Visible to the public Biblio

Filters: Keyword is Mobile Edge Computing  [Clear All Filters]
2021-03-01
Shi, W., Liu, S., Zhang, J., Zhang, R..  2020.  A Location-aware Computation Offloading Policy for MEC-assisted Wireless Mesh Network. 2020 IEEE/CIC International Conference on Communications in China (ICCC Workshops). :53–58.
Mobile edge computing (MEC), an emerging technology, has the characteristics of low latency, mobile energy savings, and context-awareness. As a type of access network, wireless mesh network (WMN) has gained wide attention due to its flexible network architecture, low deployment cost, and self-organization. The combination of MEC and WMN can solve the shortcomings of traditional wireless communication such as storage capacity, privacy, and security. In this paper, we propose a location-aware (LA) algorithm to cognize the location and a location-aware offloading policy (LAOP) algorithm considering the energy consumption and time delay. Simulation results show that the proposed LAOP algorithm can obtain a higher completion rate and lower average processing delay compared with the other two methods.
2020-12-02
Abeysekara, P., Dong, H., Qin, A. K..  2019.  Machine Learning-Driven Trust Prediction for MEC-Based IoT Services. 2019 IEEE International Conference on Web Services (ICWS). :188—192.

We propose a distributed machine-learning architecture to predict trustworthiness of sensor services in Mobile Edge Computing (MEC) based Internet of Things (IoT) services, which aligns well with the goals of MEC and requirements of modern IoT systems. The proposed machine-learning architecture models training a distributed trust prediction model over a topology of MEC-environments as a Network Lasso problem, which allows simultaneous clustering and optimization on large-scale networked-graphs. We then attempt to solve it using Alternate Direction Method of Multipliers (ADMM) in a way that makes it suitable for MEC-based IoT systems. We present analytical and simulation results to show the validity and efficiency of the proposed solution.

2020-05-15
Chekired, Djabir Abdeldjalil, Khoukhi, Lyes.  2019.  Distributed SDN-Based C4ISR Communications: A Delay-Tolerant Network for Trusted Tactical Cloudlets. 2019 International Conference on Military Communications and Information Systems (ICMCIS). :1—7.

The next generation military environment requires a delay-tolerant network for sharing data and resources using an interoperable computerized, Command, Control, Communications, Intelligence, Surveillance and Reconnaissance (C4ISR) infrastructure. In this paper, we propose a new distributed SDN (Software-Defined Networks) architecture for tactical environments based on distributed cloudlets. The objective is to reduce the end-to-end delay of tactical traffic flow, and improve management capabilities, allowing flexible control and network resource allocation. The proposed SDN architecture is implemented over three layers: decentralized cloudlets layer where each cloudlet has its SDRN (Software-Defined Radio Networking) controller, decentralized MEC (Mobile Edge Computing) layer with an SDN controller for each MEC, and a centralized private cloud as a trusted third-part authority controlled by a centralized SDN controller. The experimental validations are done via relevant and realistic tactical scenarios based on strategic traffics loads, i.e., Tactical SMS (Short Message Service), UVs (Unmanned Vehicle) patrol deployment and high bite rate ISR (Intelligence, Surveillance, and Reconnaissance) video.

2020-02-18
Quan, Guocong, Tan, Jian, Eryilmaz, Atilla.  2019.  Counterintuitive Characteristics of Optimal Distributed LRU Caching Over Unreliable Channels. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :694–702.
Least-recently-used (LRU) caching and its variants have conventionally been used as a fundamental and critical method to ensure fast and efficient data access in computer and communication systems. Emerging data-intensive applications over unreliable channels, e.g., mobile edge computing and wireless content delivery networks, have imposed new challenges in optimizing LRU caching systems in environments prone to failures. Most existing studies focus on reliable channels, e.g., on wired Web servers and within data centers, which have already yielded good insights with successful algorithms on how to reduce cache miss ratios. Surprisingly, we show that these widely held insights do not necessarily hold true for unreliable channels. We consider a single-hop multi-cache distributed system with data items being dispatched by random hashing. The objective is to achieve efficient cache organization and data placement. The former allocates the total memory space to each of the involved caches. The latter decides data routing strategies and data replication schemes. Analytically we characterize the unreliable LRU caches by explicitly deriving their asymptotic miss probabilities. Based on these results, we optimize the system design. Remarkably, these results sometimes are counterintuitive, differing from the ones obtained for reliable caches. We discover an interesting phenomenon: asymmetric cache organization is optimal even for symmetric channels. Specifically, even when channel unreliability probabilities are equal, allocating the cache spaces unequally can achieve a better performance. We also propose an explicit unequal allocation policy that outperforms the equal allocation. In addition, we prove that splitting the total cache space into separate LRU caches can achieve a lower asymptotic miss probability than resource pooling that organizes the total space in a single LRU cache. These results provide new and even counterintuitive insights that motivate novel designs for caching systems over unreliable channels. They can potentially be exploited to further improve the system performance in real practice.
2019-12-30
Heydari, Mohammad, Mylonas, Alexios, Katos, Vasilios, Balaguer-Ballester, Emili, Tafreshi, Vahid Heydari Fami, Benkhelifa, Elhadj.  2019.  Uncertainty-Aware Authentication Model for Fog Computing in IoT. 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC). :52–59.

