Visible to the public Biblio

Filters: Keyword is Petri nets  [Clear All Filters]
2021-03-17
Sadu, A., Stevic, M., Wirtz, N., Monti, A..  2020.  A Stochastic Assessment of Attacks based on Continuous-Time Markov Chains. 2020 6th IEEE International Energy Conference (ENERGYCon). :11—16.

With the increasing interdependence of critical infrastructures, the probability of a specific infrastructure to experience a complex cyber-physical attack is increasing. Thus it is important to analyze the risk of an attack and the dynamics of its propagation in order to design and deploy appropriate countermeasures. The attack trees, commonly adopted to this aim, have inherent shortcomings in representing interdependent, concurrent and sequential attacks. To overcome this, the work presented here proposes a stochastic methodology using Petri Nets and Continuous Time Markov Chain (CTMC) to analyze the attacks, considering the individual attack occurrence probabilities and their stochastic propagation times. A procedure to convert a basic attack tree into an equivalent CTMC is presented. The proposed method is applied in a case study to calculate the different attack propagation characteristics. The characteristics are namely, the probability of reaching the root node & sub attack nodes, the mean time to reach the root node and the mean time spent in the sub attack nodes before reaching the root node. Additionally, the method quantifies the effectiveness of specific defenses in reducing the attack risk considering the efficiency of individual defenses.

2021-03-09
Yamaguchi, S..  2020.  Botnet Defense System and Its Basic Strategy Against Malicious Botnet. 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan). :1—2.

This paper proposes a basic strategy for Botnet Defense System (BDS). BDS is a cybersecurity system that utilizes white-hat botnets to defend IoT systems against malicious botnets. Once a BDS detects a malicious botnet, it launches white-hat worms in order to drive out the malicious botnet. The proposed strategy aims at the proper use of the worms based on the worms' capability such as lifespan and secondary infectivity. If the worms have high secondary infectivity or a long lifespan, the BDS only has to launch a few worms. Otherwise, it should launch as many worms as possible. The effectiveness of the strategy was confirmed through the simulation evaluation using agent-oriented Petri nets.

2020-11-20
Liu, D., Lou, F., Wang, H..  2019.  Modeling and measurement internal threat process based on advanced stochastic model*. 2019 Chinese Automation Congress (CAC). :1077—1081.
Previous research on internal threats was mostly focused on modeling threat behaviors. These studies have paid little attention to risk measurement. This paper analyzed the internal threat scenarios, introduced the operation related protection model into the firewall-password model, constructed a series of sub models. By analyzing the illegal data out process, the analysis model of target network can be rapidly generated based on four protection sub-models. Then the risk value of an assessment point can be computed dynamically according to the Petri net computing characteristics and the effectiveness of overall network protection can be measured. This method improves the granularity of the model and simplifies the complexity of modeling complex networks and can realize dynamic and real-time risk measurement.
2020-10-16
Hussain, Mukhtar, Foo, Ernest, Suriadi, Suriadi.  2019.  An Improved Industrial Control System Device Logs Processing Method for Process-Based Anomaly Detection. 2019 International Conference on Frontiers of Information Technology (FIT). :150—1505.

Detecting process-based attacks on industrial control systems (ICS) is challenging. These cyber-attacks are designed to disrupt the industrial process by changing the state of a system, while keeping the system's behaviour close to the expected behaviour. Such anomalous behaviour can be effectively detected by an event-driven approach. Petri Net (PN) model identification has proved to be an effective method for event-driven system analysis and anomaly detection. However, PN identification-based anomaly detection methods require ICS device logs to be converted into event logs (sequence of events). Therefore, in this paper we present a formalised method for pre-processing and transforming ICS device logs into event logs. The proposed approach outperforms the previous methods of device logs processing in terms of anomaly detection. We have demonstrated the results using two published datasets.

2020-10-06
Gupta, Priyanka, Garg, Gagan.  2019.  Handling concurrent requests in a secret sharing based storage system using Petri Nets. 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1—6.

