Visible to the public Biblio

Filters: Keyword is blockchain  [Clear All Filters]
2019-12-11
Kerber, Thomas, Kiayias, Aggelos, Kohlweiss, Markulf, Zikas, Vassilis.  2019.  Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake. 2019 IEEE Symposium on Security and Privacy (SP). :157–174.

We present Ouroboros Crypsinous, the first formally analyzed privacy-preserving proof-of-stake blockchain protocol. To model its security we give a thorough treatment of private ledgers in the (G)UC setting that might be of independent interest. To prove our protocol secure against adaptive attacks, we introduce a new coin evolution technique relying on SNARKs and key-private forward secure encryption. The latter primitive-and the associated construction-can be of independent interest. We stress that existing approaches to private blockchain, such as the proof-of-work-based Zerocash are analyzed only against static corruptions.

2019-12-09
Sel, Daniel, Zhang, Kaiwen, Jacobsen, Hans-Arno.  2018.  Towards Solving the Data Availability Problem for Sharded Ethereum. Proceedings of the 2Nd Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers. :25–30.
The success and growing popularity of blockchain technology has lead to a significant increase in load on popular permissionless blockchains such as Ethereum. With the current design, these blockchain systems do not scale with additional nodes since every node executes every transaction. Further efforts are therefore necessary to develop scalable permissionless blockchain systems. In this paper, we provide an aggregated overview of the current research on the Ethereum blockchain towards solving the scalability challenge. We focus on the concept of sharding, which aims to break the restriction of every participant being required to execute every transaction and store the entire state. This concept however introduces new complexities in the form of stateless clients, which leads to a new challenge: how to guarantee that critical data is published and stays available for as long as it is relevant. We present an approach towards solving the data availability problem (DAP) that leverages synergy effects by reusing the validators from Casper. We then propose two distinct approaches for reliable collation proposal, state transition, and state verification in shard chains. One approach is based on verification by committees of Casper validators that execute transactions in proposed blocks using witness data provided by executors. The other approach relies on a proof of execution provided by the executor proposing the block and a challenge game, where other executors verify the proof. Both concepts rely on executors for long-term storage of shard chain state.
2019-11-26
Pradhan, Srikanta, Tripathy, Somanath, Nandi, Sukumar.  2018.  Blockchain Based Security Framework for P2P Filesharing System. 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1-6.

Peer to Peer (P2P) is a dynamic and self-organized technology, popularly used in File sharing applications to achieve better performance and avoids single point of failure. The popularity of this network has attracted many attackers framing different attacks including Sybil attack, Routing Table Insertion attack (RTI) and Free Riding. Many mitigation methods are also proposed to defend or reduce the impact of such attacks. However, most of those approaches are protocol specific. In this work, we propose a Blockchain based security framework for P2P network to address such security issues. which can be tailored to any P2P file-sharing system.

Tapsell, James, Naeem Akram, Raja, Markantonakis, Konstantinos.  2018.  An Evaluation of the Security of the Bitcoin Peer-To-Peer Network. 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1057-1062.

Underpinning the operation of Bitcoin is a peer-to-peer (P2P) network [1] that facilitates the execution of transactions by end users, as well as the transaction confirmation process known as bitcoin mining. The security of this P2P network is vital for the currency to function and subversion of the underlying network can lead to attacks on bitcoin users including theft of bitcoins, manipulation of the mining process and denial of service (DoS). As part of this paper the network protocol and bitcoin core software are analysed, with three bitcoin message exchanges (the connection handshake, GETHEADERS/HEADERS and MEMPOOL/INV) found to be potentially vulnerable to spoofing and use in distributed denial of service (DDoS) attacks. Possible solutions to the identified weaknesses and vulnerabilities are evaluated, such as the introduction of random nonces into network messages exchanges.

Acharjamayum, Irani, Patgiri, Ripon, Devi, Dhruwajita.  2018.  Blockchain: A Tale of Peer to Peer Security. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). :609-617.

The underlying or core technology of Bitcoin cryptocurrency has become a blessing for human being in this era. Everything is gradually changing to digitization in this today's epoch. Bitcoin creates virtual money using Blockchain that's become popular over the world. Blockchain is a shared public ledger, and it includes all transactions which are confirmed. It is almost impossible to crack the hidden information in the blocks of the Blockchain. However, there are certain security and technical challenges like scalability, privacy leakage, selfish mining, etc. which hampers the wide application of Blockchain. In this paper, we briefly discuss this emerging technology namely Blockchain. In addition, we extrapolate in-depth insight on Blockchain technology.

