Visible to the public Biblio

Filters: Keyword is surveillance  [Clear All Filters]
2021-08-11
Huang, Cheng-Wei, Wu, Tien-Yi, Tai, Yuan, Shao, Ching-Hsuan, Chen, Lo-An, Tsai, Meng-Hsun.  2020.  Machine learning-based IP Camera identification system. 2020 International Computer Symposium (ICS). :426—430.
With the development of technology, application of the Internet in daily life is increasing, making our connection with the Internet closer. However, with the improvement of convenience, information security has become more and more important. How to ensure information security in a convenient living environment is a question worth discussing. For instance, the widespread deployment of IP-cameras has made great progress in terms of convenience. On the contrary, it increases the risk of privacy exposure. Poorly designed surveillance devices may be implanted with suspicious software, which might be a thorny issue to human life. To effectively identify vulnerable devices, we design an SDN-based identification system that uses machine learning technology to identify brands and probable model types by identifying packet features. The identifying results make it possible for further vulnerability analysis.
2021-07-07
Zhao, Qian, Wang, Shengjin.  2020.  Real-time Face Tracking in Surveillance Videos on Chips for Valuable Face Capturing. 2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE). :281–284.
Face capturing is a task to capture and store the "best" face of each person passing by the monitor. To some extent, it is similar to face tracking, but uses a different criterion and requires a valuable (i.e., high-quality and recognizable) face selection procedure. Face capturing systems play a critical role in public security. When deployed on edge devices, it is capable of reducing redundant storage in data center and speeding up retrieval of a certain person. However, high computation complexity and high repetition rate caused by ID switch errors are major challenges. In this paper, we propose a novel solution to constructing a real-time low-repetition face capturing system on chips. First, we propose a two-stage association algorithm for memory-efficient and accurate face tracking. Second, we propose a fast and reliable face quality estimation algorithm for valuable face selection. Our pipeline runs at over 20fps on Hisiv 3559A SoC with a single NNIE device for neural network inference, while achieving over 95% recall and less than 0.4 repetition rate in real world surveillance videos.
Elbasi, Ersin.  2020.  Reliable abnormal event detection from IoT surveillance systems. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1–5.
Surveillance systems are widely used in airports, streets, banks, military areas, borders, hospitals, and schools. There are two types of surveillance systems which are real-time systems and offline surveillance systems. Usually, security people track videos on time in monitoring rooms to find out abnormal human activities. Real-time human tracking from videos is very expensive especially in airports, borders, and streets due to the huge number of surveillance cameras. There are a lot of research works have been done for automated surveillance systems. In this paper, we presented a new surveillance system to recognize human activities from several cameras using machine learning algorithms. Sequences of images are collected from cameras using the internet of things technology from indoor or outdoor areas. A feature vector is created for each recognized moving object, then machine learning algorithms are applied to extract moving object activities. The proposed abnormal event detection system gives very promising results which are more than 96% accuracy in Multilayer Perceptron, Iterative Classifier Optimizer, and Random Forest algorithms.
Kanwal, Nadia, Asghar, Mamoona Naveed, Samar Ansari, Mohammad, Lee, Brian, Fleury, Martin, Herbst, Marco, Qiao, Yuansong.  2020.  Chain-of-Evidence in Secured Surveillance Videos using Steganography and Hashing. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :257–264.
Video sharing from closed-circuit television video recording or in social media interaction requires self-authentication for responsible and reliable data sharing. Similarly, surveillance video recording is a powerful method of deterring unlawful activities. A Solution-by-Design can be helpful in terms of making a captured video immutable, as such recordings cannot become a piece of evidence until proven to be unaltered. This paper presents a computationally inexpensive method of preserving a chain-of-evidence in surveillance videos using steganography and hashing. The method conforms to the data protection regulations which are increasingly adopted by governments, and is applicable to network edge storage. Security credentials are stored in a hardware wallet independently of the video capture device itself, while evidential information is stored within video frames themselves, independently of the content. The proposed method has turned out to not only preserve the integrity of the stored video data but also results in very limited degradation of the video data due to steganography. Despite the presence of steganographic information, video frames are still available for common image processing tasks such as tracking and classification.
Seneviratne, Piyumi, Perera, Dilanka, Samarasekara, Harinda, Keppitiyagama, Chamath, Thilakarathna, Kenneth, De Soyza, Kasun, Wijesekara, Primal.  2020.  Impact of Video Surveillance Systems on ATM PIN Security. 2020 20th International Conference on Advances in ICT for Emerging Regions (ICTer). :59–64.
ATM transactions are verified using two-factor authentication. The PIN is one of the factors (something you know) and the ATM Card is the other factor (something you have). Therefore, banks make significant investments on PIN Mailers and HSMs to preserve the security and confidentiality in the generation, validation, management and the delivery of the PIN to their customers. Moreover, banks install surveillance cameras inside ATM cubicles as a physical security measure to prevent fraud and theft. However, in some cases, ATM PIN-Pad and the PIN entering process get revealed through the surveillance camera footage itself. We demonstrate that visibility of forearm movements is sufficient to infer PINs with a significant level of accuracy. Video footage of the PIN entry process simulated in an experimental setup was analyzed using two approaches. The human observer-based approach shows that a PIN can be guessed with a 30% of accuracy within 3 attempts whilst the computer-assisted analysis of footage gave an accuracy of 50%. The results confirm that ad-hoc installation of surveillance cameras can weaken ATM PIN security significantly by potentially exposing one factor of a two-factor authentication system. Our investigation also revealed that there are no guidelines, standards or regulations governing the placement of surveillance cameras inside ATM cubicles in Sri Lanka.
2021-04-27
Damis, H. A., Shehada, D., Fachkha, C., Gawanmeh, A., Al-Karaki, J. N..  2020.  A Microservices Architecture for ADS-B Data Security Using Blockchain. 2020 3rd International Conference on Signal Processing and Information Security (ICSPIS). :1—4.

