Visible to the public Biblio

Found 402 results

Filters: Keyword is Cyber-physical systems  [Clear All Filters]
2021-05-03
Naik, Nikhil, Nuzzo, Pierluigi.  2020.  Robustness Contracts for Scalable Verification of Neural Network-Enabled Cyber-Physical Systems. 2020 18th ACM-IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE). :1–12.
The proliferation of artificial intelligence based systems in all walks of life raises concerns about their safety and robustness, especially for cyber-physical systems including multiple machine learning components. In this paper, we introduce robustness contracts as a framework for compositional specification and reasoning about the robustness of cyber-physical systems based on neural network (NN) components. Robustness contracts can encompass and generalize a variety of notions of robustness which were previously proposed in the literature. They can seamlessly apply to NN-based perception as well as deep reinforcement learning (RL)-enabled control applications. We present a sound and complete algorithm that can efficiently verify the satisfaction of a class of robustness contracts on NNs by leveraging notions from Lagrangian duality to identify system configurations that violate the contracts. We illustrate the effectiveness of our approach on the verification of NN-based perception systems and deep RL-based control systems.
2021-04-27
Aigner, A., Khelil, A..  2020.  A Benchmark of Security Metrics in Cyber-Physical Systems. 2020 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops). :1—6.
The usage of connected devices and their role within our daily- and business life gains more and more impact. In addition, various derivations of Cyber-Physical Systems (CPS) reach new business fields, like smart healthcare or Industry 4.0. Although these systems do bring many advantages for users by extending the overall functionality of existing systems, they come with several challenges, especially for system engineers and architects. One key challenge consists in achieving a sufficiently high level of security within the CPS environment, as sensitive data or safety-critical functions are often integral parts of CPS. Being system of systems (SoS), CPS complexity, unpredictability and heterogeneity complicate analyzing the overall level of security, as well as providing a way to detect ongoing attacks. Usually, security metrics and frameworks provide an effective tool to measure the level of security of a given component or system. Although several comprehensive surveys exist, an assessment of the effectiveness of the existing solutions for CPS environments is insufficiently investigated in literature. In this work, we address this gap by benchmarking a carefully selected variety of existing security metrics in terms of their usability for CPS. Accordingly, we pinpoint critical CPS challenges and qualitatively assess the effectiveness of the existing metrics for CPS systems.
Chen, Q., Chen, D., Gong, J..  2020.  Weighted Predictive Coding Methods for Block-Based Compressive Sensing of Images. 2020 3rd International Conference on Unmanned Systems (ICUS). :587–591.
Compressive sensing (CS) is beneficial for unmanned reconnaissance systems to obtain high-quality images with limited resources. The existing prediction methods for block-based compressive sensing of images can be regarded as the particular coefficients of weighted predictive coding. To find better prediction coefficients for BCS, this paper proposes two weighted prediction methods. The first method converts the prediction model of measurements into a prediction model of image blocks. The prediction weights are obtained by training the prediction model of image blocks offline, which avoiding the influence of the sampling rates on the prediction model of measurements. Another method is to calculate the prediction coefficients adaptively based on the average energy of measurements, which can adjust the weights based on the measurements. Compared with existing methods, the proposed prediction methods for BCS of images can further improve the reconstruction image quality.
Stanković, I., Brajović, M., Daković, M., Stanković, L., Ioana, C..  2020.  Quantization Effect in Nonuniform Nonsparse Signal Reconstruction. 2020 9th Mediterranean Conference on Embedded Computing (MECO). :1–4.
This paper examines the influence of quantization on the compressive sensing theory applied to the nonuniformly sampled nonsparse signals with reduced set of randomly positioned measurements. The error of the reconstruction will be generalized to exact expected squared error expression. The aim is to connect the generalized random sampling strategy with the quantization effect, finding the resulting error of the reconstruction. Small sampling deviations correspond to the imprecisions of the sampling strategy, while completely random sampling schemes causes large sampling deviations. Numerical examples provide an agreement between the statistical results and theoretical values.
