Visible to the public Biblio

Found 156 results

Filters: Keyword is Cyber-physical systems  [Clear All Filters]
2019-07-01
Zabetian-Hosseini, A., Mehrizi-Sani, A., Liu, C..  2018.  Cyberattack to Cyber-Physical Model of Wind Farm SCADA. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. :4929–4934.

In recent years, there has been a significant increase in wind power penetration into the power system. As a result, the behavior of the power system has become more dependent on wind power behavior. Supervisory control and data acquisition (SCADA) systems responsible for monitoring and controlling wind farms often have vulnerabilities that make them susceptible to cyberattacks. These vulnerabilities allow attackers to exploit and intrude in the wind farm SCADA system. In this paper, a cyber-physical system (CPS) model for the information and communication technology (ICT) model of the wind farm SCADA system integrated with SCADA of the power system is proposed. Cybersecurity of this wind farm SCADA system is discussed. Proposed cyberattack scenarios on the system are modeled and the impact of these cyberattacks on the behavior of the power systems on the IEEE 9-bus modified system is investigated. Finally, an anomaly attack detection algorithm is proposed to stop the attack of tripping of all wind farms. Case studies validate the performance of the proposed CPS model of the test system and the attack detection algorithm.

Kolosok, I., Korkina, E., Mahnitko, A., Gavrilovs, A..  2018.  Supporting Cyber-Physical Security of Electric Power System by the State Estimation Technique. 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). :1–6.

Security is one of the most important properties of electric power system (EPS). We consider the state estimation (SE) tool as a barrier to the corruption of data on current operating conditions of the EPS. An algorithm for a two-level SE on the basis of SCADA and WAMS measurements is effective in terms of detection of malicious attacks on energy system. The article suggests a methodology to identify cyberattacks on SCADA and WAMS.

2019-05-09
Eckhart, Matthias, Ekelhart, Andreas.  2018.  Towards Security-Aware Virtual Environments for Digital Twins. Proceedings of the 4th ACM Workshop on Cyber-Physical System Security. :61-72.
Digital twins open up new possibilities in terms of monitoring, simulating, optimizing and predicting the state of cyber-physical systems (CPSs). Furthermore, we argue that a fully functional, virtual replica of a CPS can also play an important role in securing the system. In this work, we present a framework that allows users to create and execute digital twins, closely matching their physical counterparts. We focus on a novel approach to automatically generate the virtual environment from specification, taking advantage of engineering data exchange formats. From a security perspective, an identical (in terms of the system's specification), simulated environment can be freely explored and tested by security professionals, without risking negative impacts on live systems. Going a step further, security modules on top of the framework support security analysts in monitoring the current state of CPSs. We demonstrate the viability of the framework in a proof of concept, including the automated generation of digital twins and the monitoring of security and safety rules.
2019-05-01
Höfig, K., Klug, A..  2018.  SEnSE – An Architecture for a Safe and Secure Integration of Safety-Critical Embedded Systems. 2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM). :1–5.
Embedded systems that communicate with each other over the internet and build up a larger, loosely coupled (hardware) system with an unknown configuration at runtime is often referred to as a cyberphysical system. Many of these systems can become, due to its associated risks during their operation, safety critical. With increased complexity of such systems, the number of configurations can either be infinite or even unknown at design time. Hence, a certification at design time for such systems that documents a safe interaction for all possible configurations of all participants at runtime can become unfeasible. If such systems come together in a new configuration, a mechanism is required that can decide whether or not it is safe for them to interact. Such a mechanism can generally not be part of such systems for the sake of trust. Therefore, we present in the following sections the SEnSE device, short for Secure and Safe Embedded, that tackles these challenges and provides a secure and safe integration of safety-critical embedded systems.
Barrere, M., Hankin, C., Barboni, A., Zizzo, G., Boem, F., Maffeis, S., Parisini, T..  2018.  CPS-MT: A Real-Time Cyber-Physical System Monitoring Tool for Security Research. 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). :240–241.