Data can be stored securely in various storage servers. But in the case of a server failure, or data theft from a certain number of servers, the remaining data becomes inadequate for use. Data is stored securely using secret sharing schemes, so that data can be reconstructed even if some of the servers fail. But not much work has been carried out in the direction of updation of this data. This leads to the problem of updation when two or more concurrent requests arrive and thus, it results in inconsistency. Our work proposes a novel method to store data securely with concurrent update requests using Petri Nets, under the assumption that the number of nodes is very large and the requests for updates are very frequent.

2020-09-04
Wu, Yan, Luo, Anthony, Xu, Dianxiang.  2019.  Forensic Analysis of Bitcoin Transactions. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :167—169.
Bitcoin [1] as a popular digital currency has been a target of theft and other illegal activities. Key to the forensic investigation is to identify bitcoin addresses involved in bitcoin transfers. This paper presents a framework, FABT, for forensic analysis of bitcoin transactions by identifying suspicious bitcoin addresses. It formalizes the clues of a given case as transaction patterns defined over a comprehensive set of features. FABT converts the bitcoin transaction data into a formal model, called Bitcoin Transaction Net (BTN). The traverse of all bitcoin transactions in the order of their occurrences is captured by the firing sequence of all transitions in the BTN. We have applied FABT to identify suspicious addresses in the Mt.Gox case. A subgroup of the suspicious addresses has been found to share many characteristics about the received/transferred amount, number of transactions, and time intervals.
2020-07-06
Sheela, A., Revathi, S., Iqbal, Atif.  2019.  Cyber Risks Assessment For Intelligent And Non-Intelligent Attacks In Power System. 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC). :40–45.
Smart power grid is a perfect model of Cyber Physical System (CPS) which is an important component for a comfortable life. The major concern of the electrical network is safety and reliable operation. A cyber attacker in the operation of power system would create a major damage to the entire power system structure and affect the continuity of the power supply by adversely changing its parameters. A risk assessment method is presented for evaluating the cyber security assessment of power systems taking into consideration the need for protection systems. The paper considers the impact of bus and transmission line protection systems located in substations on the cyber physical performance of power systems. The proposed method is to simulate the response of power systems to sudden attacks on various power system preset value and parameters. This paper focuses on the cyber attacks which occur in a co-ordinated way so that many power system components will be in risk. The risk can be modelled as the combined probability of power system impact due to attacks and of successful interruption into the system. Stochastic Petri Nets is employed for assessing the risks. The effectiveness of the proposed cyber security risk assessment method is simulated for a IEEE39 bus system.
2020-04-24
Yang, Yi, Xu, Wei, Wang, Sixin, Wei, Kunlun.  2018.  Modeling and Analysis of CPS Availability Based on the Object-oriented Timed Petri Nets. 2018 37th Chinese Control Conference (CCC). :6172—6177.

Cyber-Physical Systems (CPS) is mostly deployed in security-critical applications where their failures can cause serious consequences, and therefore it is critical to evaluate its availability. In this paper, an architecture model of CPS is established from the perspective of object-oriented system. The system is a unified whole formed by various independent objects (including sensors, controllers and actuators) through communication connection. Then the paper presents the Object-oriented Timed Petri Net to model the system. The modeling method can be used to describe the whole system and the characteristics of the object. At the same time, the availability analysis of the system is carried out by using the mathematical analysis method and simulation tool of Petri net. Finally, a concrete case is given to verify the feasibility of the modeling method in CPS availability analysis.