Balestrieri, E., Vito, L. D., Picariello, F., Rapuano, S., Tudosa, I..  2020.  A TDoA-based Measurement Method for RF Emitters Localization by Exploiting Wideband Compressive Sampling. 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). :1–6.
This paper proposes a Time Difference of Arrival (TDoA) based method for the localization of Radio Frequency (RF) emitters working at different carriers, by using wideband spectrum sensors exploiting compressive sampling. The proposed measurement method is based on four or more RF receivers, with known Cartesian positions, performing non uniform sampling on the received signal. By means of simulations, the method has been compared against a localization method adopting RF receivers performing uniform sampling at Nyquist rate. The obtained preliminary results demonstrate that the method is capable of localizing two RF emitters achieving the same results obtained with uniform sampling, with a compression ratio up to CR = 20.
Manchanda, R., Sharma, K..  2020.  A Review of Reconstruction Algorithms in Compressive Sensing. 2020 International Conference on Advances in Computing, Communication Materials (ICACCM). :322–325.
Compressive Sensing (CS) is a promising technology for the acquisition of signals. The number of measurements is reduced by using CS which is needed to obtain the signals in some basis that are compressible or sparse. The compressible or sparse nature of the signals can be obtained by transforming the signals in some domain. Depending on the signals sparsity signals are sampled below the Nyquist sampling criteria by using CS. An optimization problem needs to be solved for the recovery of the original signal. Very few studies have been reported about the reconstruction of the signals. Therefore, in this paper, the reconstruction algorithms are elaborated systematically for sparse signal recovery in CS. The discussion of various reconstruction algorithms in made in this paper will help the readers in order to understand these algorithms efficiently.
Ding, K., Meng, Z., Yu, Z., Ju, Z., Zhao, Z., Xu, K..  2020.  Photonic Compressive Sampling of Sparse Broadband RF Signals using a Multimode Fiber. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). :1–3.
We propose a photonic compressive sampling scheme based on multimode fiber for radio spectrum sensing, which shows high accuracy and stability, and low complexity and cost. Pulse overlapping is utilized for a fast detection. © 2020 The Author(s).
Sekar, K., Devi, K. Suganya, Srinivasan, P., SenthilKumar, V. M..  2020.  Deep Wavelet Architecture for Compressive sensing Recovery. 2020 Seventh International Conference on Information Technology Trends (ITT). :185–189.
The deep learning-based compressive Sensing (CS) has shown substantial improved performance and in run-time reduction with signal sampling and reconstruction. In most cases, moreover, these techniques suffer from disrupting artefacts or high-frequency contents at low sampling ratios. Similarly, this occurs in the multi-resolution sampling method, which further collects more components with lower frequencies. A promising innovation combining CS with convolutionary neural network has eliminated the sparsity constraint yet recovery persists slow. We propose a Deep wavelet based compressive sensing with multi-resolution framework provides better improvement in reconstruction as well as run time. The proposed model demonstrates outstanding quality on test functions over previous approaches.
K, S., Devi, K. Suganya, Srinivasan, P., Dheepa, T., Arpita, B., singh, L. Dolendro.  2020.  Joint Correlated Compressive Sensing based on Predictive Data Recovery in WSNs. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). :1–5.
Data sampling is critical process for energy constrained Wireless Sensor Networks. In this article, we proposed a Predictive Data Recovery Compressive Sensing (PDR-CS) procedure for data sampling. PDR-CS samples data measurements from the monitoring field on the basis of spatial and temporal correlation and sparse measurements recovered at the Sink. Our proposed algorithm, PDR-CS extends the iterative re-weighted -ℓ1(IRW - ℓ1) minimization and regularization on the top of Spatio-temporal compressibility for enhancing accuracy of signal recovery and reducing the energy consumption. The simulation study shows that from the less number of samples are enough to recover the signal. And also compared with the other compressive sensing procedures, PDR-CS works with less time.
Mahamat, A. D., Ali, A., Tanguier, J. L., Donnot, A., Benelmir, R..  2020.  Mechanical and thermophysical characterization of local clay-based building materials. 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC). :1–6.