Monitoring systems are essential to understand and control the behaviour of systems and networks. Cyber-physical systems (CPS) are particularly delicate under that perspective since they involve real-time constraints and physical phenomena that are not usually considered in common IT solutions. Therefore, there is a need for publicly available monitoring tools able to contemplate these aspects. In this poster/demo, we present our initiative, called CPS-MT, towards a versatile, real-time CPS monitoring tool, with a particular focus on security research. We first present its architecture and main components, followed by a MiniCPS-based case study. We also describe a performance analysis and preliminary results. During the demo, we will discuss CPS-MT's capabilities and limitations for security applications.
Kotenko, Igor, Ageev, Sergey, Saenko, Igor.  2018.  Implementation of Intelligent Agents for Network Traffic and Security Risk Analysis in Cyber-Physical Systems. Proceedings of the 11th International Conference on Security of Information and Networks. :22:1-22:4.
The paper offers an approach for implementation of intelligent agents intended for network traffic and security risk analysis in cyber-physical systems. The agents are based on the algorithm of pseudo-gradient adaptive anomaly detection and fuzzy logical inference. The suggested algorithm operates in real time. The fuzzy logical inference is used for regulation of algorithm parameters. The variants of the implementation are proposed. The experimental assessment of the approach confirms its high speed and adequate accuracy for network traffic analysis.
2019-03-11
Puesche, A., Bothe, D., Niemeyer, M., Sachweh, S., Pohlmann, N., Kunold, I..  2018.  Concept of Smart Building Cyber-physical Systems Including Tamper Resistant Endpoints. 2018 International IEEE Conference and Workshop in Óbuda on Electrical and Power Engineering (CANDO-EPE). :000127–000132.
Cyber-physical systems (CPS) and their Internet of things (IoT) components are repeatedly subject to various attacks targeting weaknesses in their firmware. For that reason emerges an imminent demand for secure update mechanisms that not only include specific systems but cover all parts of the critical infrastructure. In this paper we introduce a theoretical concept for a secure CPS device update and verification mechanism and provide information on handling hardware-based security incorporating trusted platform modules (TPM) on those CPS devices. We will describe secure communication channels by state of the art technology and also integrity measurement mechanisms to ensure the system is in a known state. In addition, a multi-level fail-over concept is presented, ensuring continuous patching to minimize the necessity of restarting those systems.
Hoeller, A., Toegl, R..  2018.  Trusted Platform Modules in Cyber-Physical Systems: On the Interference Between Security and Dependability. 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :136–144.
Cyber physical systems are the key innovation driver for many domains such as automotive, avionics, industrial process control, and factory automation. However, their interconnection potentially provides adversaries easy access to sensitive data, code, and configurations. If attackers gain control, material damage or even harm to people must be expected. To counteract data theft, system manipulation and cyber-attacks, security mechanisms must be embedded in the cyber physical system. Adding hardware security in the form of the standardized Trusted Platform Module (TPM) is a promising approach. At the same time, traditional dependability features such as safety, availability, and reliability have to be maintained. To determine the right balance between security and dependability it is essential to understand their interferences. This paper supports developers in identifying the implications of using TPMs on the dependability of their system.We highlight potential consequences of adding TPMs to cyber-physical systems by considering the resulting safety, reliability, and availability. Furthermore, we discuss the potential of enhancing the dependability of TPM services by applying traditional redundancy techniques.
2019-02-25
Essa, A., Al-Shoura, T., Nabulsi, A. Al, Al-Ali, A. R., Aloul, F..  2018.  Cyber Physical Sensors System Security: Threats, Vulnerabilities, and Solutions. 2018 2nd International Conference on Smart Grid and Smart Cities (ICSGSC). :62-67.
A Cyber Physical Sensor System (CPSS) consists of a computing platform equipped with wireless access points, sensors, and actuators. In a Cyber Physical System, CPSS constantly collects data from a physical object that is under process and performs local real-time control activities based on the process algorithm. The collected data is then transmitted through the network layer to the enterprise command and control center or to the cloud computing services for further processing and analysis. This paper investigates the CPSS' most common cyber security threats and vulnerabilities and provides countermeasures. Furthermore, the paper addresses how the CPSS are attacked, what are the leading consequences of the attacks, and the possible remedies to prevent them. Detailed case studies are presented to help the readers understand the CPSS threats, vulnerabilities, and possible solutions.