Tenorio-Fornés, Antonio, Hassan, Samer, Pavón, Juan.  2018.  Open Peer-to-Peer Systems over Blockchain and IPFS: An Agent Oriented Framework. Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems. :19-24.

In recent years, the increasing concerns around the centralized cloud web services (e.g. privacy, governance, surveillance, security) have triggered the emergence of new distributed technologies, such as IPFS or the Blockchain. These innovations have tackled technical challenges that were unresolved until their appearance. Existing models of peer-to-peer systems need a revision to cover the spectrum of potential systems that can be now implemented as peer-to-peer systems. This work presents a framework to build these systems. It uses an agent-oriented approach in an open environment where agents have only partial information of the system data. The proposal covers data access, data discovery and data trust in peer-to-peer systems where different actors may interact. Moreover, the framework proposes a distributed architecture for these open systems, and provides guidelines to decide in which cases Blockchain technology may be required, or when other technologies may be sufficient.

2019-11-25
Cui, Hongyan, Chen, Zunming, Xi, Yu, Chen, Hao, Hao, Jiawang.  2019.  IoT Data Management and Lineage Traceability: A Blockchain-based Solution. 2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops). :239–244.
The Internet of Things is stepping out of its infancy into full maturity, requiring massive data processing and storage. Unfortunately, because of the unique characteristics of resource constraints, short-range communication, and self-organization in IoT, it always resorts to the cloud or fog nodes for outsourced computation and storage, which has brought about a series of novel challenging security and privacy threats. For this reason, one of the critical challenges of having numerous IoT devices is the capacity to manage them and their data. A specific concern is from which devices or Edge clouds to accept join requests or interaction requests. This paper discusses a design concept for developing the IoT data management platform, along with a data management and lineage traceability implementation of the platform based on blockchain and smart contracts, which approaches the two major challenges: how to implement effective data management and enrich rational interoperability for trusted groups of linked Things; And how to settle conflicts between untrusted IoT devices and its requests taking into account security and privacy preserving. Experimental results show that the system scales well with the loss of computing and communication performance maintaining within the acceptable range, works well to effectively defend against unauthorized access and empower data provenance and transparency, which verifies the feasibility and efficiency of the design concept to provide privacy, fine-grained, and integrity data management over the IoT devices by introducing the blockchain-based data management platform.
Pei, Xin, Li, Xuefeng, Wu, Xiaochuan, Zheng, Kaiyan, Zhu, Boheng, Cao, Yixin.  2019.  Assured Delegation on Data Storage and Computation via Blockchain System. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0055–0061.
With the widespread of cloud computing, the delegation of storage and computing is becoming a popular trend. Concerns on data integrity, security, user privacy as well as the correctness of execution are highlighted due to the untrusted remote data manipulation. Most of existing proposals solve the integrity checking and verifiable computation problems by challenge-response model, but are lack of scalability and reusability. Via blockchain, we achieve efficient and transparent public verifiable delegation for both storage and computing. Meanwhile, the smart contract provides API for request handling and secure data query. The security and privacy issues of data opening are settled by applying cryptographic algorithms all through the delegations. Additionally, any access to the outsourced data requires the owner's authentication, so that the dat transference and utilization are under control.
2019-11-19
Filvà, Daniel Amo, García-Peñalvo, Francisco José, Forment, Marc Alier, Escudero, David Fonseca, Casañ, Maria José.  2018.  Privacy and Identity Management in Learning Analytics Processes with Blockchain. Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality. :997-1003.

The collection of students' sensible data raises adverse reactions against Learning Analytics that decreases the confidence in its adoption. The laws and policies that surround the use of educational data are not enough to ensure privacy, security, validity, integrity and reliability of students' data. This problem has been detected through literature review and can be solved if a technological layer of automated checking rules is added above these policies. The aim of this thesis is to research about an emerging technology such as blockchain to preserve the identity of students and secure their data. In a first stage a systematic literature review will be conducted in order to set the context of the research. Afterwards, and through the scientific method, we will develop a blockchain based solution to automate rules and constraints with the aim to let students the governance of their data and to ensure data privacy and security.