The work we present is a comparative study based on an experimental approach to the mechanical and thermal properties of different local clay-based building materials with the incorporation of agricultural waste in Chad. These local building materials have been used since ancient times by the low-income population. They were the subject of a detailed characterization of their mechanical and thermal parameters. The objective is to obtain lightweight materials with good thermomechanical performance and which can contribute to improving thermal comfort, energy-saving, and security in social housing in Chad while reducing the cost of investment. Several clay-based samples with increasing incorporation of 0 to 8% of agricultural waste (cow dung or millet pod) were made. We used appropriate experimental methods for porous materials (the hydraulic press for mechanical tests and the box method for thermal tests). In this article, we have highlighted the values and variations of the mechanical compressive resistances, thermal conductivities, and thermal resistances of test pieces made with these materials. Knowing the mechanical and thermal characteristics, we also carried out a thermomechanical study. The thermal data made it possible to make Dynamic Thermal Simulations (STD) of the buildings thanks to the Pléiades + COMFIE software. The results obtained show that the use of these materials in a building presents good mechanical and thermal performance with low consumption of electrical energy for better thermal comfort of the occupants. Thus agricultural waste can be recovered thanks to its integration into building materials based on clay.
Kuldeep, G., Zhang, Q..  2020.  Revisiting Compressive Sensing based Encryption Schemes for IoT. 2020 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Compressive sensing (CS) is regarded as one of the promising solutions for IoT data encryption as it achieves simultaneous sampling, compression, and encryption. Theoretical work in the literature has proved that CS provides computational secrecy. It also provides asymptotic perfect secrecy for Gaussian sensing matrix with constraints on input signal. In this paper, we design an attack decoding algorithm based on block compressed sensing decoding algorithm to perform ciphertext-only attack on real-life time series IoT data. It shows that it is possible to retrieve vital information in the plaintext under some conditions. Furthermore, it is also applied to a State-of-the Art CS-based encryption scheme for smart grid, and the power profile is reconstructed using ciphertext-only attack. Additionally, the statistical analysis of Gaussian and Binomial measurements is conducted to investigate the randomness provided by them.
Balestrieri, E., Vito, L. De, Picariello, F., Rapuano, S., Tudosa, I..  2020.  A Novel CS-based Measurement Method for Impairments Identification in Wireline Channels. 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). :1–6.
The paper proposes a new measurement method for impairments identification in wireline channels (i.e. wire cables) by exploiting a Compressive Sampling (CS)-based technique. The method consists of two-phases: (i) acquisition and reconstruction of the channel impulse response in the nominal working condition and (ii) analysis of the channel state to detect any physical anomaly/discontinuity like deterioration (e.g. aging due to harsh environment) or unauthorized side channel attacks (e.g. taps). The first results demonstrate that the proposed method is capable of estimating the channel impairments with an accuracy that could allow the classification of the main channel impairments. The proposed method could be used to develop low-cost instrumentation for continuous monitoring of the physical layer of data networks and to improve their hardware security.
Furutani, S., Shibahara, T., Hato, K., Akiyama, M., Aida, M..  2020.  Sybil Detection as Graph Filtering. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
Sybils are users created for carrying out nefarious actions in online social networks (OSNs) and threaten the security of OSNs. Therefore, Sybil detection is an urgent security task, and various detection methods have been proposed. Existing Sybil detection methods are based on the relationship (i.e., graph structure) of users in OSNs. Structure-based methods can be classified into two categories: Random Walk (RW)-based and Belief Propagation (BP)-based. However, although almost all methods have been experimentally evaluated in terms of their performance and robustness to noise, the theoretical understanding of them is insufficient. In this paper, we interpret the Sybil detection problem from the viewpoint of graph signal processing and provide a framework to formulate RW- and BPbased methods as low-pass filtering. This framework enables us to theoretically compare RW- and BP-based methods and explain why BP-based methods perform well for scale-free graphs, unlike RW-based methods. Furthermore, by this framework, we relate RW- and BP-based methods and Graph Neural Networks (GNNs) and discuss the difference among these methods. Finally, we evaluate the validity of this framework through numerical experiments.