2019-02-22
Guo, Y., Gong, Y., Njilla, L. L., Kamhoua, C. A..  2018.  A Stochastic Game Approach to Cyber-Physical Security with Applications to Smart Grid. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :33-38.
This paper proposes a game-theoretic approach to analyze the interactions between an attacker and a defender in a cyber-physical system (CPS) and develops effective defense strategies. In a CPS, the attacker launches cyber attacks on a number of nodes in the cyber layer, trying to maximize the potential damage to the underlying physical system while the system operator seeks to defend several nodes in the cyber layer to minimize the physical damage. Given that CPS attacking and defending is often a continual process, a zero-sum Markov game is proposed in this paper to model these interactions subject to underlying uncertainties of real-world events and actions. A novel model is also proposed in this paper to characterize the interdependence between the cyber layer and the physical layer in a CPS and quantify the impact of the cyber attack on the physical damage in the proposed game. To find the Nash equilibrium of the Markov game, we design an efficient algorithm based on value iteration. The proposed general approach is then applied to study the wide-area monitoring and protection issue in smart grid. Extensive simulations are conducted based on real-world data, and results show the effectiveness of the defending strategies derived from the proposed approach.
2019-02-14
Kong, F., Xu, M., Weimer, J., Sokolsky, O., Lee, I..  2018.  Cyber-Physical System Checkpointing and Recovery. 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS). :22-31.
Transitioning to more open architectures has been making Cyber-Physical Systems (CPS) vulnerable to malicious attacks that are beyond the conventional cyber attacks. This paper studies attack-resilience enhancement for a system under emerging attacks in the environment of the controller. An effective way to address this problem is to make system state estimation accurate enough for control regardless of the compromised components. This work follows this way and develops a procedure named CPS checkpointing and recovery, which leverages historical data to recover failed system states. Specially, we first propose a new concept of physical-state recovery. The essential operation is defined as rolling the system forward starting from a consistent historical system state. Second, we design a checkpointing protocol that defines how to record system states for the recovery. The protocol introduces a sliding window that accommodates attack-detection delay to improve the correctness of stored states. Third, we present a use case of CPS checkpointing and recovery that deals with compromised sensor measurements. At last, we evaluate our design through conducting simulator-based experiments and illustrating the use of our design with an unmanned vehicle case study.
Nateghi, S., Shtessel, Y., Barbot, J., Zheng, G., Yu, L..  2018.  Cyber-Attack Reconstruction via Sliding Mode Differentiation and Sparse Recovery Algorithm: Electrical Power Networks Application. 2018 15th International Workshop on Variable Structure Systems (VSS). :285-290.
In this work, the unknown cyber-attacks on cyber-physical systems are reconstructed using sliding mode differentiation techniques in concert with the sparse recovery algorithm, when only several unknown attacks out of a long list of possible attacks are considered non-zero. The approach is applied to a model of the electric power system, and finally, the efficacy of the proposed techniques is illustrated via simulations of a real electric power system.
Chen, B., Lu, Z., Zhou, H..  2018.  Reliability Assessment of Distribution Network Considering Cyber Attacks. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). :1-6.
With the rapid development of the smart grid, a large number of intelligent sensors and meters have been introduced in distribution network, which will inevitably increase the integration of physical networks and cyber networks, and bring potential security threats to the operating system. In this paper, the functions of the information system on distribution network are described when cyber attacks appear at the intelligent electronic devices (lED) or at the distribution main station. The effect analysis of the distribution network under normal operating condition or in the fault recovery process is carried out, and the reliability assessment model of the distribution network considering cyber attacks is constructed. Finally, the IEEE-33-bus distribution system is taken as a test system to presented the evaluation process based on the proposed model.
Zhang, S., Wolthusen, S. D..  2018.  Efficient Control Recovery for Resilient Control Systems. 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC). :1-6.
Resilient control systems should efficiently restore control into physical systems not only after the sabotage of themselves, but also after breaking physical systems. To enhance resilience of control systems, given an originally minimal-input controlled linear-time invariant(LTI) physical system, we address the problem of efficient control recovery into it after removing a known system vertex by finding the minimum number of inputs. According to the minimum input theorem, given a digraph embedded into LTI model and involving a precomputed maximum matching, this problem is modeled into recovering controllability of it after removing a known network vertex. Then, we recover controllability of the residual network by efficiently finding a maximum matching rather than recomputation. As a result, except for precomputing a maximum matching and the following removed vertex, the worst-case execution time of control recovery into the residual LTI physical system is linear.
