Visible to the public Biblio

Filters: Keyword is Resource management  [Clear All Filters]
2021-07-08
Long, Vu Duc, Duong, Ta Nguyen Binh.  2020.  Group Instance: Flexible Co-Location Resistant Virtual Machine Placement in IaaS Clouds. 2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). :64—69.
This paper proposes and analyzes a new virtual machine (VM) placement technique called Group Instance to deal with co-location attacks in public Infrastructure-as-a-Service (IaaS) clouds. Specifically, Group Instance organizes cloud users into groups with pre-determined sizes set by the cloud provider. Our empirical results obtained via experiments with real-world data sets containing million of VM requests have demonstrated the effectiveness of the new technique. In particular, the advantages of Group Instance are three-fold: 1) it is simple and highly configurable to suit the financial and security needs of cloud providers, 2) it produces better or at least similar performance compared to more complicated, state-of-the-art algorithms in terms of resource utilization and co-location security, and 3) it does not require any modifications to the underlying infrastructures of existing public cloud services.
SANE, Bernard Ousmane, BA, Mandicou, FALL, Doudou, KASHIHARA, Shigeru, TAENAKA, Yuzo, NIANG, Ibrahima, Kadobayashi, Youki.  2020.  Solving the Interdependency Problem: A Secure Virtual Machine Allocation Method Relying on the Attacker’s Efficiency and Coverage. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). :440—449.
Cloud computing dominates the information communication and technology landscape despite the presence of lingering security issues such as the interdependency problem. The latter is a co-residence conundrum where the attacker successfully compromises his target virtual machine by first exploiting the weakest (in terms of security) virtual machine that is hosted in the same server. To tackle this issue, we propose a novel virtual machine allocation policy that is based on the attacker's efficiency and coverage. By default, our allocation policy considers all legitimate users as attackers and then proceeds to host the users' virtual machines to the server where their efficiency and/or coverage are the smallest. Our simulation results show that our proposal performs better than the existing allocation policies that were proposed to tackle the same issue, by reducing the attacker's possibilities to zero and by using between 30 - 48% less hosts.
2021-05-18
Liu, Xiaodong, Chen, Zezong, Wang, Yuhao, Zhou, Fuhui, Ma, Shuai, Hu, Rose Qingyang.  2020.  Secure Beamforming Designs in MISO Visible Light Communication Networks with SLIPT. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
Visible light communication (VLC) is a promising technique in the fifth and beyond wireless communication networks. In this paper, a secure multiple-input single-output VLC network is studied, where simultaneous lightwave information and power transfer (SLIPT) is exploited to support energy-limited devices taking into account a practical non-linear energy harvesting model. Specifically, the optimal beamforming design problems for minimizing transmit power and maximizing the minimum secrecy rate are studied under the imperfect channel state information (CSI). S-Procedure and a bisection search is applied to tackle challenging non-convex problems and to obtain efficient resource allocation algorithm. It is proved that optimal beamforming schemes can be obtained. It is found that there is a non-trivial trade-off between the average harvested power and the minimum secrecy rate. Moreover, we show that the quality of CSI has a significant impact on achievable performance.
2021-05-13
Kumar, Sachin, Gupta, Garima, Prasad, Ranjitha, Chatterjee, Arnab, Vig, Lovekesh, Shroff, Gautam.  2020.  CAMTA: Causal Attention Model for Multi-touch Attribution. 2020 International Conference on Data Mining Workshops (ICDMW). :79–86.
Advertising channels have evolved from conventional print media, billboards and radio-advertising to online digital advertising (ad), where the users are exposed to a sequence of ad campaigns via social networks, display ads, search etc. While advertisers revisit the design of ad campaigns to concurrently serve the requirements emerging out of new ad channels, it is also critical for advertisers to estimate the contribution from touch-points (view, clicks, converts) on different channels, based on the sequence of customer actions. This process of contribution measurement is often referred to as multi-touch attribution (MTA). In this work, we propose CAMTA, a novel deep recurrent neural network architecture which is a causal attribution mechanism for user-personalised MTA in the context of observational data. CAMTA minimizes the selection bias in channel assignment across time-steps and touchpoints. Furthermore, it utilizes the users' pre-conversion actions in a principled way in order to predict per-channel attribution. To quantitatively benchmark the proposed MTA model, we employ the real-world Criteo dataset and demonstrate the superior performance of CAMTA with respect to prediction accuracy as compared to several baselines. In addition, we provide results for budget allocation and user-behaviour modeling on the predicted channel attribution.
2021-05-03
Das, Arnab, Briggs, Ian, Gopalakrishnan, Ganesh, Krishnamoorthy, Sriram, Panchekha, Pavel.  2020.  Scalable yet Rigorous Floating-Point Error Analysis. SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. :1–14.
Automated techniques for rigorous floating-point round-off error analysis are a prerequisite to placing important activities in HPC such as precision allocation, verification, and code optimization on a formal footing. Yet existing techniques cannot provide tight bounds for expressions beyond a few dozen operators-barely enough for HPC. In this work, we offer an approach embedded in a new tool called SATIHE that scales error analysis by four orders of magnitude compared to today's best-of-class tools. We explain how three key ideas underlying SATIHE helps it attain such scale: path strength reduction, bound optimization, and abstraction. SATIHE provides tight bounds and rigorous guarantees on significantly larger expressions with well over a hundred thousand operators, covering important examples including FFT, matrix multiplication, and PDE stencils.
