Visible to the public Biblio

Found 327 results

Filters: Keyword is blockchain  [Clear All Filters]
Dawit, Nahom Aron, Mathew, Sujith Samuel, Hayawi, Kadhim.  2020.  Suitability of Blockchain for Collaborative Intrusion Detection Systems. 2020 12th Annual Undergraduate Research Conference on Applied Computing (URC). :1–6.
Cyber-security is indispensable as malicious incidents are ubiquitous on the Internet. Intrusion Detection Systems have an important role in detecting and thwarting cyber-attacks. However, it is more effective in a centralized system but not in peer-to-peer networks which makes it subject to central point failure, especially in collaborated intrusion detection systems. The novel blockchain technology assures a fully distributed security system through its powerful features of transparency, immutability, decentralization, and provenance. Therefore, in this paper, we investigate and demonstrate several methods of collaborative intrusion detection with blockchain to analyze the suitability and security of blockchain for collaborative intrusion detection systems. We also studied the difference between the existing means of the integration of intrusion detection systems with blockchain and categorized the major vulnerabilities of blockchain with their potential losses and current enhancements for mitigation.
Sharma, Rohit, Pawar, Siddhesh, Gurav, Siddhita, Bhavathankar, Prasenjit.  2020.  A Unique Approach towards Image Publication and Provenance using Blockchain. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :311–314.
The recent spurt of incidents related to copyrights and security breaches has led to the monetary loss of several digital content creators and publishers. These incidents conclude that the existing system lacks the ability to uphold the integrity of their published content. Moreover, some of the digital content owners rely on third parties, results in lack of ability to provide provenance of digital media. The question that needs to be addressed today is whether modern technologies can be leveraged to suppress such incidents and regain the confidence of creators and the audience. Fortunately, this paper presents a unique framework that empowers digital content creators to have complete control over the place of its origin, accessibility and impose restrictions on unauthorized alteration of their content. This framework harnesses the power of the Ethereum platform, a part of Blockchain technology, and uses S mart Contracts as a key component empowering the creators with enhanced control of their content and the corresponding audience.
Al Omar, Abdullah, Jamil, Abu Kaisar, Nur, Md. Shakhawath Hossain, Hasan, Md Mahamudul, Bosri, Rabeya, Bhuiyan, Md Zakirul Alam, Rahman, Mohammad Shahriar.  2020.  Towards A Transparent and Privacy-Preserving Healthcare Platform with Blockchain for Smart Cities. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1291–1296.
In smart cities, data privacy and security issues of Electronic Health Record(EHR) are grabbing importance day by day as cyber attackers have identified the weaknesses of EHR platforms. Besides, health insurance companies interacting with the EHRs play a vital role in covering the whole or a part of the financial risks of a patient. Insurance companies have specific policies for which patients have to pay them. Sometimes the insurance policies can be altered by fraudulent entities. Another problem that patients face in smart cities is when they interact with a health organization, insurance company, or others, they have to prove their identity to each of the organizations/companies separately. Health organizations or insurance companies have to ensure they know with whom they are interacting. To build a platform where a patient's personal information and insurance policy are handled securely, we introduce an application of blockchain to solve the above-mentioned issues. In this paper, we present a solution for the healthcare system that will provide patient privacy and transparency towards the insurance policies incorporating blockchain. Privacy of the patient information will be provided using cryptographic tools.
Lovetsky, I.V., Bukvina, E.A., Ponomarchuk, Y.V..  2020.  On Providing Information Security for Decentralized Databases. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1–5.
The paper discusses a prototype of a database, which can be used for operation in a decentralized mode for an information system. In this project, the focus is on creation of a data structure model that provides flexibility of business processes. The research is based on the development of a model for decentralized access rights distribution by including users in groups where they are assigned similar roles using consensus of other group members. This paper summarizes the main technologies that were used to ensure information security of the decentralized storage, the mechanisms for fixing access rights to an object access (the minimum entity of the system), describes a process of the data access control at the role level and an algorithm for managing the consensus for applying changes.