2019-02-13
Neema, Himanshu, Potteiger, Bradley, Koutsoukos, Xenofon, Karsai, Gabor, Volgyesi, Peter, Sztipanovits, Janos.  2018.  Integrated Simulation Testbed for Security and Resilience of CPS. Proceedings of the 33rd Annual ACM Symposium on Applied Computing. :368–374.
Owing1 to an immense growth of internet-connected and learning-enabled cyber-physical systems (CPSs) [1], several new types of attack vectors have emerged. Analyzing security and resilience of these complex CPSs is difficult as it requires evaluating many subsystems and factors in an integrated manner. Integrated simulation of physical systems and communication network can provide an underlying framework for creating a reusable and configurable testbed for such analyses. Using a model-based integration approach and the IEEE High-Level Architecture (HLA) [2] based distributed simulation software; we have created a testbed for integrated evaluation of large-scale CPS systems. Our tested supports web-based collaborative metamodeling and modeling of CPS system and experiments and a cloud computing environment for executing integrated networked co-simulations. A modular and extensible cyber-attack library enables validating the CPS under a variety of configurable cyber-attacks, such as DDoS and integrity attacks. Hardware-in-the-loop simulation is also supported along with several hardware attacks. Further, a scenario modeling language allows modeling of alternative paths (Courses of Actions) that enables validating CPS under different what-if scenarios as well as conducting cyber-gaming experiments. These capabilities make our testbed well suited for analyzing security and resilience of CPS. In addition, the web-based modeling and cloud-hosted execution infrastructure enables one to exercise the entire testbed using simply a web-browser, with integrated live experimental results display.
Castellanos, John H., Ochoa, Martin, Zhou, Jianying.  2018.  Finding Dependencies Between Cyber-Physical Domains for Security Testing of Industrial Control Systems. Proceedings of the 34th Annual Computer Security Applications Conference. :582–594.
In modern societies, critical services such as transportation, power supply, water treatment and distribution are strongly dependent on Industrial Control Systems (ICS). As technology moves along, new features improve services provided by such ICS. On the other hand, this progress also introduces new risks of cyber attacks due to the multiple direct and indirect dependencies between cyber and physical components of such systems. Performing rigorous security tests and risk analysis in these critical systems is thus a challenging task, because of the non-trivial interactions between digital and physical assets and the domain-specific knowledge necessary to analyse a particular system. In this work, we propose a methodology to model and analyse a System Under Test (SUT) as a data flow graph that highlights interactions among internal entities throughout the SUT. This model is automatically extracted from production code available in Programmable Logic Controllers (PLCs). We also propose a reachability algorithm and an attack diagram that will emphasize the dependencies between cyber and physical domains, thus enabling a human analyst to gauge various attack vectors that arise from subtle dependencies in data and information propagation. We test our methodology in a functional water treatment testbed and demonstrate how an analyst could make use of our designed attack diagrams to reason on possible threats to various targets of the SUT.
2019-02-08
Lu, Yung-Feng, Kuo, Chin-Fu, Chen, Hung-Ming, Wang, Guan-Bo, Chou, Shih-Chun.  2018.  A Mutual Authentication Scheme with User Anonymity for Cyber-Physical and Internet of Things. Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems. :88-93.
Cyber-Physical Systems (CPS) and Internet of Things (IoT) are emerging technologies, which makes the remote sensing and control across heterogeneous network a reality, and has good prospects in industrial applications. Due to the resource constrained feature of CPS devices, the design of security and efficiency balanced authentication scheme for CPS/IoT devices becomes a big challenge in CPS/IoT applications. This paper presents a two-factor authentication with key agreement scheme for CPS/IoT applications. The proposed mechanism integrates IMSI identifier and identity-based remote mutual authentication scheme on BAN logic designs. It supports flawless two-factor and mutual authentication of participants and agreement of session keys for user, device and gateway server. The proposed mechanism also provide user anonymity, it can be adopt in critical applications. Besides, it does not require modifying the software of clients; thus, it is highly flexibly. We believe the proposed mechanism is usable for CPS/IoT applications.