The use of Automatic Dependent Surveillance - Broadcast (ADS-B) for aircraft tracking and flight management operations is widely used today. However, ADS-B is prone to several cyber-security threats due to the lack of data authentication and encryption. Recently, Blockchain has emerged as new paradigm that can provide promising solutions in decentralized systems. Furthermore, software containers and Microservices facilitate the scaling of Blockchain implementations within cloud computing environment. When fused together, these technologies could help improve Air Traffic Control (ATC) processing of ADS-B data. In this paper, a Blockchain implementation within a Microservices framework for ADS-B data verification is proposed. The aim of this work is to enable data feeds coming from third-party receivers to be processed and correlated with that of the ATC ground station receivers. The proposed framework could mitigate ADS- B security issues of message spoofing and anomalous traffic data. and hence minimize the cost of ATC infrastructure by throughout third-party support.

2021-02-23
Singh, A. K..  2020.  A Multi-Layered Network Model for Blockchain Based Security Surveillance system. 2020 IEEE International Conference for Innovation in Technology (INOCON). :1—5.

Blockchain technology is a decentralized ledger of all transactions across peer to peer network. Being decentralized in nature, a blockchain is highly secure as no single user can alter or remove an entry in the blockchain. The security of office premises and data is a very major concern for any organization. This paper majorly focuses on its application of blockchain technology in security surveillance. This paper proposes a blockchain based multi level network model for security surveillance system. The proposed system architecture is composed of different blockchain based systems connected to a multi level decentralized blockchain system to insure authentication, secure storage, Integrity and accountability.

2021-02-08
Nikouei, S. Y., Chen, Y., Faughnan, T. R..  2018.  Smart Surveillance as an Edge Service for Real-Time Human Detection and Tracking. 2018 IEEE/ACM Symposium on Edge Computing (SEC). :336—337.