Sayed, Ammar Ibrahim El, Aziz, Mahmoud Abdel, Azeem, Mohamed Hassan Abdel.  2020.  Blockchain Decentralized IoT Trust Management. 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT). :1–6.
IoT adds more flexibility in many areas of applications to makes it easy to monitor and manage data instantaneously. However, IoT has many challenges regarding its security and storage issues. Moreover, the third-party trusting agents of IoT devices do not support sufficient security level between the network peers. This paper proposes improving the trust, processing power, and storage capability of IoT in distributed system topology by adopting the blockchain approach. An application, IoT Trust Management (ITM), is proposed to manage the trust of the shared content through the blockchain network, e.g., supply chain. The essential key in ITM is the trust management of IoT devices data are done using peer to peer (P2P), i.e., no third-party. ITM is running on individual python nodes and interact with frontend applications creating decentralized applications (DApps). The IoT data shared and stored in a ledger, which has the IoT device published details and data. ITM provides a higher security level to the IoT data shared on the network, such as unparalleled security, speed, transparency, cost reduction, check data, and Adaptability.
Das, Debashis, Banerjee, Sourav, Mansoor, Wathiq, Biswas, Utpal, Chatterjee, Pushpita, Ghosh, Uttam.  2020.  Design of a Secure Blockchain-Based Smart IoV Architecture. 2020 3rd International Conference on Signal Processing and Information Security (ICSPIS). :1–4.
Blockchain is developing rapidly in various domains for its security. Nowadays, one of the most crucial fundamental concerns is internet security. Blockchain is a novel solution to enhance the security of network applications. However, there are no precise frameworks to secure the Internet of Vehicle (IoV) using Blockchain technology. In this paper, a blockchain-based smart internet of vehicle (BSIoV) framework has been proposed due to the cooperative, collaborative, transparent, and secure characteristics of Blockchain. The main contribution of the proposed work is to connect vehicle-related authorities together to fix a secure and transparent vehicle-to-everything (V2X) communication through the peer-to-peer network connection and provide secure services to the intelligent transport systems. A key management strategy has been included to identify a vehicle in this proposed system. The proposed framework can also provide a significant solution for the data security and safety of the connected vehicles in blockchain network.
Ding, Lei, Wang, Shida, Wan, Renzhuo, Zhou, Guopeng.  2020.  Securing core information sharing and exchange by blockchain for cooperative system. 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS). :579–583.
The privacy protection and information security are two crucial issues for future advanced artificial intelligence devices, especially for cooperative system with rich core data exchange which may offer opportunities for attackers to fake interaction messages. To combat such threat, great efforts have been made by introducing trust mechanism in initiative or passive way. Furthermore, blockchain and distributed ledger technology provide a decentralized and peer-to-peer network, which has great potential application for multi-agent system, such as IoTs and robots. It eliminates third-party interference and data in the blockchain are stored in an encrypted way permanently and anti-destroys. In this paper, a methodology of blockchain is proposed and designed for advanced cooperative system with artificial intelligence to protect privacy and sensitive data exchange between multi-agents. The validation procedure is performed in laboratory by a three-level computing networks of Raspberry Pi 3B+, NVIDIA Jetson Tx2 and local computing server for a robot system with four manipulators and four binocular cameras in peer computing nodes by Go language.
Benanti, F., Sanseverino, E. Riva, Sciumè, G., Zizzo, G..  2020.  A Peer-to-Peer Market Algorithm for a Blockchain Platform. 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1–6.
In an era of technological revolution in which everything becomes smarter and connected, the blockchain can introduce a new model for energy transactions able to grant more simplicity, security and transparency for end-users. The blockchain technology is characterized by a distributed architecture without a trusted and centralized authority, and, therefore, it appears as the perfect solutions for managing exchanges between peers. In this paper, a market algorithm that can be easily transferred to a smart contract for maximizing the match between produced and consumed energy in a micro-grid is presented. The algorithm supports energy transactions between peers (both producers and consumers) and could be one of the main executables implemented using a blockchain platform. The case study presented in this paper shows how the end-users through the blockchain could select among the possible energy transactions those more suitable to offer specific ancillary services to the grid operator without involving the grid operator itself or a third-party aggregator.