Ma, C., Wang, L., Gai, C., Yang, D., Zhang, P., Zhang, H., Li, C..  2020.  Frequency Security Assessment for Receiving-end System Based on Deep Learning Method. 2020 IEEE/IAS Industrial and Commercial Power System Asia (I CPS Asia). :831–836.
For hours-ahead assessment of power systems with a high penetration level of renewable generation, a large number of uncertain scenarios should be checked to ensure the frequency security of the system after the severe power disturbance following HVDC blocking. In this situation, the full time-domain simulation is unsuitable as a result of the heavy calculation burden. To fulfill the quick assessment of the frequency security, the online frequency security assessment framework based on deep learning is proposed in this paper. The Deep Belief Network (DBN) method is used to establish the framework. The sample generation method is researched to generate representative samples for the purposed of higher assessment accuracy. A large-scale AC-DC interconnected power grid is adopted to verify the validity of the proposed assessment method.
Matthews, I., Mace, J., Soudjani, S., Moorsel, A. van.  2020.  Cyclic Bayesian Attack Graphs: A Systematic Computational Approach. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :129–136.
Attack graphs are commonly used to analyse the security of medium-sized to large networks. Based on a scan of the network and likelihood information of vulnerabilities, attack graphs can be transformed into Bayesian Attack Graphs (BAGs). These BAGs are used to evaluate how security controls affect a network and how changes in topology affect security. A challenge with these automatically generated BAGs is that cycles arise naturally, which make it impossible to use Bayesian network theory to calculate state probabilities. In this paper we provide a systematic approach to analyse and perform computations over cyclic Bayesian attack graphs. We present an interpretation of Bayesian attack graphs based on combinational logic circuits, which facilitates an intuitively attractive systematic treatment of cycles. We prove properties of the associated logic circuit and present an algorithm that computes state probabilities without altering the attack graphs (e.g., remove an arc to remove a cycle). Moreover, our algorithm deals seamlessly with any cycle without the need to identify their type. A set of experiments demonstrates the scalability of the algorithm on computer networks with hundreds of machines, each with multiple vulnerabilities.
Javorník, M., Komárková, J., Sadlek, L., Husak, M..  2020.  Decision Support for Mission-Centric Network Security Management. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1–6.
In this paper, we propose a decision support process that is designed to help network and security operators in understanding the complexity of a current security situation and decision making concerning ongoing cyber-attacks and threats. The process focuses on enterprise missions and uses a graph-based mission decomposition model that captures the missions, underlying hosts and services in the network, and functional and security requirements between them. Knowing the vulnerabilities and attacker's position in the network, the process employs logical attack graphs and Bayesian network to infer the probability of the disruption of the confidentiality, integrity, and availability of the missions. Based on the probabilities of disruptions, the process suggests the most resilient mission configuration that would withstand the current security situation.
Yermalovich, P., Mejri, M..  2020.  Information security risk assessment based on decomposition probability via Bayesian Network. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.
Well-known approaches to risk analysis suggest considering the level of an information system risk as one frame in a film. This means that we only can perform a risk assessment for the current point in time. This article explores the idea of risk assessment in a future period, as a prediction of what we will see in the film later. In other words, the article presents an approach to predicting a potential future risk and suggests the idea of relying on forecasting the likelihood of an attack on information system assets. To establish the risk level at a selected time interval in the future, one has to perform a mathematical decomposition. To do this, we need to select the required information system parameters for the predictions and their statistical data for risk assessment. This method can be used to ensure more detailed budget planning when ensuring the protection of the information system. It can be also applied in case of a change of the information protection configuration to satisfy the accepted level of risk associated with projected threats and vulnerabilities.
Marchisio, A., Nanfa, G., Khalid, F., Hanif, M. A., Martina, M., Shafique, M..  2020.  Is Spiking Secure? A Comparative Study on the Security Vulnerabilities of Spiking and Deep Neural Networks 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.