Ghirardello, K., Maple, C., Ng, D., Kearney, P..  2018.  Cyber Security of Smart Homes: Development of a Reference Architecture for Attack Surface Analysis. Living in the Internet of Things: Cybersecurity of the IoT - 2018. :1-10.
Recent advances in pervasive computing have caused a rapid growth of the Smart Home market, where a number of otherwise mundane pieces of technology are capable of connecting to the Internet and interacting with other similar devices. However, with the lack of a commonly adopted set of guidelines, several IT companies are producing smart devices with their own proprietary standards, leading to highly heterogeneous Smart Home systems in which the interoperability of the present elements is not always implemented in the most straightforward manner. As such, understanding the cyber risk of these cyber-physical systems beyond the individual devices has become an almost intractable problem. This paper tackles this issue by introducing a Smart Home reference architecture which facilitates security analysis. Being composed by three viewpoints, it gives a high-level description of the various functions and components needed in a domestic IoT device and network. Furthermore, this document demonstrates how the architecture can be used to determine the various attack surfaces of a home automation system from which its key vulnerabilities can be determined.
Nichols, W., Hawrylak, P. J., Hale, J., Papa, M..  2018.  Methodology to Estimate Attack Graph System State from a Simulation of a Nuclear Research Reactor. 2018 Resilience Week (RWS). :84-87.
Hybrid attack graphs are a powerful tool when analyzing the cybersecurity of a cyber-physical system. However, it is important to ensure that this tool correctly models reality, particularly when modelling safety-critical applications, such as a nuclear reactor. By automatically verifying that a simulation reaches the state predicted by an attack graph by analyzing the final state of the simulation, this verification procedure can be accomplished. As such, a mechanism to estimate if a simulation reaches the expected state in a hybrid attack graph is proposed here for the nuclear reactor domain.
2019-01-21
Nicolaou, N., Eliades, D. G., Panayiotou, C., Polycarpou, M. M..  2018.  Reducing Vulnerability to Cyber-Physical Attacks in Water Distribution Networks. 2018 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater). :16–19.
Cyber-Physical Systems (CPS), such as Water Distribution Networks (WDNs), deploy digital devices to monitor and control the behavior of physical processes. These digital devices, however, are susceptible to cyber and physical attacks, that may alter their functionality, and therefore the integrity of their measurements/actions. In practice, industrial control systems utilize simple control laws, which rely on various sensor measurements and algorithms which are expected to operate normally. To reduce the impact of a potential failure, operators may deploy redundant components; this however may not be useful, e.g., when a cyber attack at a PLC component occurs. In this work, we address the problem of reducing vulnerability to cyber-physical attacks in water distribution networks. This is achieved by augmenting the graph which describes the information flow from sensors to actuators, by adding new connections and algorithms, to increase the number of redundant cyber components. These, in turn, increase the \textitcyber-physical security level, which is defined in the present paper as the number of malicious attacks a CPS may sustain before becoming unable to satisfy the control requirements. A proof-of-concept of the approach is demonstrated over a simple WDN, with intuition on how this can be used to increase the cyber-physical security level of the system.
2019-01-16
Desnitsky, V. A., Kotenko, I. V..  2018.  Security event analysis in XBee-based wireless mesh networks. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :42–44.
In modern cyber-physical systems and wireless sensor networks the complexity of crisis management processes is caused by a variety of software/hardware assets and communication protocols, the necessity of their collaborative function, possible inconsistency of data flows between particular devices and increased requirements to cyber-physical security. A crisis management oriented model of a communicational mobile network is constructed. A general architecture of network nodes by the use of XBee circuits, Arduino microcontrollers and connecting equipment are developed. An analysis of possible cyber-physical security events on the base of existing intruder models is performed. A series of experiments on modeling attacks on network nodes is conducted. Possible ways for attack revelations by means of components for security event collection and data correlation is discussed.
2018-12-10
Potteiger, Bradley, Zhang, Zhenkai, Koutsoukos, Xenofon.  2018.  Integrated Instruction Set Randomization and Control Reconfiguration for Securing Cyber-physical Systems. Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security. :5:1–5:10.