2020-04-20
Lefebvre, Dimitri, Hadjicostis, Christoforos N..  2019.  Trajectory-observers of timed stochastic discrete event systems: Applications to privacy analysis. 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). :1078–1083.
Various aspects of security and privacy in many application domains can be assessed based on proper analysis of successive measurements that are collected on a given system. This work is devoted to such issues in the context of timed stochastic Petri net models. We assume that certain events and part of the marking trajectories are observable to adversaries who aim to determine when the system is performing secret operations, such as time intervals during which the system is executing certain critical sequences of events (as captured, for instance, in language-based opacity formulations). The combined use of the k-step trajectory-observer and the Markov model of the stochastic Petri net leads to probabilistic indicators helpful for evaluating language-based opacity of the given system, related timing aspects, and possible strategies to improve them.
2020-03-16
Radoglou-Grammatikis, Panagiotis, Sarigiannidis, Panagiotis, Giannoulakis, Ioannis, Kafetzakis, Emmanouil, Panaousis, Emmanouil.  2019.  Attacking IEC-60870-5-104 SCADA Systems. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:41–46.
The rapid evolution of the Information and Communications Technology (ICT) services transforms the conventional electrical grid into a new paradigm called Smart Grid (SG). Even though SG brings significant improvements, such as increased reliability and better energy management, it also introduces multiple security challenges. One of the main reasons for this is that SG combines a wide range of heterogeneous technologies, including Internet of Things (IoT) devices as well as Supervisory Control and Data Acquisition (SCADA) systems. The latter are responsible for monitoring and controlling the automatic procedures of energy transmission and distribution. Nevertheless, the presence of these systems introduces multiple vulnerabilities because their protocols do not implement essential security mechanisms such as authentication and access control. In this paper, we focus our attention on the security issues of the IEC 60870-5-104 (IEC-104) protocol, which is widely utilized in the European energy sector. In particular, we provide a SCADA threat model based on a Coloured Petri Net (CPN) and emulate four different types of cyber attacks against IEC-104. Last, we used AlienVault's risk assessment model to evaluate the risk level that each of these cyber attacks introduces to our system to confirm our intuition about their severity.
2020-03-09
Tun, Hein, Lupin, Sergey, Than, Ba Hla, Nay Zaw Linn, Kyaw, Khaing, Min Thu.  2019.  Estimation of Information System Security Using Hybrid Simulation in AnyLogic. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1829–1834.
Nowadays the role of Information systems in our life has greatly increased, which has become one of the biggest challenges for citizens, organizations and governments. Every single day we are becoming more and more dependent on information and communication technology (ICT). A major goal of information security is to find the best ways to mitigate the risks. The context-role and perimeter protection approaches can reduce and prevent an unauthorized penetration to protected zones and information systems inside the zones. The result of this work can be useful for the security system analysis and optimization of their organizations.
2019-12-09
Bruni, Roberto, Melgratti, Hernán, Montanari, Ugo.  2018.  Concurrency and Probability: Removing Confusion, Compositionally. Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. :195–204.
Assigning a satisfactory truly concurrent semantics to Petri nets with confusion and distributed decisions is a long standing problem, especially if one wants to resolve decisions by drawing from some probability distribution. Here we propose a general solution based on a recursive, static decomposition of (occurrence) nets in loci of decision, called structural branching cells (s-cells). Each s-cell exposes a set of alternatives, called transactions. Our solution transforms a given Petri net into another net whose transitions are the transactions of the s-cells and whose places are those of the original net, with some auxiliary structure for bookkeeping. The resulting net is confusion-free, and thus conflicting alternatives can be equipped with probabilistic choices, while nonintersecting alternatives are purely concurrent and their probability distributions are independent. The validity of the construction is witnessed by a tight correspondence with the recursively stopped configurations of Abbes and Benveniste. Some advantages of our approach are that: i) s-cells are defined statically and locally in a compositional way; ii) our resulting nets faithfully account for concurrency.
2019-05-01
Mili, S., Nguyen, N., Chelouah, R..  2018.  Attack Modeling and Verification for Connected System Security. 2018 13th Annual Conference on System of Systems Engineering (SoSE). :157–162.

In the development process of critical systems, one of the main challenges is to provide early system validation and verification against vulnerabilities in order to reduce cost caused by late error detection. We propose in this paper an approach that, firstly allows formally describe system security specifications, thanks to our suggested extended attack tree. Secondly, static and dynamic system modeling by using a SysML connectivity profile to model error propagation is introduced. Finally, a model checker has been used in order to validate system specifications.