Monitoring for security and well-being in highly populated areas is a critical issue for city administrators, policy makers and urban planners. As an essential part of many dynamic and critical data-driven tasks, situational awareness (SAW) provides decision-makers a deeper insight of the meaning of urban surveillance. Thus, surveillance measures are increasingly needed. However, traditional surveillance platforms are not scalable when more cameras are added to the network. In this work, a smart surveillance as an edge service has been proposed. To accomplish the object detection, identification, and tracking tasks at the edge-fog layers, two novel lightweight algorithms are proposed for detection and tracking respectively. A prototype has been built to validate the feasibility of the idea, and the test results are very encouraging.

Chiang, M., Lau, S..  2011.  Automatic multiple faces tracking and detection using improved edge detector algorithm. 2011 7th International Conference on Information Technology in Asia. :1—5.

The automatic face tracking and detection has been one of the fastest developing areas due to its wide range of application, security and surveillance application in particular. It has been one of the most interest subjects, which suppose but yet to be wholly explored in various research areas due to various distinctive factors: varying ethnic groups, sizes, orientations, poses, occlusions and lighting conditions. The focus of this paper is to propose an improve algorithm to speed up the face tracking and detection process with the simple and efficient proposed novel edge detector to reject the non-face-likes regions, hence reduce the false detection rate in an automatic face tracking and detection in still images with multiple faces for facial expression system. The correct rates of 95.9% on the Haar face detection and proposed novel edge detector, which is higher 6.1% than the primitive integration of Haar and canny edge detector.

2021-01-11
Shin, H. C., Chang, J., Na, K..  2020.  Anomaly Detection Algorithm Based on Global Object Map for Video Surveillance System. 2020 20th International Conference on Control, Automation and Systems (ICCAS). :793—795.

Recently, smart video security systems have been active. The existing video security system is mainly a method of detecting a local abnormality of a unit camera. In this case, it is difficult to obtain the characteristics of each local region and the situation for the entire watching area. In this paper, we developed an object map for the entire surveillance area using a combination of surveillance cameras, and developed an algorithm to detect anomalies by learning normal situations. The surveillance camera in each area detects and tracks people and cars, and creates a local object map and transmits it to the server. The surveillance server combines each local maps to generate a global map for entire areas. Probability maps were automatically calculated from the global maps, and normal and abnormal decisions were performed through trained data about normal situations. For three reporting status: normal, caution, and warning, and the caution report performance shows that normal detection 99.99% and abnormal detection 86.6%.

2020-12-15
Prakash, A., Walambe, R..  2018.  Military Surveillance Robot Implementation Using Robot Operating System. 2018 IEEE Punecon. :1—5.

Robots are becoming more and more prevalent in many real world scenarios. Housekeeping, medical aid, human assistance are a few common implementations of robots. Military and Security are also major areas where robotics is being researched and implemented. Robots with the purpose of surveillance in war zones and terrorist scenarios need specific functionalities to perform their tasks with precision and efficiency. In this paper, we present a model of Military Surveillance Robot developed using Robot Operating System. The map generation based on Kinect sensor is presented and some test case scenarios are discussed with results.

2020-12-11
Hassan, S. U., Khan, M. Zeeshan, Khan, M. U. Ghani, Saleem, S..  2019.  Robust Sound Classification for Surveillance using Time Frequency Audio Features. 2019 International Conference on Communication Technologies (ComTech). :13—18.

Over the years, technology has reformed the perception of the world related to security concerns. To tackle security problems, we proposed a system capable of detecting security alerts. System encompass audio events that occur as an outlier against background of unusual activity. This ambiguous behaviour can be handled by auditory classification. In this paper, we have discussed two techniques of extracting features from sound data including: time-based and signal based features. In first technique, we preserve time-series nature of sound, while in other signal characteristics are focused. Convolution neural network is applied for categorization of sound. Major aim of research is security challenges, so we have generated data related to surveillance in addition to available datasets such as UrbanSound 8k and ESC-50 datasets. We have achieved 94.6% accuracy for proposed methodology based on self-generated dataset. Improved accuracy on locally prepared dataset demonstrates novelty in research.