2019-11-18
Boontaetae, Pongpayak, Sangpetch, Akkarit, Sangpetch, Orathai.  2018.  RDI: Real Digital Identity Based on Decentralized PKI. 2018 22nd International Computer Science and Engineering Conference (ICSEC). :1–6.
Establishing a digital identity plays a vital part in the digital era. It is crucial to authenticate and identify the users in order to perform online transactions securely. For example, internet banking applications normally require a user to present a digital identity, e.g., username and password, to allow users to perform online transactions. However, the username-password approach has several downsides, e.g., susceptible to the brute-force attack. Public key binding using Certificate Authority (CA) is another common alternative to provide digital identity. Yet, the public key approach has a serious drawback: all CAs in the browser/OS' CA list are treated equally, and consequently, all trusts on the certificates could be invalidated by compromising only a single root CA's private key. We propose a Real Digital Identity based approach, or RDI, on decentralized PKI scheme. The core idea relies on a combination of well-known parties (e.g., a bank, a government agency) to certify the identity, instead of relying on a single CA. These parties, collectively known as Trusted Source Certificate Authorities (TSCA), formed a network of CAs. The generated certificates are stored in the blockchain controlled by smart contract. RDI creates a digital identity that can be trusted based on the TSCAs' challenge/response and it is also robust against a single point of trust attack on traditional CAs.
Lu, Zhaojun, Wang, Qian, Qu, Gang, Liu, Zhenglin.  2018.  BARS: A Blockchain-Based Anonymous Reputation System for Trust Management in VANETs. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :98–103.
The public key infrastructure (PKI) based authentication protocol provides the basic security services for vehicular ad-hoc networks (VANETs). However, trust and privacy are still open issues due to the unique characteristics of vehicles. It is crucial for VANETs to prevent internal vehicles from broadcasting forged messages while simultaneously protecting the privacy of each vehicle against tracking attacks. In this paper, we propose a blockchain-based anonymous reputation system (BARS) to break the linkability between real identities and public keys to preserve privacy. The certificate and revocation transparency is implemented efficiently using two blockchains. We design a trust model to improve the trustworthiness of messages relying on the reputation of the sender based on both direct historical interactions and indirect opinions about the sender. Experiments are conducted to evaluate BARS in terms of security and performance and the results show that BARS is able to establish distributed trust management, while protecting the privacy of vehicles.
Dong, Yuhao, Kim, Woojung, Boutaba, Raouf.  2018.  Conifer: Centrally-Managed PKI with Blockchain-Rooted Trust. 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1092–1099.
Secure naming systems, or more narrowly public key infrastructures (PKIs), form the basis of secure communications over insecure networks. All security guarantees against active attackers come from a trustworthy binding between user-facing names, such as domain names, to cryptographic identities, such as public keys. By offering a secure, distributed ledger with highly decentralized trust, blockchains such as Bitcoin show promise as the root of trust for naming systems with no central trusted parties. PKIs based upon blockchains, such as Namecoin and Blockstack, have greatly improved security and resilience compared to traditional centralized PKIs. Yet blockchain PKIs tend to significantly sacrifice scalability and flexibility in pursuit of decentralization, hindering large-scale deployability on the Internet. We propose Conifer, a novel PKI with an architecture based upon CONIKS, a centralized transparency-based PKI, and Catena, a blockchain-agnostic way of embedding a permissioned log, but with a different lookup strategy. In doing so, Conifer achieves decentralized trust with security at least as strong as existing blockchain-based naming systems, yet without sacrificing the flexibility and performance typically found in centralized PKIs. We also present our reference implementation of Conifer, demonstrating how it can easily be integrated into applications. Finally, we use experiments to evaluate the performance of Conifer compared with other naming systems, both centralized and blockchain-based, demonstrating that it incurs only a modest overhead compared to traditional centralized-trust systems while being far more scalable and performant than purely blockchain-based solutions.
Singla, Ankush, Bertino, Elisa.  2018.  Blockchain-Based PKI Solutions for IoT. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :9–15.
Traditionally, a Certification Authority (CA) is required to sign, manage, verify and revoke public key certificates. Multiple CAs together form the CA-based Public Key Infrastructure (PKI). The use of a PKI forces one to place trust in the CAs, which have proven to be a single point-of-failure on multiple occasions. Blockchain has emerged as a transformational technology that replaces centralized trusted third parties with a decentralized, publicly verifiable, peer-to-peer data store which maintains data integrity among nodes through various consensus protocols. In this paper, we deploy three blockchain-based alternatives to the CA-based PKI for supporting IoT devices, based on Emercoin Name Value Service (NVS), smart contracts by Ethereum blockchain, and Ethereum Light Sync client. We compare these approaches with CA-based PKI and show that they are much more efficient in terms of computational and storage requirements in addition to providing a more robust and scalable PKI.
Ahmed, Abu Shohel, Aura, Tuomas.  2018.  Turning Trust Around: Smart Contract-Assisted Public Key Infrastructure. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :104–111.
In past, several Certificate Authority (CA) compromise and subsequent mis-issue of certificate raise the importance of certificate transparency and dynamic trust management for certificates. Certificate Transparency (CT) provides transparency for issued certificates, thus enabling corrective measure for a mis-issued certificate by a CA. However, CT and existing mechanisms cannot convey the dynamic trust state for a certificate. To address this weakness, we propose Smart Contract-assisted PKI (SCP) - a smart contract based PKI extension - to manage dynamic trust network for PKI. SCP enables distributed trust in PKI, provides a protocol for managing dynamic trust, assures trust state of a certificate, and provides a better trust experience for end-users.
2019-11-12
Pîrlea, George, Sergey, Ilya.  2018.  Mechanising Blockchain Consensus. Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs. :78-90.