Kinai, Andrew, Otieno, Fred, Bore, Nelson, Weldemariam, Komminist.  2020.  Multi-Factor Authentication for Users of Non-Internet Based Applications of Blockchain-Based Platforms. 2020 IEEE International Conference on Blockchain (Blockchain). :525–531.
Attacks targeting several millions of non-internet based application users are on the rise. These applications such as SMS and USSD typically do not benefit from existing multi-factor authentication methods due to the nature of their interaction interfaces and mode of operations. To address this problem, we propose an approach that augments blockchain with multi-factor authentication based on evidence from blockchain transactions combined with risk analysis. A profile of how a user performs transactions is built overtime and is used to analyse the risk level of each new transaction. If a transaction is flagged as high risk, we generate n-factor layers of authentication using past endorsed blockchain transactions. A demonstration of how we used the proposed approach to authenticate critical financial transactions in a blockchain-based asset financing platform is also discussed.
Balistri, Eugenio, Casellato, Francesco, Giannelli, Carlo, Stefanelli, Cesare.  2020.  Blockchain for Increased Cyber-Resiliency of Industrial Edge Environments. 2020 IEEE International Conference on Smart Computing (SMARTCOMP). :1–8.
The advent of the Internet of Things (IoT) together with its spread in industrial environments have changed pro-duction lines, by dramatically fostering the dynamicity of data sharing and the openness of machines. However, the increased flexibility and openness of the industrial environment (also pushed by the adoption of Edge devices) must not negatively affect the security and safety of production lines and its opera-tional processes. In fact, opening industrial environments towards the Internet and increasing interactions among machines may represent a security threat, if not properly managed. The paper originally proposes the adoption of the Blockchain to securely store in distributed ledgers topology information and access rules, with the primary goal of maximizing the cyber-resiliency of industrial networks. In this manner, it is possible to store and query topology information and security access rules in a completely distributed manner, ensuring data availability even in case a centralized control point is temporarily down or the network partitioned. Moreover, Blockchain consensus algorithms can be used to foster a participative validation of topology information, to reciprocally ensure the identity of interacting machines/nodes, to securely distribute topology information and commands in a privacy-preserving manner, and to trace any past modification in a non-repudiable manner.
Choi, Nakhoon, Kim, Heeyoul.  2020.  Hybrid Blockchain-Based Unification ID in Smart Environment. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :166–170.
Recently, with the increase of smart factories, smart cities, and the 4th industrial revolution, internal user authentication is emerging as an important issue. The existing user authentication and Access Control architecture can use the centralized system to forge access history by the service manager, which can cause problems such as evasion of responsibility and internal corruption. In addition, the user must independently manage the ID or physical authentication medium for authentication of each service, it is difficult to manage the subscribed services. This paper proposes a Hybrid blockchain-based integrated ID model to solve the above problems. The user creates authentication information based on the electronic signature of the Ethereum Account, a public blockchain, and provides authentication to a service provider composed of a Hyperledger Fabric, a private blockchain. The service provider ensures the integrity of the information by recording the Access History and authentication information in the Internal-Ledger. Through the proposed architecture, we can integrate the physical pass or application for user authentication and authorization into one Unification ID. Service providers can prevent non-Repudiation of responsibility by recording their authority and access history in ledger.
Sangpetch, Akkarit, Sangpetch, Orathai.  2020.  PEX: Privacy-Preserved, Multi-Tier Exchange Framework for Cross Platform Virtual Assets Trading. 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC). :1–4.