Fujiwara, N., Shimasaki, K., Jiang, M., Takaki, T., Ishii, I..  2019.  A Real-time Drone Surveillance System Using Pixel-level Short-time Fourier Transform. 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :303—308.

In this study we propose a novel method for drone surveillance that can simultaneously analyze time-frequency responses in all pixels of a high-frame-rate video. The propellers of flying drones rotate at hundreds of Hz and their principal vibration frequency components are much higher than those of their background objects. To separate the pixels around a drone's propellers from its background, we utilize these time-series features for vibration source localization with pixel-level short-time Fourier transform (STFT). We verify the relationship between the number of taps in the STFT computation and the performance of our algorithm, including the execution time and the localization accuracy, by conducting experiments under various conditions, such as degraded appearance, weather, and defocused blur. The robustness of the proposed algorithm is also verified by localizing a flying multi-copter in real-time in an outdoor scenario.

2020-12-07
Islam, M. S., Verma, H., Khan, L., Kantarcioglu, M..  2019.  Secure Real-Time Heterogeneous IoT Data Management System. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :228–235.
The growing adoption of IoT devices in our daily life engendered a need for secure systems to safely store and analyze sensitive data as well as the real-time data processing system to be as fast as possible. The cloud services used to store and process sensitive data are often come out to be vulnerable to outside threats. Furthermore, to analyze streaming IoT data swiftly, they are in need of a fast and efficient system. The Paper will envision the aspects of complexity dealing with real time data from various devices in parallel, building solution to ingest data from different IOT devices, forming a secure platform to process data in a short time, and using various techniques of IOT edge computing to provide meaningful intuitive results to users. The paper envisions two modules of building a real time data analytics system. In the first module, we propose to maintain confidentiality and integrity of IoT data, which is of paramount importance, and manage large-scale data analytics with real-time data collection from various IoT devices in parallel. We envision a framework to preserve data privacy utilizing Trusted Execution Environment (TEE) such as Intel SGX, end-to-end data encryption mechanism, and strong access control policies. Moreover, we design a generic framework to simplify the process of collecting and storing heterogeneous data coming from diverse IoT devices. In the second module, we envision a drone-based data processing system in real-time using edge computing and on-device computing. As, we know the use of drones is growing rapidly across many application domains including real-time monitoring, remote sensing, search and rescue, delivery of goods, security and surveillance, civil infrastructure inspection etc. This paper demonstrates the potential drone applications and their challenges discussing current research trends and provide future insights for potential use cases using edge and on-device computing.
2020-11-02
Singh, Dhananjay, Tripathi, Gaurav, Shah, Sayed Chhattan, da Rosa Righi, Rodrigo.  2018.  Cyber physical surveillance system for Internet of Vehicles. 2018 IEEE 4th World Forum on Internet of Things (WF-IoT). :546—551.

Internet of Vehicle (IoV) is an essential part of the Intelligent Transportation system (ITS) which is growing exponentially in the automotive industry domain. The term IoV is used in this paper for Internet of Vehicles. IoV is conceptualized for sharing traffic, safety and several other vehicle-related information between vehicles and end user. In recent years, the number of connected vehicles has increased allover the world. Having information sharing and connectivity as its advantage, IoV also faces the challenging task in the cybersecurity-related matters. The future consists of crowded places in an interconnected world through wearable's, sensors, smart phones etc. We are converging towards IoV technology and interactions with crowded space of connected peoples. However, this convergence demands high-security mechanism from the connected crowd as-well-as other connected vehicles to safeguard of proposed IoV system. In this paper, we coin the term of smart people crowd (SPC) and the smart vehicular crowd (SVC) for the Internet of Vehicles (IoV). These specific crowds of SPC and SVC are the potential cyber attackers of the smart IoV. People connected to the internet in the crowded place are known as a smart crowd. They have interfacing devices with sensors and the environment. A smart crowd would also consist of the random number of smart vehicles. With the future converging in to the smart connected framework for crowds, vehicles and connected vehicles, we present a novel cyber-physical surveillance system (CPSS) framework to tackle the security threats in the crowded environment for the smart automotive industry and provide the cyber security mechanism in the crowded places. We also describe an overview of use cases and their security challenges on the Internet of Vehicles.