Since the term “Fog Computing” has been coined by Cisco Systems in 2012, security and privacy issues of this promising paradigm are still open challenges. Among various security challenges, Access Control is a crucial concern for all cloud computing-like systems (e.g. Fog computing, Mobile edge computing) in the IoT era. Therefore, assigning the precise level of access in such an inherently scalable, heterogeneous and dynamic environment is not easy to perform. This work defines the uncertainty challenge for authentication phase of the access control in fog computing because on one hand fog has a number of characteristics that amplify uncertainty in authentication and on the other hand applying traditional access control models does not result in a flexible and resilient solution. Therefore, we have proposed a novel prediction model based on the extension of Attribute Based Access Control (ABAC) model. Our data-driven model is able to handle uncertainty in authentication. It is also able to consider the mobility of mobile edge devices in order to handle authentication. In doing so, we have built our model using and comparing four supervised classification algorithms namely as Decision Tree, Naïve Bayes, Logistic Regression and Support Vector Machine. Our model can achieve authentication performance with 88.14% accuracy using Logistic Regression.

2019-08-05
Xia, S., Li, N., Xiaofeng, T., Fang, C..  2018.  Multiple Attributes Based Spoofing Detection Using an Improved Clustering Algorithm in Mobile Edge Network. 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN). :242–243.

Information centric network (ICN) based Mobile Edge Computing (MEC) network has drawn growing attentions in recent years. The distributed network architecture brings new security problems, especially the identity security problem. Because of the cloud platform deployed on the edge of the MEC network, multiple channel attributes can be easily obtained and processed. Thus this paper proposes a multiple channel attributes based spoofing detection mechanism. To further reduce the complexity, we also propose an improved clustering algorithm. The simulation results indicate that the proposed spoofing detection method can provide near-optimal performance with extremely low complexity.

2019-04-01
Zhang, X., Li, R., Cui, B..  2018.  A security architecture of VANET based on blockchain and mobile edge computing. 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN). :258–259.

The development of Vehicular Ad-hoc NETwork (VANET) has brought many conveniences to human beings, but also brings a very prominent security problem. The traditional solution to the security problem is based on centralized approach which requires a trusted central entity which exists a single point of failure problem. Moreover, there is no approach of technical level to ensure security of data. Therefore, this paper proposes a security architecture of VANET based on blockchain and mobile edge computing. The architecture includes three layers, namely perception layer, edge computing layer and service layer. The perception layer ensures the security of VANET data in the transmission process through the blockchain technology. The edge computing layer provides computing resources and edge cloud services to the perception layer. The service layer uses the combination of traditional cloud storage and blockchain to ensure the security of data.

2017-05-18
Dey, Swarnava, Mukherjee, Arijit.  2016.  Robotic SLAM: A Review from Fog Computing and Mobile Edge Computing Perspective. Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services. :153–158.

Offloading computationally expensive Simultaneous Localization and Mapping (SLAM) task for mobile robots have attracted significant attention during the last few years. Lack of powerful on-board compute capability in these energy constrained mobile robots and rapid advancement in compute cloud access technologies laid the foundation for development of several Cloud Robotics platforms that enabled parallel execution of computationally expensive robotic algorithms, especially involving multiple robots. In this work the Cloud Robotics concept is extended to include the current emphasis of computing at the network edge nodes along with the Cloud. The requirements and advantages of using edge nodes for computation offloading over remote cloud or local robot clusters are discussed with reference to the ETSI 'Mobile-Edge Computing' initiative and OpenFog Consortium's 'OpenFog Architecture'. A Particle Filter algorithm for SLAM is modified and implemented for offloading in a multi-tier edge+cloud setup. Additionally a model is proposed for offloading decision in such a setup with experiments and results demonstrating the efficacy of the proposed dynamic offloading scheme over static offloading strategies.