We present the first formalisation of a blockchain-based distributed consensus protocol with a proof of its consistency mechanised in an interactive proof assistant. Our development includes a reference mechanisation of the block forest data structure, necessary for implementing provably correct per-node protocol logic. We also define a model of a network, implementing the protocol in the form of a replicated state-transition system. The protocol's executions are modeled via a small-step operational semantics for asynchronous message passing, in which packages can be rearranged or duplicated. In this work, we focus on the notion of global system safety, proving a form of eventual consistency. To do so, we provide a library of theorems about a pure functional implementation of block forests, define an inductive system invariant, and show that, in a quiescent system state, it implies a global agreement on the state of per-node transaction ledgers. Our development is parametric with respect to implementations of several security primitives, such as hash-functions, a notion of a proof object, a Validator Acceptance Function, and a Fork Choice Rule. We precisely characterise the assumptions, made about these components for proving the global system consensus, and discuss their adequacy. All results described in this paper are formalised in Coq.

2019-10-23
Madala, D S V, Jhanwar, Mahabir Prasad, Chattopadhyay, Anupam.  2018.  Certificate Transparency Using Blockchain. 2018 IEEE International Conference on Data Mining Workshops (ICDMW). :71-80.

The security of web communication via the SSL/TLS protocols relies on safe distributions of public keys associated with web domains in the form of X.509 certificates. Certificate authorities (CAs) are trusted third parties that issue these certificates. However, the CA ecosystem is fragile and prone to compromises. Starting with Google's Certificate Transparency project, a number of research works have recently looked at adding transparency for better CA accountability, effectively through public logs of all certificates issued by certification authorities, to augment the current X.509 certificate validation process into SSL/TLS. In this paper, leveraging recent progress in blockchain technology, we propose a novel system, called CTB, that makes it impossible for a CA to issue a certificate for a domain without obtaining consent from the domain owner. We further make progress to equip CTB with certificate revocation mechanism. We implement CTB using IBM's Hyperledger Fabric blockchain platform. CTB's smart contract, written in Go, is provided for complete reference.

Szalachowski, Pawel.  2018.  (Short Paper) Towards More Reliable Bitcoin Timestamps. 2018 Crypto Valley Conference on Blockchain Technology (CVCBT). :101-104.

Bitcoin provides freshness properties by forming a blockchain where each block is associated with its timestamp and the previous block. Due to these properties, the Bitcoin protocol is being used as a decentralized, trusted, and secure timestamping service. Although Bitcoin participants which create new blocks cannot modify their order, they can manipulate timestamps almost undetected. This undermines the Bitcoin protocol as a reliable timestamping service. In particular, a newcomer that synchronizes the entire blockchain has a little guarantee about timestamps of all blocks. In this paper, we present a simple yet powerful mechanism that increases the reliability of Bitcoin timestamps. Our protocol can provide evidence that a block was created within a certain time range. The protocol is efficient, backward compatible, and surprisingly, currently deployed SSL/TLS servers can act as reference time sources. The protocol has many applications and can be used for detecting various attacks against the Bitcoin protocol.