2020-07-10
Godawatte, Kithmini, Raza, Mansoor, Murtaza, Mohsin, Saeed, Ather.  2019.  Dark Web Along With The Dark Web Marketing And Surveillance. 2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). :483—485.

Cybercrimes and cyber criminals widely use dark web and illegal functionalities of the dark web towards the world crisis. More than half of the criminal activities and the terror activities conducted through the dark web such as, cryptocurrency, selling human organs, red rooms, child pornography, arm deals, drug deals, hire assassins and hackers, hacking software and malware programs, etc. The law enforcement agencies such as FBI, NSA, Interpol, Mossad, FSB etc, are always conducting surveillance programs through the dark web to trace down the mass criminals and terrorists while stopping the crimes and the terror activities. This paper is about the dark web marketing and surveillance programs. In the deep end research will discuss the dark web access with securely and how the law enforcement agencies exponentially tracking down the users with terror behaviours and activities. Moreover, the paper discusses dark web sites which users can grab the dark web jihadist services and anonymous markets including safety precautions.

2020-07-03
Kakadiya, Rutvik, Lemos, Reuel, Mangalan, Sebin, Pillai, Meghna, Nikam, Sneha.  2019.  AI Based Automatic Robbery/Theft Detection using Smart Surveillance in Banks. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :201—204.

Deep learning is the segment of artificial intelligence which is involved with imitating the learning approach that human beings utilize to get some different types of knowledge. Analyzing videos, a part of deep learning is one of the most basic problems of computer vision and multi-media content analysis for at least 20 years. The job is very challenging as the video contains a lot of information with large differences and difficulties. Human supervision is still required in all surveillance systems. New advancement in computer vision which are observed as an important trend in video surveillance leads to dramatic efficiency gains. We propose a CCTV based theft detection along with tracking of thieves. We use image processing to detect theft and motion of thieves in CCTV footage, without the use of sensors. This system concentrates on object detection. The security personnel can be notified about the suspicious individual committing burglary using Real-time analysis of the movement of any human from CCTV footage and thus gives a chance to avert the same.

Bashir, Muzammil, Rundensteiner, Elke A., Ahsan, Ramoza.  2019.  A deep learning approach to trespassing detection using video surveillance data. 2019 IEEE International Conference on Big Data (Big Data). :3535—3544.
Railroad trespassing is a dangerous activity with significant security and safety risks. However, regular patrolling of potential trespassing sites is infeasible due to exceedingly high resource demands and personnel costs. This raises the need to design automated trespass detection and early warning prediction techniques leveraging state-of-the-art machine learning. To meet this need, we propose a novel framework for Automated Railroad Trespassing detection System using video surveillance data called ARTS. As the core of our solution, we adopt a CNN-based deep learning architecture capable of video processing. However, these deep learning-based methods, while effective, are known to be computationally expensive and time consuming, especially when applied to a large volume of surveillance data. Leveraging the sparsity of railroad trespassing activity, ARTS corresponds to a dual-stage deep learning architecture composed of an inexpensive pre-filtering stage for activity detection, followed by a high fidelity trespass classification stage employing deep neural network. The resulting dual-stage ARTS architecture represents a flexible solution capable of trading-off accuracy with computational time. We demonstrate the efficacy of our approach on public domain surveillance data achieving 0.87 f1 score while keeping up with the enormous video volume, achieving a practical time and accuracy trade-off.
2020-06-03
Amato, Giuseppe, Falchi, Fabrizio, Gennaro, Claudio, Massoli, Fabio Valerio, Passalis, Nikolaos, Tefas, Anastasios, Trivilini, Alessandro, Vairo, Claudio.  2019.  Face Verification and Recognition for Digital Forensics and Information Security. 2019 7th International Symposium on Digital Forensics and Security (ISDFS). :1—6.