In traditional virtual asset trading market, several risks, e.g. scams, cheating users, and market reach, have been pushed to users (sellers/buyers). Users need to decide who to trust; otherwise, no business. This fact impedes the growth of virtual asset trading market. In the past few years, several virtual asset marketplaces have embraced blockchain and smart contract technology to alleviate such risks, while trying to address privacy and scalability issues. To attain both speed and non-repudiation property for all transactions, existing blockchain-based exchange systems still cannot fully accomplish. In real-life trading, users use traditional contract to provide non-repudiation to achieve accountability in all committed transactions, so-called thorough non-repudiation. This is essential when dispute happens. To achieve similar thorough non-repudiation as well as privacy and scalability, we propose PEX, Privacy-preserved, multi-tier EXchange framework for cross platform virtual assets trading. PEX creates a smart contract for each virtual asset trading request. The key to address the challenges is to devise two-level distributed ledgers with two different types of quorums where one is for public knowledge in a global ledger and the other is for confidential information in a private ledger. A private quorum is formed to process individual smart contract and record the transactions in a private distributed ledger in order to maintain privacy. Smart contract execution checkpoints will be continuously written in a global ledger to strengthen thorough non-repudiation. PEX smart contract can be executed in parallel to promote scalability. PEX is also equipped with our reputation-based network to track contribution and discourage malicious behavior nodes or users, building healthy virtual asset ecosystem.
Ruggeri, Armando, Celesti, Antonio, Fazio, Maria, Galletta, Antonino, Villari, Massimo.  2020.  BCB-X3DH: A Blockchain Based Improved Version of the Extended Triple Diffie-Hellman Protocol. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :73–78.
The Extended Triple Diffie-Hellman (X3DH) protocol has been used for years as the basis of secure communication establishment among parties (i.e, humans and devices) over the Internet. However, such a protocol has several limits. It is typically based on a single trust third-party server that represents a single point of failure (SPoF) being consequently exposed to well- known Distributed Denial of Service (DDOS) attacks. In order to address such a limit, several solutions have been proposed so far that are often cost expensive and difficult to be maintained. The objective of this paper is to propose a BlockChain-Based X3DH (BCB-X3DH) protocol that allows eliminating such a SPoF, also simplifying its maintenance. Specifically, it combines the well- known X3DH security mechanisms with the intrinsic features of data non-repudiation and immutability that are typical of Smart Contracts. Furthermore, different implementation approaches are discussed to suits both human-to-human and device-to-device scenarios. Experiments compared the performance of both X3DH and BCB-X3DH.
Sun, Jin, Yao, Xiaomin, Wang, Shangping, Wu, Ying.  2020.  Non-Repudiation Storage and Access Control Scheme of Insurance Data Based on Blockchain in IPFS. IEEE Access. 8:155145–155155.
The insurance business plays a quite significant role in people's lives, but in the process of claim settlement, there are still various frauds such that the insurance companies' refusal to compensate or customers' malicious fraud to obtain compensation. Therefore, it is very important to ensure fair and just claims. In this paper, by combining the blockchain technology and the ciphertext-policy attribute-based encryption system, we build a scheme for secure storage and update for insurance records under the InterPlanetary File System (IPFS) storage environment in the insurance system. In this scheme, we use the fog node to outsource encryption of insurance records to improve the efficiency of the staff; In addition, we store encrypted insurance records on IPFS to ensure the security of the storage platform and avoid the single point failure of the centralized mechanism. In addition, we use the immutability of the blockchain to achieve the non-repudiation of both insurance companies and the client. The security proof shows that the proposed scheme can achieve selective security against selected keyword attacks. Our scheme is efficient and feasible under performance analysis and real data set experiments.
Al'aziz, Bram Andika Ahmad, Sukarno, Parman, Wardana, Aulia Arif.  2020.  Blacklisted IP Distribution System to Handle DDoS Attacks on IPS Snort Based on Blockchain. 2020 6th Information Technology International Seminar (ITIS). :41–45.