2021-03-15
Wang, F., Zhang, X..  2020.  Secure Resource Allocation for Polarization-Based Non-Linear Energy Harvesting Over 5G Cooperative Cognitive Radio Networks. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
We address secure resource allocation for the energy harvesting (EH) based 5G cooperative cognitive radio networks (CRNs). To guarantee that the size-limited secondary users (SUs) can simultaneously send the primary user's and their own information, we assume that SUs are equipped with orthogonally dual-polarized antennas (ODPAs). In particular, we propose, develop, and analyze an efficient resource allocation scheme under a practical non-linear EH model, which can capture the nonlinear characteristics of the end-to-end wireless power transfer (WPT) for radio frequency (RF) based EH circuits. Our obtained numerical results validate that a substantial performance gain can be obtained by employing the non-linear EH model.
Joykutty, A. M., Baranidharan, B..  2020.  Cognitive Radio Networks: Recent Advances in Spectrum Sensing Techniques and Security. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :878–884.
Wireless networks are very significant in the present world owing to their widespread use and its application in domains like disaster management, smart cities, IoT etc. A wireless network is made up of a group of wireless nodes that communicate with each other without using any formal infrastructure. The topology of the wireless network is not fixed and it can vary. The huge increase in the number of wireless devices is a challenge owing to the limited availability of wireless spectrum. Opportunistic spectrum access by Cognitive radio enables the efficient usage of limited spectrum resources. The unused channels assigned to the primary users may go waste in idle time. Cognitive radio systems will sense the unused channel space and assigns it temporarily for secondary users. This paper discusses about the recent trends in the two most important aspects of Cognitive radio namely spectrum sensing and security.
2021-03-01
Sun, S. C., Guo, W..  2020.  Approximate Symbolic Explanation for Neural Network Enabled Water-Filling Power Allocation. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1–4.
Water-filling (WF) is a well-established iterative solution to optimal power allocation in parallel fading channels. Slow iterative search can be impractical for allocating power to a large number of OFDM sub-channels. Neural networks (NN) can transform the iterative WF threshold search process into a direct high-dimensional mapping from channel gain to transmit power solution. Our results show that the NN can perform very well (error 0.05%) and can be shown to be indeed performing approximate WF power allocation. However, there is no guarantee on the NN is mapping between channel states and power output. Here, we attempt to explain the NN power allocation solution via the Meijer G-function as a general explainable symbolic mapping. Our early results indicate that whilst the Meijer G-function has universal representation potential, its large search space means finding the best symbolic representation is challenging.
2021-02-23
Savva, G., Manousakis, K., Ellinas, G..  2020.  Providing Confidentiality in Optical Networks: Metaheuristic Techniques for the Joint Network Coding-Routing and Spectrum Allocation Problem. 2020 22nd International Conference on Transparent Optical Networks (ICTON). :1—4.
In this work, novel metaheuristic algorithms are proposed to address the network coding (NC)-based routing and spectrum allocation (RSA) problem in elastic optical networks, aiming to increase the level of security against eavesdropping attacks for the network's confidential connections. A modified simulated annealing, a genetic algorithm, as well as a combination of the two techniques are examined in terms of confidentiality and spectrum utilization. Performance results demonstrate that using metaheuristic techniques can improve the performance of NC-based RSA algorithms and thus can be utilized in real-world network scenarios.
2021-02-16
Shi, Y., Sagduyu, Y. E., Erpek, T..  2020.  Reinforcement Learning for Dynamic Resource Optimization in 5G Radio Access Network Slicing. 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.
The paper presents a reinforcement learning solution to dynamic resource allocation for 5G radio access network slicing. Available communication resources (frequency-time blocks and transmit powers) and computational resources (processor usage) are allocated to stochastic arrivals of network slice requests. Each request arrives with priority (weight), throughput, computational resource, and latency (deadline) requirements, and if feasible, it is served with available communication and computational resources allocated over its requested duration. As each decision of resource allocation makes some of the resources temporarily unavailable for future, the myopic solution that can optimize only the current resource allocation becomes ineffective for network slicing. Therefore, a Q-learning solution is presented to maximize the network utility in terms of the total weight of granted network slicing requests over a time horizon subject to communication and computational constraints. Results show that reinforcement learning provides major improvements in the 5G network utility relative to myopic, random, and first come first served solutions. While reinforcement learning sustains scalable performance as the number of served users increases, it can also be effectively used to assign resources to network slices when 5G needs to share the spectrum with incumbent users that may dynamically occupy some of the frequency-time blocks.