2019-03-28
He, F., Zhang, Y., Liu, H., Zhou, W..  2018.  SCPN-Based Game Model for Security Situational Awareness in the Intenet of Things. 2018 IEEE Conference on Communications and Network Security (CNS). :1-5.
Internet of Things (IoT) is characterized by various of heterogeneous devices that facing numerous threats, which makes modeling security situation of IoT still a certain challenge. This paper defines a Stochastic Colored Petri Net (SCPN) for IoT-based smart environment and then proposes a Game model for security situational awareness. All possible attack paths are computed by the SCPN, and antagonistic behavior of both attackers and defenders are taken into consideration dynamically according to Game Theory (GT). Experiments on two typical attack scenarios in smart home environment demonstrate the effectiveness of the proposed model. The proposed model can form a macroscopic trend curve of the security situation. Analysis of the results shows the capabilities of the proposed model in finding vulnerable devices and potential attack paths, and even facilitating the choice of defense strategy. To the best of our knowledge, this is the first attempt to use Game Theory in the IoT-based SCPN to establish a security situational awareness model for a complex smart environment.
2019-03-22
Liu, Y., Li, X., Xiao, L..  2018.  Service Oriented Resilience Strategy for Cloud Data Center. 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :269-274.

As an information hinge of various trades and professions in the era of big data, cloud data center bears the responsibility to provide uninterrupted service. To cope with the impact of failure and interruption during the operation on the Quality of Service (QoS), it is important to guarantee the resilience of cloud data center. Thus, different resilience actions are conducted in its life circle, that is, resilience strategy. In order to measure the effect of resilience strategy on the system resilience, this paper propose a new approach to model and evaluate the resilience strategy for cloud data center focusing on its core part of service providing-IT architecture. A comprehensive resilience metric based on resilience loss is put forward considering the characteristic of cloud data center. Furthermore, mapping model between system resilience and resilience strategy is built up. Then, based on a hierarchical colored generalized stochastic petri net (HCGSPN) model depicting the procedure of the system processing the service requests, simulation is conducted to evaluate the resilience strategy through the metric calculation. With a case study of a company's cloud data center, the applicability and correctness of the approach is demonstrated.

2019-01-31
Das, D., Meiser, S., Mohammadi, E., Kate, A..  2018.  Anonymity Trilemma: Strong Anonymity, Low Bandwidth Overhead, Low Latency - Choose Two. 2018 IEEE Symposium on Security and Privacy (SP). :108–126.

This work investigates the fundamental constraints of anonymous communication (AC) protocols. We analyze the relationship between bandwidth overhead, latency overhead, and sender anonymity or recipient anonymity against the global passive (network-level) adversary. We confirm the trilemma that an AC protocol can only achieve two out of the following three properties: strong anonymity (i.e., anonymity up to a negligible chance), low bandwidth overhead, and low latency overhead. We further study anonymity against a stronger global passive adversary that can additionally passively compromise some of the AC protocol nodes. For a given number of compromised nodes, we derive necessary constraints between bandwidth and latency overhead whose violation make it impossible for an AC protocol to achieve strong anonymity. We analyze prominent AC protocols from the literature and depict to which extent those satisfy our necessary constraints. Our fundamental necessary constraints offer a guideline not only for improving existing AC systems but also for designing novel AC protocols with non-traditional bandwidth and latency overhead choices.

Mahboubi, A., Camtepe, S., Morarji, H..  2018.  Reducing USB Attack Surface: A Lightweight Authentication and Delegation Protocol. 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE). :1–7.

A privately owned smart device connected to a corporate network using a USB connection creates a potential channel for malware infection and its subsequent spread. For example, air-gapped (a.k.a. isolated) systems are considered to be the most secure and safest places for storing critical datasets. However, unlike network communications, USB connection streams have no authentication and filtering. Consequently, intentional or unintentional piggybacking of a malware infected USB storage or a mobile device through the air-gap is sufficient to spread infection into such systems. Our findings show that the contact rate has an exceptional impact on malware spread and destabilizing free malware equilibrium. This work proposes a USB authentication and delegation protocol based on radiofrequency identification (RFID) in order to stabilize the free malware equilibrium in air-gapped networks. The proposed protocol is modelled using Coloured Petri nets (CPN) and the model is verified and validated through CPN tools.

