary number of tag types, and introduces the key properties of fairness and tag-balancing to the DIFT field. To demonstrate MITOS's applicability in practice, we implement and evaluate MITOS on top of an open-source DIFT, and we shed light on the open problem. We also perform a case-study scenario with a real in-memory only attack and show that MITOS improves simultaneously (i) system's spatiotemporal overhead (up to 40%), and (ii) system's fingerprint on suspected bytes (up to 167%) compared to traditional DIFT, even though these metrics usually conflict.
2021-10-12
Chen, Jianbo, Jordan, Michael I., Wainwright, Martin J..  2020.  HopSkipJumpAttack: A Query-Efficient Decision-Based Attack. 2020 IEEE Symposium on Security and Privacy (SP). :1277–1294.
The goal of a decision-based adversarial attack on a trained model is to generate adversarial examples based solely on observing output labels returned by the targeted model. We develop HopSkipJumpAttack, a family of algorithms based on a novel estimate of the gradient direction using binary information at the decision boundary. The proposed family includes both untargeted and targeted attacks optimized for $\mathscrl$ and $\mathscrlınfty$ similarity metrics respectively. Theoretical analysis is provided for the proposed algorithms and the gradient direction estimate. Experiments show HopSkipJumpAttack requires significantly fewer model queries than several state-of-the-art decision-based adversarial attacks. It also achieves competitive performance in attacking several widely-used defense mechanisms.
2021-09-16
Zhao, Bing-Qing, Wang, Hui-Ming, Jiang, Jia-Cheng.  2020.  Safeguarding Backscatter RFID Communication against Proactive Eavesdropping. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Passive radio frequency identification (RFID) systems raise new transmission secrecy protection challenges against the special proactive eavesdropper, since it is able to both enhance the information wiretap and interfere with the information detection at the RFID reader simultaneously by broadcasting its own continuous wave (CW) signal. To defend against proactive eavesdropping attacks, we propose an artificial noise (AN) aided secure transmission scheme for the RFID reader, which superimposes an AN signal on the CW signal to confuse the proactive eavesdropper. The power allocation between the AN signal and the CW signal are optimized to maximize the secrecy rate. Furthermore, we model the attack and defense process between the proactive eavesdropper and the RFID reader as a hierarchical security game, and prove it can achieve the equilibrium. Simulation results show the superiority of our proposed scheme in terms of the secrecy rate and the interactions between the RFID reader and the proactive eavesdropper.
2021-09-09
Zarubskiy, Vladimir G., Bondarchuk, Aleksandr S., Bondarchuk, Ksenija A..  2020.  Evaluation of the Computational Complexity of Implementation of the Process of Adaptation of High-Reliable Control Systems. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :964–967.
The development of control systems of increased reliability is highly relevant due to their widespread introduction in various sectors of human activity, including those where failure of the control system can lead to serious or catastrophic consequences. The increase of the reliability of control systems is directly related with the reliability of control computers (so called intellectual centers) since the computer technology is the basis of modern control systems. One of the possible solutions to the development of highly reliable control computers is the practical implementation of the provisions of the theory of structural stability, which involves the practical solution of two main tasks - this is the task of functional adaptation and the preceding task of functional diagnostics. This article deals with the issues on the assessment of computational complexity of the implementation of the adaptation process of structural and sustainable control computer. The criteria of computational complexity are the characteristics of additionally attracted resources, such as the temporal characteristics of the adaptation process and the characteristics of the involved amount of memory resources of the control computer involved in the implementation of the adaptation process algorithms.