2020-12-21
Portaluri, G., Giordano, S..  2020.  Gambling on fairness: a fair scheduler for IIoT communications based on the shell game. 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1–6.
The Industrial Internet of Things (IIoT) paradigm represents nowadays the cornerstone of the industrial automation since it has introduced new features and services for different environments and has granted the connection of industrial machine sensors and actuators both to local processing and to the Internet. One of the most advanced network protocol stack for IoT-IIoT networks that have been developed is 6LoWPAN which supports IPv6 on top of Low-power Wireless Personal Area Networks (LoWPANs). 6LoWPAN is usually coupled with the IEEE 802.15.4 low-bitrate and low-energy MAC protocol that relies on the time-slotted channel hopping (TSCH) technique. In TSCH networks, a coordinator node synchronizes all end-devices and specifies whether (and when) they can transmit or not in order to improve their energy efficiency. In this scenario, the scheduling strategy adopted by the coordinator plays a crucial role that impacts dramatically on the network performance. In this paper, we present a novel scheduling strategy for time-slot allocation in IIoT communications which aims at the improvement of the overall network fairness. The proposed strategy mimics the well-known shell game turning the totally unfair mechanics of this game into a fair scheduling strategy. We compare our proposal with three allocation strategies, and we evaluate the fairness of each scheduler showing that our allocator outperforms the others.
2020-12-14
Dong, X., Kang, Q., Yao, Q., Lu, D., Xu, Y., Liu, J..  2020.  Towards Primary User Sybil-proofness for Online Spectrum Auction in Dynamic Spectrum Access. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1439–1448.
Dynamic spectrum access (DSA) is a promising platform to solve the spectrum shortage problem, in which auction based mechanisms have been extensively studied due to good spectrum allocation efficiency and fairness. Recently, Sybil attacks were introduced in DSA, and Sybil-proof spectrum auction mechanisms have been proposed, which guarantee that each single secondary user (SU) cannot obtain a higher utility under more than one fictitious identities. However, existing Sybil-poof spectrum auction mechanisms achieve only Sybil-proofness for SUs, but not for primary users (PUs), and simulations show that a cheating PU in those mechanisms can obtain a higher utility by Sybil attacks. In this paper, we propose TSUNAMI, the first Truthful and primary user Sybil-proof aUctioN mechAnisM for onlIne spectrum allocation. Specifically, we compute the opportunity cost of each SU and screen out cost-efficient SUs to participate in spectrum allocation. In addition, we present a bid-independent sorting method and a sequential matching approach to achieve primary user Sybil-proofness and 2-D truthfulness, which means that each SU or PU can gain her maximal utility by bidding with her true valuation of spectrum. We evaluate the performance and validate the desired properties of our proposed mechanism through extensive simulations.
Ge, K., He, Y..  2020.  Detection of Sybil Attack on Tor Resource Distribution. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :328–332.
Tor anonymous communication system's resource publishing is vulnerable to enumeration attacks. Zhao determines users who requested resources are unavailable as suspicious malicious users, and gradually reduce the scope of suspicious users through several stages to reduce the false positive rate. However, it takes several stages to distinguish users. Although this method successfully detects the malicious user, the malicious user has acquired many resources in the previous stages, which reduce the availability of the anonymous communication system. This paper proposes a detection method based on Integer Linear Program to detect malicious users who perform enumeration attacks on resources in the process of resource distribution. First, we need construct a bipartite graph between the unavailable resources and the users who requested for these resources in the anonymous communication system; next we use Integer Linear Program to find the minimum malicious user set. We simulate the resource distribution process through computer program, we perform an experimental analysis of the method in this paper is carried out. Experimental results show that the accuracy of the method in this paper is above 80%, when the unavailable resources in the system account for no more than 50%. It is about 10% higher than Zhao's method.
Goudos, S. K., Diamantoulakis, P. D., Boursianis, A. D., Papanikolaou, V. K., Karagiannidis, G. K..  2020.  Joint User Association and Power Allocation Using Swarm Intelligence Algorithms in Non-Orthogonal Multiple Access Networks. 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST). :1–4.
In this paper, we address the problem of joint user association and power allocation for non-orthogonal multiple access (NOMA) networks with multiple base stations (BSs). A user grouping procedure into orthogonal clusters, as well as an allocation of different physical resource blocks (PRBs) is considered. The problem of interest is mathematically described using the maximization of the weighted sum rate. We apply two different swarm intelligence algorithms, namely, the recently introduced Grey Wolf Optimizer (GWO), and the popular Particle Swarm Optimization (PSO), in order to solve this problem. Numerical results demonstrate that the above-described problem can be satisfactorily addressed by both algorithms.
2020-12-01
Yang, R., Ouyang, X., Chen, Y., Townend, P., Xu, J..  2018.  Intelligent Resource Scheduling at Scale: A Machine Learning Perspective. 2018 IEEE Symposium on Service-Oriented System Engineering (SOSE). :132—141.