Spiking Neural Networks (SNNs) claim to present many advantages in terms of biological plausibility and energy efficiency compared to standard Deep Neural Networks (DNNs). Recent works have shown that DNNs are vulnerable to adversarial attacks, i.e., small perturbations added to the input data can lead to targeted or random misclassifications. In this paper, we aim at investigating the key research question: "Are SNNs secure?" Towards this, we perform a comparative study of the security vulnerabilities in SNNs and DNNs w.r.t. the adversarial noise. Afterwards, we propose a novel black-box attack methodology, i.e., without the knowledge of the internal structure of the SNN, which employs a greedy heuristic to automatically generate imperceptible and robust adversarial examples (i.e., attack images) for the given SNN. We perform an in-depth evaluation for a Spiking Deep Belief Network (SDBN) and a DNN having the same number of layers and neurons (to obtain a fair comparison), in order to study the efficiency of our methodology and to understand the differences between SNNs and DNNs w.r.t. the adversarial examples. Our work opens new avenues of research towards the robustness of the SNNs, considering their similarities to the human brain's functionality.
Xie, J., She, H., Chen, X., Zhang, H., Niu, Y..  2020.  Test Method for Automatic Detection Capability of Civil Aviation Security Equipment Using Bayesian Estimation. 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT. :831–835.
There are a lot of emerging security equipment required to be tested on detection rate (DR) and false alarm rate (FAR) for prohibited items. This article imports Bayesian approach to accept or reject DR and FAR. The detailed quantitative predictions can be made through the posterior distribution obtained by Markov chain Monte Carlo method. Based on this, HDI + ROPE decision rule is established. For the tests that need to make early decision, HDI + ROPE stopping rule is presented with biased estimate value, and criterial precision rule is presented with unbiased estimate value. Choosing the stopping rule according to the test purpose can achieve the balance of efficiency and accuracy.
Li, Y., Zhou, Y., Hu, K., Sun, N., Ke, K..  2020.  A Security Situation Prediction Method Based on Improved Deep Belief Network. 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT. :594–598.
With the rapid development of smart grids and the continuous deepening of informatization, while realizing remote telemetry and remote control of massive data-based grid operation, electricity information network security problems have become more serious and prominent. A method for electricity information network security situation prediction method based on improved deep belief network is proposed in this paper. Firstly, the affinity propagation clustering algorithm is used to determine the depth of the deep belief network and the number of hidden layer nodes based on sample parameters. Secondly, continuously adjust the scaling factor and crossover probability in the differential evolution algorithm according to the population similarity. Finally, a chaotic search method is used to perform a second search for the best individuals and similarity centers of each generation of the population. Simulation experiments show that the proposed algorithm not only enhances the generalization ability of electricity information network security situation prediction, but also has higher prediction accuracy.
Yu, X., Li, T., Hu, A..  2020.  Time-series Network Anomaly Detection Based on Behaviour Characteristics. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :568–572.
In the application scenarios of cloud computing, big data, and mobile Internet, covert and diverse network attacks have become a serious problem that threatens the security of enterprises and personal information assets. Abnormal network behaviour detection based on network behaviour characteristics has become an important means to protect network security. However, existing frameworks do not make full use of the characteristics of the correlation between continuous network behaviours, and do not use an algorithm that can process time-series data or process the original feature set into time-series data to match the algorithm. This paper proposes a time-series abnormal network behaviour detection framework. The framework consists of two parts: an algorithm model (DBN-BiGRU) that combines Deep Belief Network (DBN) and Bidirectional Gated Recurrent Unit (BiGRU), and a pre-processing scheme that processes the original feature analysis files of CICIDS2017 to good time-series data. This detection framework uses past and future behaviour information to determine current behaviours, which can improve accuracy, and can adapt to the large amount of existing network traffic and high-dimensional characteristics. Finally, this paper completes the training of the algorithm model and gets the test results. Experimental results show that the prediction accuracy of this framework is as high as 99.82%, which is better than the traditional frameworks that do not use time-series information.
2021-04-09
Lyshevski, S. E., Aved, A., Morrone, P..  2020.  Information-Centric Cyberattack Analysis and Spatiotemporal Networks Applied to Cyber-Physical Systems. 2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW). 1:172—177.