The mechanism for distributing information on the source of the attack by combining blockchain technology with the Intrusion Prevention System (IPS) can be done so that DDoS attack mitigation becomes more flexible, saves resources and costs. Also, by informing the blacklisted Internet Protocol(IP), each IPS can share attack source information so that attack traffic blocking can be carried out on IPS that are closer to the source of the attack. Therefore, the attack traffic passing through the network can be drastically reduced because the attack traffic has been blocked on the IPS that is closer to the attack source. The blocking of existing DDoS attack traffic is generally carried out on each IPS without a mechanism to share information on the source of the attack so that each IPS cannot cooperate. Also, even though the DDoS attack traffic did not reach the server because it had been blocked by IPS, the attack traffic still flooded the network so that network performance was reduced. Through smart contracts on the Ethereum blockchain, it is possible to inform the source of the attack or blacklisted IP addresses without requiring additional infrastructure. The blacklisted IP address is used by IPS to detect and handle DDoS attacks. Through the blacklisted IP distribution scheme, testing and analysis are carried out to see information on the source of the attack on each IPS and the attack traffic that passes on the network. The result is that each IPS can have the same blacklisted IP so that each IPS can have the same attack source information. The results also showed that the attack traffic through the network infrastructure can be drastically reduced. Initially, the total number of attack packets had an average of 115,578 reduced to 27,165.
Manikumar, D.V.V.S., Maheswari, B Uma.  2020.  Blockchain Based DDoS Mitigation Using Machine Learning Techniques. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :794–800.
DDoS attacks are the most commonly performed cyber-attacks with a motive to suspend the target services and making them unavailable to users. A recent attack on Github, explains that the traffic was traced back to ``over a thousand different autonomous systems across millions of unique endpoints''. Generally, there are various types of DDoS attacks and each attack uses a different protocol and attacker uses a botnet to execute such attacks. Hence, it will be very difficult for organizations to deal with these attacks and going for third parties to secure themselves from DDoS attacks. In order to eliminate the third parties. Our proposed system uses machine learning algorithms to identify the incoming packet is malicious or not and use Blockchain technology to store the Blacklist. The key benefit of Blockchain is that blacklisted IP addresses are effectively stored, and usage of such infrastructure provides an advantage of extra security mechanism over existing DDoS mitigation systems. This paper has evaluated three different algorithms, such as the KNN Classifier, the Decision Tree Classifier, Random Forest algorithm to find out the better classifying algorithm. Tree Based Classifier technique used for Feature Selection to boost the computational time. Out of the three algorithms, Random Forest provides an accuracy about 95 % in real-time traffic analysis.
Fernando, Praveen, Wei, Jin.  2020.  Blockchain-Powered Software Defined Network-Enabled Networking Infrastructure for Cloud Management. 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC). :1–6.
Cloud architecture has become a valuable solution for different applications, such as big data analytics, due to its high degree of availability, scalability and strategic value. However, there still remain challenges in managing cloud architecture, in areas such as cloud security. In this paper, we exploit software-defined networking (SDN) and blockchain technologies to secure cloud management platforms from a networking perspective. We develop a blockchain-powered SDN-enabled networking infrastructure in which the integration between blockchain-based security and autonomy management layer and multi-controller SDN networking layer is defined to enhance the integrity of the control and management messages. Furthermore, our proposed networking infrastructure also enables the autonomous bandwidth provisioning to enhance the availability of cloud architecture. In the simulation section, we evaluate the performance of our proposed blockchain-powered SDN-enabled networking infrastructure by considering different scenarios.
Lei, Lei, Ma, Ping, Lan, Chunjia, Lin, Le.  2020.  Continuous Distributed Key Generation on Blockchain Based on BFT Consensus. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :8—17.