Resource scheduling in a computing system addresses the problem of packing tasks with multi-dimensional resource requirements and non-functional constraints. The exhibited heterogeneity of workload and server characteristics in Cloud-scale or Internet-scale systems is adding further complexity and new challenges to the problem. Compared with,,,, existing solutions based on ad-hoc heuristics, Machine Learning (ML) has the potential to improve further the efficiency of resource management in large-scale systems. In this paper we,,,, will describe and discuss how ML could be used to understand automatically both workloads and environments, and to help to cope with scheduling-related challenges such as consolidating co-located workloads, handling resource requests, guaranteeing application's QoSs, and mitigating tailed stragglers. We will introduce a generalized ML-based solution to large-scale resource scheduling and demonstrate its effectiveness through a case study that deals with performance-centric node classification and straggler mitigation. We believe that an MLbased method will help to achieve architectural optimization and efficiency improvement.

2020-11-17
Zhou, Z., Qian, L., Xu, H..  2019.  Intelligent Decentralized Dynamic Power Allocation in MANET at Tactical Edge based on Mean-Field Game Theory. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :604—609.

In this paper, decentralized dynamic power allocation problem has been investigated for mobile ad hoc network (MANET) at tactical edge. Due to the mobility and self-organizing features in MANET and environmental uncertainties in the battlefield, many existing optimal power allocation algorithms are neither efficient nor practical. Furthermore, the continuously increasing large scale of the wireless connection population in emerging Internet of Battlefield Things (IoBT) introduces additional challenges for optimal power allocation due to the “Curse of Dimensionality”. In order to address these challenges, a novel Actor-Critic-Mass algorithm is proposed by integrating the emerging Mean Field game theory with online reinforcement learning. The proposed approach is able to not only learn the optimal power allocation for IoBT in a decentralized manner, but also effectively handle uncertainties from harsh environment at tactical edge. In the developed scheme, each agent in IoBT has three neural networks (NN), i.e., 1) Critic NN learns the optimal cost function that minimizes the Signal-to-interference-plus-noise ratio (SINR), 2) Actor NN estimates the optimal transmitter power adjustment rate, and 3) Mass NN learns the probability density function of all agents' transmitting power in IoBT. The three NNs are tuned based on the Fokker-Planck-Kolmogorov (FPK) and Hamiltonian-Jacobian-Bellman (HJB) equation given in the Mean Field game theory. An IoBT wireless network has been simulated to evaluate the effectiveness of the proposed algorithm. The results demonstrate that the actor-critic-mass algorithm can effectively approximate the probability distribution of all agents' transmission power and converge to the target SINR. Moreover, the optimal decentralized power allocation is obtained through integrated mean-field game theory with reinforcement learning.

2020-09-18
Ling, Mee Hong, Yau, Kok-Lim Alvin.  2019.  Can Reinforcement Learning Address Security Issues? an Investigation into a Clustering Scheme in Distributed Cognitive Radio Networks 2019 International Conference on Information Networking (ICOIN). :296—300.