Cyber-physical systems (CPS) depend on cybersecurity to ensure functionality, data quality, cyberattack resilience, etc. There are known and unknown cyber threats and attacks that pose significant risks. Information assurance and information security are critical. Many systems are vulnerable to intelligence exploitation and cyberattacks. By investigating cybersecurity risks and formal representation of CPS using spatiotemporal dynamic graphs and networks, this paper investigates topics and solutions aimed to examine and empower: (1) Cybersecurity capabilities; (2) Information assurance and system vulnerabilities; (3) Detection of cyber threat and attacks; (4) Situational awareness; etc. We introduce statistically-characterized dynamic graphs, novel entropy-centric algorithms and calculi which promise to ensure near-real-time capabilities.
Fourastier, Y., Baron, C., Thomas, C., Esteban, P..  2020.  Assurance levels for decision making in autonomous intelligent systems and their safety. 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT). :475—483.
The autonomy of intelligent systems and their safety rely on their ability for local decision making based on collected environmental information. This is even more for cyber-physical systems running safety critical activities. While this intelligence is partial and fragmented, and cognitive techniques are of limited maturity, the decision function must produce results whose validity and scope must be weighted in light of the underlying assumptions, unavoidable uncertainty and hypothetical safety limitation. Besides the cognitive techniques dependability, it is about the assurance level of the decision self-making. Beyond the pure decision-making capabilities of the autonomous intelligent system, we need techniques that guarantee the system assurance required for the intended use. Security mechanisms for cognitive systems may be consequently tightly intricated. We propose a trustworthiness module which is part of the system and its resulting safety. In this paper, we briefly review the state of the art regarding the dependability of cognitive techniques, the assurance level definition in this context, and related engineering practices. We elaborate regarding the design of autonomous intelligent systems safety, then we discuss its security design and approaches for the mitigation of safety violations by the cognitive functions.
2021-04-08
Venkitasubramaniam, P., Yao, J., Pradhan, P..  2015.  Information-Theoretic Security in Stochastic Control Systems. Proceedings of the IEEE. 103:1914–1931.
Infrastructural systems such as the electricity grid, healthcare, and transportation networks today rely increasingly on the joint functioning of networked information systems and physical components, in short, on cyber-physical architectures. Despite tremendous advances in cryptography, physical-layer security and authentication, information attacks, both passive such as eavesdropping, and active such as unauthorized data injection, continue to thwart the reliable functioning of networked systems. In systems with joint cyber-physical functionality, the ability of an adversary to monitor transmitted information or introduce false information can lead to sensitive user data being leaked or result in critical damages to the underlying physical system. This paper investigates two broad challenges in information security in cyber-physical systems (CPSs): preventing retrieval of internal physical system information through monitored external cyber flows, and limiting the modification of physical system functioning through compromised cyber flows. A rigorous analytical framework grounded on information-theoretic security is developed to study these challenges in a general stochastic control system abstraction-a theoretical building block for CPSs-with the objectives of quantifying the fundamental tradeoffs between information security and physical system performance, and through the process, designing provably secure controller policies. Recent results are presented that establish the theoretical basis for the framework, in addition to practical applications in timing analysis of anonymous systems, and demand response systems in a smart electricity grid.
2021-03-29
Kummerow, A., Monsalve, C., Rösch, D., Schäfer, K., Nicolai, S..  2020.  Cyber-physical data stream assessment incorporating Digital Twins in future power systems. 2020 International Conference on Smart Energy Systems and Technologies (SEST). :1—6.

Reliable and secure grid operations become more and more challenging in context of increasing IT/OT convergence and decreasing dynamic margins in today's power systems. To ensure the correct operation of monitoring and control functions in control centres, an intelligent assessment of the different information sources is necessary to provide a robust data source in case of critical physical events as well as cyber-attacks. Within this paper, a holistic data stream assessment methodology is proposed using an expert knowledge based cyber-physical situational awareness for different steady and transient system states. This approach goes beyond existing techniques by combining high-resolution PMU data with SCADA information as well as Digital Twin and AI based anomaly detection functionalities.