VSS (Verifiable Secret Sharing) protocols are used in a number of block-chain systems, such as Dfinity and Ouroboros to generate unpredicted random number flow, they can be used to determine the proposer list and the voting powers of the voters at each height. To prevent random numbers from being predicted and attackers from corrupting a sufficient number of participants to violate the underlying trust assumptions, updatable VSS protocol in distributed protocols is important. The updatable VSS universal setup is also a hot topic in zkSNARKS protocols such as Sonic [19]. The way that we make it updatable is to execute the share exchange process repeatedly on chain, this process is challenging to be implemented in asynchronous network model, because it involves the wrong shares and the complaints, it requires the participant has the same view towards the qualified key generators, we take this process on chain and rely on BFT consensus mechanism to solve this. The group secret is thus updatable on chain. This is an enhancement to Dfinity. Therefore, even if all the coefficients of the random polynomials of epoch n are leaked, the attacker can use them only in epoch n+2. And the threshold group members of the DKG protocol can be updated along with the updates of the staked accounts and nodes.
Bartol, Janez, Souvent, Andrej, Suljanović, Nermin, Zajc, Matej.  2020.  Secure data exchange between IoT endpoints for energy balancing using distributed ledger. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :56—60.
This paper investigates a secure data exchange between many small distributed consumers/prosumers and the aggregator in the process of energy balancing. It addresses the challenges of ensuring data exchange in a simple, scalable, and affordable way. The communication platform for data exchange is using Ethereum Blockchain technology. It provides a distributed ledger database across a distributed network, supports simple connectivity for new stakeholders, and enables many small entities to contribute with their flexible energy to the system balancing. The architecture of a simulation/emulation environment provides a direct connection of a relational database to the Ethereum network, thus enabling dynamic data management. In addition, it extends security of the environment with security mechanisms of relational databases. Proof-of-concept setup with the simulation of system balancing processes, confirms the suitability of the solution for secure data exchange in the market, operation, and measurement area. For the most intensive and space-consuming measurement data exchange, we have investigated data aggregation to ensure performance optimisation of required computation and space usage.
Primo, Abena.  2020.  A Comparison of Blockchain-Based Wireless Sensor Network Protocols. 2020 11th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0793—0799.
Wireless sensors are often deployed in environments where it is difficult for them to discern friend from enemy. An example case is a military tactical scenario, where sensors are deployed to map the location of an item but where some of the nodes have been compromised or where there are other malicious nodes present. In this scenario, sharing data with other network nodes may present a critical security risk to the sensor nodes. Blockchain technology, with its ability to house a secure distributed ledger, offers a possible solution. However, blockchain applications for Wireless Sensor Networks suffer from poor latency in block propagation which in turn decreases throughput and network scalability. Several researchers have proposed solutions for improved network throughput. In this work, a comparison of these existing works is performed leading to a taxonomy of existing algorithms. Characteristics consistently found in algorithms reporting improved throughput are presented and, later, these characteristics are used in the development of a new algorithm for improving throughput. The proposed algorithm utilizes a proof-of- authority consensus algorithm with a node trust-based scheme. The proposed algorithm shows strong results over the base case algorithm and was evaluated with blockchain network simulations of up to 20000 nodes.
Noor, Abdul, Wu, Youxi, Khan, Salabat.  2020.  Secure and Transparent Public-key Management System for Vehicular Social Networks. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :309–316.
Vehicular Social Networks (VSNs) are expected to become a reality soon, where commuters having common interests in the virtual community of vehicles, drivers, passengers can share information, both about road conditions and their surroundings. This will improve transportation efficiency and public safety. However, social networking exposes vehicles to different kinds of cyber-attacks. This concern can be addressed through an efficient and secure key management framework. This study presents a Secure and Transparent Public-key Management (ST-PKMS) based on blockchain and notary system, but it addresses security and privacy challenges specific to VSNs. ST-PKMS significantly enhances the efficiency and trustworthiness of mutual authentication. In ST-PKMS, each vehicle has multiple short-lived anonymous public-keys, which are recorded on the blockchain platform. However, public-keys get activated only when a notary system notarizes it, and clients accept only notarized public-keys during mutual authentication. Compromised vehicles can be effectively removed from the VSNs by blocking notarization of their public-keys; thus, the need to distribute Certificate Revocation List (CRL) is eliminated in the proposed scheme. ST-PKMS ensures transparency, security, privacy, and availability, even in the face of an active adversary. The simulation and evaluation results show that the ST-PKMS meets real-time performance requirements, and it is cost-effective in terms of scalability, delay, and communication overhead.