2018-06-07
Ahmadon, M. A. B., Yamaguchi, S., Saon, S., Mahamad, A. K..  2017.  On service security analysis for event log of IoT system based on data Petri net. 2017 IEEE International Symposium on Consumer Electronics (ISCE). :4–8.

The Internet of Things (IoT) has bridged our physical world to the cyber world which allows us to achieve our desired lifestyle. However, service security is an essential part to ensure that the designed service is not compromised. In this paper, we proposed a security analysis for IoT services. We focus on the context of detecting malicious operation from an event log of the designed IoT services. We utilized Petri nets with data to model IoT service which is logically correct. Then, we check the trace from an event log by tracking the captured process and data. Finally, we illustrated the approach with a smart home service and showed the effectiveness of our approach.

2018-02-02
Rieke, R., Seidemann, M., Talla, E. K., Zelle, D., Seeger, B..  2017.  Behavior Analysis for Safety and Security in Automotive Systems. 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP). :381–385.

The connection of automotive systems with other systems such as road-side units, other vehicles, and various servers in the Internet opens up new ways for attackers to remotely access safety relevant subsystems within connected cars. The security of connected cars and the whole vehicular ecosystem is thus of utmost importance for consumer trust and acceptance of this emerging technology. This paper describes an approach for on-board detection of unanticipated sequences of events in order to identify suspicious activities. The results show that this approach is fast enough for in-vehicle application at runtime. Several behavior models and synchronization strategies are analyzed in order to narrow down suspicious sequences of events to be sent in a privacy respecting way to a global security operations center for further in-depth analysis.

2017-09-05
Barbot, Benoît, Kwiatkowska, Marta, Mereacre, Alexandru, Paoletti, Nicola.  2016.  Building Power Consumption Models from Executable Timed I/O Automata Specifications. Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control. :195–204.

We develop a novel model-based hardware-in-the-loop (HIL) framework for optimising energy consumption of embedded software controllers. Controller and plant models are specified as networks of parameterised timed input/output automata and translated into executable code. The controller is encoded into the target embedded hardware, which is connected to a power monitor and interacts with the simulation of the plant model. The framework then generates a power consumption model that maps controller transitions to distributions over power measurements, and is used to optimise the timing parameters of the controller, without compromising a given safety requirement. The novelty of our approach is that we measure the real power consumption of the controller and use thus obtained data for energy optimisation. We employ timed Petri nets as an intermediate representation of the executable specification, which facilitates efficient code generation and fast simulations. Our framework uniquely combines the advantages of rigorous specifications with accurate power measurements and methods for online model estimation, thus enabling automated design of correct and energy-efficient controllers.

2017-04-20
Torres, J. V., Alvarenga, I. D., Pedroza, A. de Castro Pinto, Duarte, O. C. M. B..  2016.  Proposing, specifying, and validating a controller-based routing protocol for a clean-slate Named-Data Networking. 2016 7th International Conference on the Network of the Future (NOF). :1–5.

Named-Data Networking (NDN) is the most prominent proposal for a clean-slate proposal of Future Internet. Nevertheless, NDN routing schemes present scalability concerns due to the required number of stored routes and of control messages. In this work, we present a controller-based routing protocol using a formal method to unambiguously specify, and validate to prove its correctness. Our proposal codes signaling information on content names, avoiding control message overhead, and reduces router memory requirements, storing only the routes for simultaneously consumed prefixes. Additionally, the protocol installs a new route on all routers in a path with a single route request to the controller, avoiding replication of routing information and automating router provisioning. As a result, we provide a protocol proposal description using the Specification and Description Language and we validate the protocol, proving that CRoS behavior is free of dead or live locks. Furthermore, the protocol validation guarantees that the scheme ensures a valid working path from consumer to producer, even if it does not assure the shortest path.