This paper investigates the effectiveness of reinforcement learning (RL) model in clustering as an approach to achieve higher network scalability in distributed cognitive radio networks. Specifically, it analyzes the effects of RL parameters, namely the learning rate and discount factor in a volatile environment, which consists of member nodes (or secondary users) that launch attacks with various probabilities of attack. The clusterhead, which resides in an operating region (environment) that is characterized by the probability of attacks, countermeasures the malicious SUs by leveraging on a RL model. Simulation results have shown that in a volatile operating environment, the RL model with learning rate α= 1 provides the highest network scalability when the probability of attacks ranges between 0.3 and 0.7, while the discount factor γ does not play a significant role in learning in an operating environment that is volatile due to attacks.

Sureka, N., Gunaseelan, K..  2019.  Detection Defense against Primary User Emulation Attack in Dynamic Cognitive Radio Networks. 2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM). 1:505—510.
Cognitive radio is a promising technology that intends on solving the spectrum scarcity problem by allocating free spectrum dynamically to the unlicensed Secondary Users (SUs) in order to establish coexistence between the licensed Primary User (PU) & SUs, without causing any interference to the incumbent transmission. Primary user emulation attack (PUEA) is one such major threat posed on spectrum sensing, which decreases the spectrum access probability. Detection and defense against PUEA is realized using Yardstick based Threshold Allocation technique (YTA), by assigning threshold level to the base station thereby efficiently enhancing the spectrum sensing ability in a dynamic CR network. The simulation is performed using NS2 and analysis by using X-graph. The results shows minimum interference to primary transmissions by letting SUs spontaneously predict the prospective spectrum availability and aiding in effective prevention of potential emulation attacks along with proficient improvement of throughput in a dynamic cognitive radio environment.
2020-09-04
Sutton, Sara, Bond, Benjamin, Tahiri, Sementa, Rrushi, Julian.  2019.  Countering Malware Via Decoy Processes with Improved Resource Utilization Consistency. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :110—119.
The concept of a decoy process is a new development of defensive deception beyond traditional honeypots. Decoy processes can be exceptionally effective in detecting malware, directly upon contact or by redirecting malware to decoy I/O. A key requirement is that they resemble their real counterparts very closely to withstand adversarial probes by threat actors. To be usable, decoy processes need to consume only a small fraction of the resources consumed by their real counterparts. Our contribution in this paper is twofold. We attack the resource utilization consistency of decoy processes provided by a neural network with a heatmap training mechanism, which we find to be insufficiently trained. We then devise machine learning over control flow graphs that improves the heatmap training mechanism. A neural network retrained by our work shows higher accuracy and defeats our attacks without a significant increase in its own resource utilization.
2020-08-24
Noor, Joseph, Ali-Eldin, Ahmed, Garcia, Luis, Rao, Chirag, Dasari, Venkat R., Ganesan, Deepak, Jalaian, Brian, Shenoy, Prashant, Srivastava, Mani.  2019.  The Case for Robust Adaptation: Autonomic Resource Management is a Vulnerability. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :821–826.
Autonomic resource management for distributed edge computing systems provides an effective means of enabling dynamic placement and adaptation in the face of network changes, load dynamics, and failures. However, adaptation in-and-of-itself offers a side channel by which malicious entities can extract valuable information. An attacker can take advantage of autonomic resource management techniques to fool a system into misallocating resources and crippling applications. Using a few scenarios, we outline how attacks can be launched using partial knowledge of the resource management substrate - with as little as a single compromised node. We argue that any system that provides adaptation must consider resource management as an attack surface. As such, we propose ADAPT2, a framework that incorporates concepts taken from Moving-Target Defense and state estimation techniques to ensure correctness and obfuscate resource management, thereby protecting valuable system and application information from leaking.
Fargo, Farah, Franza, Olivier, Tunc, Cihan, Hariri, Salim.  2019.  Autonomic Resource Management for Power, Performance, and Security in Cloud Environment. 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA). :1–4.
High performance computing is widely used for large-scale simulations, designs and analysis of critical problems especially through the use of cloud computing systems nowadays because cloud computing provides ubiquitous, on-demand computing capabilities with large variety of hardware configurations including GPUs and FPGAs that are highly used for high performance computing. However, it is well known that inefficient management of such systems results in excessive power consumption affecting the budget, cooling challenges, as well as reducing reliability due to the overheating and hotspots. Furthermore, considering the latest trends in the attack scenarios and crypto-currency based intrusions, security has become a major problem for high performance computing. Therefore, to address both challenges, in this paper we present an autonomic management methodology for both security and power/performance. Our proposed approach first builds knowledge of the environment in terms of power consumption and the security tools' deployment. Next, it provisions virtual resources so that the power consumption can be reduced while maintaining the required performance and deploy the security tools based on the system behavior. Using this approach, we can utilize a wide range of secure resources efficiently in HPC system, cloud computing systems, servers, embedded systems, etc.
2020-07-30
Sengupta, Anirban, Roy, Dipanjan.  2018.  Reusable intellectual property core protection for both buyer and seller. 2018 IEEE International Conference on Consumer Electronics (ICCE). :1—3.
This paper presents a methodology for IP core protection of CE devices from both buyer's and seller's perspective. In the presented methodology, buyer fingerprint is embedded along seller watermark during architectural synthesis phase of IP core design. The buyer fingerprint is inserted during scheduling phase while seller watermark is implanted during register allocation phase of architectural synthesis process. The presented approach provides a robust mechanisms of IP core protection for both buyer and seller at zero area overhead, 1.1 % latency overhead and 0.95 % design cost overhead compared to a similar approach (that provides only protection to IP seller).
2020-07-10
Xiao, Tianran, Tong, Wei, Lei, Xia, Liu, Jingning, Liu, Bo.  2019.  Per-File Secure Deletion for Flash-Based Solid State Drives. 2019 IEEE International Conference on Networking, Architecture and Storage (NAS). :1—8.