Zhang, Conghui, Li, Yi, Sun, Wenwen, Guan, Shaopeng.  2020.  Blockchain Based Big Data Security Protection Scheme. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). :574–578.
As the key platform to deal with big data, Hadoop cannot fully protect data security of users by relying on a single Kerberos authentication mechanism. In addition, the single Namenode has disadvantages such as single point failure, performance bottleneck and poor scalability. To solve these problems, a big data security protection scheme is proposed. In this scheme, blockchain technology is adopted to deploy distributed Namenode server cluster to take joint efforts to safeguard the metadata and to allocate access tasks of users. We also improved the heartbeat model to collect user behavior so as to make a faster response to Datanode failure. The smart contract conducts reasonable allocation of user role through the judgment of user tag and risk value. It also establishes a tracking chain of risk value to monitor user behavior in real time. Experiments show that this scheme can better protect data security in Hadoop. It has the advantage of metadata decentralization and the data is hard to be tampered.
Li, Shanghao, He, Shan, Li, Lin, Guo, Donghui.  2020.  IP Trading System with Blockchain on Web-EDA. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :164—168.
As the scale of integrated circuits continues to expand, electronic design automation (EDA) and intellectual property (IP) reuse play an increasingly important role in the integrated circuit design process. Although many Web-EDA platforms have begun to provide online EDA software to reduce the threshold for the use of EDA tools, IP protection on the Web- EDA platform is an issue. This article uses blockchain technology to design an IP trading system for the Web-EDA platform to achieve mutual trust and transactions between IP owners and users. The structure of the IP trading system is described in detail, and a blockchain wallet for the Web-EDA platform is developed.
Masuduzzaman, Md, Islam, Anik, Rahim, Tariq, Young Shin, Soo.  2020.  Blockchain-Assisted UAV-Employed Casualty Detection Scheme in Search and Rescue Mission in the Internet of Battlefield Things. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :412–416.
As the unmanned aerial vehicle (UAV) can play a vital role to collect information remotely in a military battlefield, researchers have shown great interest to reveal the domain of internet of battlefield Things (IoBT). In a rescue mission on a battlefield, UAV can collect data from different regions to identify the casualty of a soldier. One of the major challenges in IoBT is to identify the soldier in a complex environment. Image processing algorithm can be helpful if proper methodology can be applied to identify the victims. However, due to the limited hardware resources of a UAV, processing task can be handover to the nearby edge computing server for offloading the task as every second is very crucial in a battlefield. Furthermore, to avoid any third-party interaction in the network and to store the data securely, blockchain can help to create a trusted network as it forms a distributed ledger among the participants. This paper proposes a UAV assisted casualty detection scheme based on image processing algorithm where data is protected using blockchain technology. Result analysis has been conducted to identify the victims on the battlefield successfully using image processing algorithm and network issues like throughput and delay has been analyzed in details using public-key cryptography.
Lang, Weimin, Shan, Desheng, Zhang, Han, Wei, Shengyun, Yu, Liangqin.  2020.  IoBTChain: an Integration Framework of Internet of Battlefield Things (IoBT) and Blockchain. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:607–611.
As a typical representative of a new generation military information technology, the value and significance of Internet of Battlefield Things (IoBT) has been widely recognized by the world's military forces. At the same time, Internet of Battlefield Things (IoBT) is facing serious scalability and security challenges. This paper presents the basic concept and six-domain model of IoBT, explains the integration security framework of IoBT and blockchain. Furthermore, we design and build a novel IoT framework called IoBTChain based on blockchain and smart contracts, which adopts a credit-based resource management system to control the amount of resources that an IoBT device can obtain from a cloud server based on pre-defined priority rules, application types, and behavior history. We illustrate the deployment procedure of blockchain and smart contracts, the device registration procedure on blockchain, the IoBT behavior regulation workflow and the pricing-based resource allocation algorithm.