2015-05-05
Cam, H., Mouallem, P., Yilin Mo, Sinopoli, B., Nkrumah, B..  2014.  Modeling impact of attacks, recovery, and attackability conditions for situational awareness. Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2014 IEEE International Inter-Disciplinary Conference on. :181-187.

A distributed cyber control system comprises various types of assets, including sensors, intrusion detection systems, scanners, controllers, and actuators. The modeling and analysis of these components usually require multi-disciplinary approaches. This paper presents a modeling and dynamic analysis of a distributed cyber control system for situational awareness by taking advantage of control theory and time Petri net. Linear time-invariant systems are used to model the target system, attacks, assets influences, and an anomaly-based intrusion detection system. Time Petri nets are used to model the impact and timing relationships of attacks, vulnerability, and recovery at every node. To characterize those distributed control systems that are perfectly attackable, algebraic and topological attackability conditions are derived. Numerical evaluation is performed to determine the impact of attacks on distributed control system.

Moody, W.C., Hongxin Hu, Apon, A..  2014.  Defensive maneuver cyber platform modeling with Stochastic Petri Nets. Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), 2014 International Conference on. :531-538.

Distributed and parallel applications are critical information technology systems in multiple industries, including academia, military, government, financial, medical, and transportation. These applications present target rich environments for malicious attackers seeking to disrupt the confidentiality, integrity and availability of these systems. Applying the military concept of defense cyber maneuver to these systems can provide protection and defense mechanisms that allow survivability and operational continuity. Understanding the tradeoffs between information systems security and operational performance when applying maneuver principles is of interest to administrators, users, and researchers. To this end, we present a model of a defensive maneuver cyber platform using Stochastic Petri Nets. This model enables the understanding and evaluation of the costs and benefits of maneuverability in a distributed application environment, specifically focusing on moving target defense and deceptive defense strategies.
 

Ming Xiang, Tauch, S., Liu, W..  2014.  Dependability and Resource Optimation Analysis for Smart Grid Communication Networks. Big Data and Cloud Computing (BdCloud), 2014 IEEE Fourth International Conference on. :676-681.

Smart Grid is the trend of next generation power distribution and network management that enable a two -- way interactive communication and operation between consumers and suppliers, so as to achieve intelligent resource management and optimization. The wireless mesh network technology is a promising infrastructure solution to support these smart functionalities, while it has some inherent vulnerabilities and cyber-attack risks to be addressed. As Smart Grid is heavily relying on the underlie communication networks, which makes their security and dependability issues critical to the entire smart grid technology. Several studies have been conducted in the field of Smart Grid security, but few works were focused on the dependability and its associated resource analysis of the control center networks. In this paper, we have investigated the dependability modeling and also resource allocation in redundant communication networks by adopting two mathematical approaches, Reliability Block Diagrams (RBD) and Stochastic Petri Nets (SPNs), to analyze the dependability of control center networks in Smart Grid environment. We have applied our proposed modeling approach in an extensive case study to evaluate the availability of smart gird networks with different redundancy mechanisms. A combination of dependability models and reliability importance are used to analyze the network availability according to the most important components. We also show the variation of network availability in accordance with Mean Time to Failure (MTTF) in different network architectures.

2015-04-30
Cam, H., Mouallem, P., Yilin Mo, Sinopoli, B., Nkrumah, B..  2014.  Modeling impact of attacks, recovery, and attackability conditions for situational awareness. Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2014 IEEE International Inter-Disciplinary Conference on. :181-187.

A distributed cyber control system comprises various types of assets, including sensors, intrusion detection systems, scanners, controllers, and actuators. The modeling and analysis of these components usually require multi-disciplinary approaches. This paper presents a modeling and dynamic analysis of a distributed cyber control system for situational awareness by taking advantage of control theory and time Petri net. Linear time-invariant systems are used to model the target system, attacks, assets influences, and an anomaly-based intrusion detection system. Time Petri nets are used to model the impact and timing relationships of attacks, vulnerability, and recovery at every node. To characterize those distributed control systems that are perfectly attackable, algebraic and topological attackability conditions are derived. Numerical evaluation is performed to determine the impact of attacks on distributed control system.