2019-10-15
Liang, Danwei, An, Jian, Cheng, Jindong, Yang, He, Gui, Ruowei.  2018.  The Quality Control in Crowdsensing Based on Twice Consensuses of Blockchain. Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers. :630–635.
In most crowdsensing systems, the quality of the collected data is varied and difficult to evaluate while the existing crowdsensing quality control methods are mostly based on a central platform, which is not completely trusted in reality and results in fraud and other problems. To solve these questions, a novel crowdsensing quality control model is proposed in this paper. First, the idea of blockchain is introduced into this model. The credit-based verifier selection mechanism and twice consensuses are proposed to realize the non-repudiation and non-tampering of information in crowdsensing. Then, the quality grading evaluation (QGE) is put forward, in which the method of truth discovery and the idea of fuzzy theories are combined to evaluate the quality of sensing data, and the garbled circuit is used to ensure that evaluation criteria can not be leaked. Finally, the Experiments show that our model is feasible in time and effective in quality evaluation.
2019-10-02
Wang, S., Zhu, S., Zhang, Y..  2018.  Blockchain-Based Mutual Authentication Security Protocol for Distributed RFID Systems. 2018 IEEE Symposium on Computers and Communications (ISCC). :00074–00077.

Since radio frequency identification (RFID) technology has been used in various scenarios such as supply chain, access control system and credit card, tremendous efforts have been made to improve the authentication between tags and readers to prevent potential attacks. Though effective in certain circumstances, these existing methods usually require a server to maintain a database of identity related information for every tag, which makes the system vulnerable to the SQL injection attack and not suitable for distributed environment. To address these problems, we now propose a novel blockchain-based mutual authentication security protocol. In this new scheme, there is no need for the trusted third parties to provide security and privacy for the system. Authentication is executed as an unmodifiable transaction based on blockchain rather than database, which applies to distributed RFID systems with high security demand and relatively low real-time requirement. Analysis shows that our protocol is logically correct and can prevent multiple attacks.

Andre, Greubel, Alexandra, Dmitrienko, Samuel, Kounev.  2018.  SmarTor: Smarter Tor with Smart Contracts: Improving Resilience of Topology Distribution in the Tor Network. Proceedings of the 34th Annual Computer Security Applications Conference. :677–691.
In the Tor anonymity network, the distribution of topology information relies on the correct behavior of five out of the nine trusted directory authority servers. This centralization is concerning since a powerful adversary might compromise these servers and conceal information about honest nodes, leading to the full de-anonymization of all Tor users. Our work aims at distributing the work of these trusted authorities, such increasing resilience against attacks on core infrastructure components of the Tor network. In particular, we leverage several emerging technologies, such as blockchains, smart contracts, and trusted execution environments to design and prototype a system called SmarTor. This system replaces the directory authorities with a smart contract and a distributed network of untrusted entities responsible for bandwidth measurements. We prototyped SmarTor using Ethereum smart contracts and Intel SGX secure hardware. In our evaluation, we show that SmarTor produces significantly more reliable and precise measurements compared to the current measurement system. Overall, our solution improves the decentralization of the Tor network, reduces trust assumptions and increases resilience against powerful adversaries like law enforcement and intelligence services.
Zhang, Y., Eisele, S., Dubey, A., Laszka, A., Srivastava, A. K..  2019.  Cyber-Physical Simulation Platform for Security Assessment of Transactive Energy Systems. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
Transactive energy systems (TES) are emerging as a transformative solution for the problems that distribution system operators face due to an increase in the use of distributed energy resources and rapid growth in scalability of managing active distribution system (ADS). On the one hand, these changes pose a decentralized power system control problem, requiring strategic control to maintain reliability and resiliency for the community and for the utility. On the other hand, they require robust financial markets while allowing participation from diverse prosumers. To support the computing and flexibility requirements of TES while preserving privacy and security, distributed software platforms are required. In this paper, we enable the study and analysis of security concerns by developing Transactive Energy Security Simulation Testbed (TESST), a TES testbed for simulating various cyber attacks. In this work, the testbed is used for TES simulation with centralized clearing market, highlighting weaknesses in a centralized system. Additionally, we present a blockchain enabled decentralized market solution supported by distributed computing for TES, which on one hand can alleviate some of the problems that we identify, but on the other hand, may introduce newer issues. Future study of these differing paradigms is necessary and will continue as we develop our security simulation testbed.
2019-09-26
Liu, Y., Zhang, J., Gao, Q..  2018.  A Blockchain-Based Secure Cloud Files Sharing Scheme with Fine-Grained Access Control. 2018 International Conference on Networking and Network Applications (NaNA). :277-283.