File update operations generate many invalid flash pages in Solid State Drives (SSDs) because of the-of-place update feature. If these invalid flash pages are not securely deleted, they will be left in the “missing” state, resulting in leakage of sensitive information. However, deleting these invalid pages in real time greatly reduces the performance of SSD. In this paper, we propose a Per-File Secure Deletion (PSD) scheme for SSD to achieve non-real-time secure deletion. PSD assigns a globally unique identifier (GUID) to each file to quickly locate the invalid data blocks and uses Security-TRIM command to securely delete these invalid data blocks. Moreover, we propose a PSD-MLC scheme for Multi-Level Cell (MLC) flash memory. PSD-MLC distributes the data blocks of a file in pairs of pages to avoid the influence of programming crosstalk between paired pages. We evaluate our schemes on different hardware platforms of flash media, and the results prove that PSD and PSD-MLC only have little impact on the performance of SSD. When the cache is disabled and enabled, compared with the system without the secure deletion, PSD decreases SSD throughput by 1.3% and 1.8%, respectively. PSD-MLC decreases SSD throughput by 9.5% and 10.0%, respectively.

2020-07-06
Hasan, Kamrul, Shetty, Sachin, Hassanzadeh, Amin, Ullah, Sharif.  2019.  Towards Optimal Cyber Defense Remediation in Cyber Physical Systems by Balancing Operational Resilience and Strategic Risk. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–8.

A prioritized cyber defense remediation plan is critical for effective risk management in cyber-physical systems (CPS). The increased integration of Information Technology (IT)/Operational Technology (OT) in CPS has to lead to the need to identify the critical assets which, when affected, will impact resilience and safety. In this work, we propose a methodology for prioritized cyber risk remediation plan that balances operational resilience and economic loss (safety impacts) in CPS. We present a platform for modeling and analysis of the effect of cyber threats and random system faults on the safety of CPS that could lead to catastrophic damages. We propose to develop a data-driven attack graph and fault graph-based model to characterize the exploitability and impact of threats in CPS. We develop an operational impact assessment to quantify the damages. Finally, we propose the development of a strategic response decision capability that proposes optimal mitigation actions and policies that balances the trade-off between operational resilience (Tactical Risk) and Strategic Risk.

2020-06-26
Wang, Manxi, Liu, Bingjie, Xu, Haitao.  2019.  Resource Allocation for Threat Defense in Cyber-security IoT system. 2019 28th Wireless and Optical Communications Conference (WOCC). :1—3.
In this paper, we design a model for resource allocation in IoT system considering the cyber security, to achieve optimal resource allocation when defend the attack and threat. The resource allocation problem is constructed as a dynamic game, where the threat level is the state and the defend cost is the objective function. Open loop solution and feedback solutions are both given to the defender as the optimal control variables under different solutions situations. The optimal allocated resource and the optimal threat level for the defender is simulated through the numerical simulations.