Cyber-Physical Systems (CPS) have been increasingly subject to cyber-attacks including code injection attacks. Zero day attacks further exasperate the threat landscape by requiring a shift to defense in depth approaches. With the tightly coupled nature of cyber components with the physical domain, these attacks have the potential to cause significant damage if safety-critical applications such as automobiles are compromised. Moving target defense techniques such as instruction set randomization (ISR) have been commonly proposed to address these types of attacks. However, under current implementations an attack can result in system crashing which is unacceptable in CPS. As such, CPS necessitate proper control reconfiguration mechanisms to prevent a loss of availability in system operation. This paper addresses the problem of maintaining system and security properties of a CPS under attack by integrating ISR, detection, and recovery capabilities that ensure safe, reliable, and predictable system operation. Specifically, we consider the problem of detecting code injection attacks and reconfiguring the controller in real-time. The developed framework is demonstrated with an autonomous vehicle case study.
Gaoding, Ningcheng, Bousquet, Jean-François.  2017.  A Compact Magneto-Inductive Coil Antenna Design for Underwater Communications. Proceedings of the International Conference on Underwater Networks & Systems. :19:1–19:5.
Magnetic induction (MI) has shown a great potential for underwater communications due to its immunity to acoustic noise and low latency. However, the transmission distance of MI is limited since the magnetic field attenuates very fast in the near field. In this work, a magneto inductive antenna design is studied to achieve two modes of operation: 1) a static quasi omni-directional magnetic coupling; 2) a dynamic rotation of magnetic coupling. A design procedure is described to define the strength of the magnetic field, bandwidth (BW) and the path loss (PL) of the underwater communication link. Both modes are simulated and the corresponding antenna configurations are described. The proposed antenna has three coils separated between each other by 120 degrees. The coils have a radius of 5 cm and a length of 8 cm. The simulation results illustrate how this design can provide an omni-directional magnetic coupling and a more directional performance in the rotation mode. In the rotation mode, simulations also confirmed that the magnetic field can be controllable by changing the phases of input currents.
Tseng, Shao-Yen, Li, Haoqi, Baucom, Brian, Georgiou, Panayiotis.  2018.  "Honey, I Learned to Talk": Multimodal Fusion for Behavior Analysis. Proceedings of the 20th ACM International Conference on Multimodal Interaction. :239–243.
In this work we analyze the importance of lexical and acoustic modalities in behavioral expression and perception. We demonstrate that this importance relates to the amount of therapy, and hence communication training, that a person received. It also exhibits some relationship to gender. We proceed to provide an analysis on couple therapy data by splitting the data into clusters based on gender or stage in therapy. Our analysis demonstrates the significant difference between optimal modality weights per cluster and relationship to therapy stage. Given this finding we propose the use of communication-skill aware fusion models to account for these differences in modality importance. The fusion models operate on partitions of the data according to the gender of the speaker or the therapy stage of the couple. We show that while most multimodal fusion methods can improve mean absolute error of behavioral estimates, the best results are given by a model that considers the degree of communication training among the interlocutors.
Schonherr, L., Zeiler, S., Kolossa, D..  2017.  Spoofing detection via simultaneous verification of audio-visual synchronicity and transcription. 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). :591–598.

Acoustic speaker recognition systems are very vulnerable to spoofing attacks via replayed or synthesized utterances. One possible countermeasure is audio-visual speaker recognition. Nevertheless, the addition of the visual stream alone does not prevent spoofing attacks completely and only provides further information to assess the authenticity of the utterance. Many systems consider audio and video modalities independently and can easily be spoofed by imitating only a single modality or by a bimodal replay attack with a victim's photograph or video. Therefore, we propose the simultaneous verification of the data synchronicity and the transcription in a challenge-response setup. We use coupled hidden Markov models (CHMMs) for a text-dependent spoofing detection and introduce new features that provide information about the transcriptions of the utterance and the synchronicity of both streams. We evaluate the features for various spoofing scenarios and show that the combination of the features leads to a more robust recognition, also in comparison to the baseline method. Additionally, by evaluating the data on unseen speakers, we show the spoofing detection to be applicable in speaker-independent use-cases.