As cloud services greatly facilitate file sharing online, there's been a growing awareness of the security challenges brought by outsourcing data to a third party. Traditionally, the centralized management of cloud service provider brings about safety issues because the third party is only semi-trusted by clients. Besides, it causes trouble for sharing online data conveniently. In this paper, the blockchain technology is utilized for decentralized safety administration and provide more user-friendly service. Apart from that, Ciphertext-Policy Attribute Based Encryption is introduced as an effective tool to realize fine-grained data access control of the stored files. Meanwhile, the security analysis proves the confidentiality and integrity of the data stored in the cloud server. Finally, we evaluate the performance of computation overhead of our system.

Pant, S., Kumar, V..  2018.  BitTrusty: A BitCoin Incentivized Peer-to-Peer File Sharing System. 2018 IEEE 3rd International Conference on Computing, Communication and Security (ICCCS). :148-155.

Among the various challenges faced by the P2P file sharing systems like BitTorrent, the most common attack on the basic foundation of such systems is: Free-riding. Generally, free-riders are the users in the file sharing network who avoid contributing any resources but tend to consume the resources unethically from the P2P network whereas white-washers are more specific category of free-riders that voluntarily leave the system in a frequent fashion and appearing again and again with different identities to escape from the penal actions imposed by the network. BitTorrent being a collaborative distributed platform requires techniques for discouraging and punishing such user behavior. In this paper, we propose that ``Instead of punishing, we may focus more on rewarding the honest peers''. This approach could be presented as an alternative to other mechanisms of rewarding the peers like tit-for-tat [10], reciprocity based etc., built for the BitTorrent platform. The prime objective of BitTrusty is: providing incentives to the cooperative peers by rewarding in terms of cryptocoins based on blockchain. We have anticipated three ways of achieving the above defined objective. We are further investigating on how to integrate these two technologies of distributed systems viz. P2P file sharing systems and blockchain, and with this new paradigm, interesting research areas can be further developed, both in the field of P2P cryptocurrency networks and also when these networks are combined with other distributed scenarios.

2019-09-23
Chen, W., Liang, X., Li, J., Qin, H., Mu, Y., Wang, J..  2018.  Blockchain Based Provenance Sharing of Scientific Workflows. 2018 IEEE International Conference on Big Data (Big Data). :3814–3820.
In a research community, the provenance sharing of scientific workflows can enhance distributed research cooperation, experiment reproducibility verification and experiment repeatedly doing. Considering that scientists in such a community are often in a loose relation and distributed geographically, traditional centralized provenance sharing architectures have shown their disadvantages in poor trustworthiness, reliabilities and efficiency. Additionally, they are also difficult to protect the rights and interests of data providers. All these have been largely hindering the willings of distributed scientists to share their workflow provenance. Considering the big advantages of blockchain in decentralization, trustworthiness and high reliability, an approach to sharing scientific workflow provenance based on blockchain in a research community is proposed. To make the approach more practical, provenance is handled on-chain and original data is delivered off-chain. A kind of block structure to support efficient provenance storing and retrieving is designed, and an algorithm for scientists to search workflow segments from provenance as well as an algorithm for experiments backtracking are provided to enhance the experiment result sharing, save computing resource and time cost by avoiding repeated experiments as far as possible. Analyses show that the approach is efficient and effective.
2019-08-26
Chakraborty, Saurav, Thomas, Drew, DeHart, Joanathan, Saralaya, Kishan, Tadepalli, Prabhakar, Narendra, Siva G..  2018.  Solving Internet's Weak Link for Blockchain and IoT Applications. Proceedings of the 1st ACM/EIGSCC Symposium on Smart Cities and Communities. :6:1–6:5.
Blockchain normalizes applications that run on the internet through the standardization of decentralized data structure, computational requirements and trust in transactions. This new standard has now spawned hundreds of legitimate internet applications in addition to the cryptocurrency revolution. This next frontier that standardizes internet applications will dramatically increase productivity to levels never seen before, especially when applied to Internet of Things (IoT) applications. The blockchain framework relies on cryptographic private keys to sign digital data as its foundational principle. Without the security of private keys to sign data blocks, there can be no trust in blockchain. Central storage of these keys for managing IoT machines and users, while convenient to implement, will be highly detrimental to the assumed safety and security of this next frontier. In this paper, we will introduce decentralized and device agnostic cryptographic signing solutions suitable for securing users and machines in blockchain and IoT applications.