In this paper, we present an extensive evaluation of face recognition and verification approaches performed by the European COST Action MULTI-modal Imaging of FOREnsic SciEnce Evidence (MULTI-FORESEE). The aim of the study is to evaluate various face recognition and verification methods, ranging from methods based on facial landmarks to state-of-the-art off-the-shelf pre-trained Convolutional Neural Networks (CNN), as well as CNN models directly trained for the task at hand. To fulfill this objective, we carefully designed and implemented a realistic data acquisition process, that corresponds to a typical face verification setup, and collected a challenging dataset to evaluate the real world performance of the aforementioned methods. Apart from verifying the effectiveness of deep learning approaches in a specific scenario, several important limitations are identified and discussed through the paper, providing valuable insight for future research directions in the field.

2020-04-13
M.R., Anala, Makker, Malika, Ashok, Aakanksha.  2019.  Anomaly Detection in Surveillance Videos. 2019 26th International Conference on High Performance Computing, Data and Analytics Workshop (HiPCW). :93–98.
Every public or private area today is preferred to be under surveillance to ensure high levels of security. Since the surveillance happens round the clock, data gathered as a result is huge and requires a lot of manual work to go through every second of the recorded videos. This paper presents a system which can detect anomalous behaviors and alarm the user on the type of anomalous behavior. Since there are a myriad of anomalies, the classification of anomalies had to be narrowed down. There are certain anomalies which are generally seen and have a huge impact on public safety, such as explosions, road accidents, assault, shooting, etc. To narrow down the variations, this system can detect explosion, road accidents, shooting, and fighting and even output the frame of their occurrence. The model has been trained with videos belonging to these classes. The dataset used is UCF Crime dataset. Learning patterns from videos requires the learning of both spatial and temporal features. Convolutional Neural Networks (CNN) extract spatial features and Long Short-Term Memory (LSTM) networks learn the sequences. The classification, using an CNN-LSTM model achieves an accuracy of 85%.
2020-02-17
Thomopoulos, Stelios C. A..  2019.  Maritime Situational Awareness Forensics Tools for a Common Information Sharing Environment (CISE). 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech). :1–5.
CISE stands for Common Information Sharing Environment and refers to an architecture and set of protocols, procedures and services for the exchange of data and information across Maritime Authorities of EU (European Union) Member States (MS's). In the context of enabling the implementation and adoption of CISE by different MS's, EU has funded a number of projects that enable the development of subsystems and adaptors intended to allow MS's to connect and make use of CISE. In this context, the Integrated Systems Laboratory (ISL) has led the development of the corresponding Hellenic and Cypriot CISE by developing a Control, Command & Information (C2I) system that unifies all partial maritime surveillance systems into one National Situational Picture Management (NSPM) system, and adaptors that allow the interconnection of the corresponding national legacy systems to CISE and the exchange of data, information and requests between the two MS's. Furthermore, a set of forensics tools that allow geospatial & time filtering and detection of anomalies, risk incidents, fake MMSIs, suspicious speed changes, collision paths, and gaps in AIS (Automatic Identification System), have been developed by combining motion models, AI, deep learning and fusion algorithms using data from different databases through CISE. This paper briefly discusses these developments within the EU CISE-2020, Hellenic CISE and CY-CISE projects and the benefits from the sharing of maritime data across CISE for both maritime surveillance and security. The prospect of using CISE for the creation of a considerably rich database that could be used for forensics analysis and detection of suspicious maritime traffic and maritime surveillance is discussed.
2020-02-10
Muka, Romina, Haugli, Fredrik Bakkevig, Vefsnmo, Hanne, Heegaard, Poul E..  2019.  Information Inconsistencies in Smart Distribution Grids under Different Failure Causes modelled by Stochastic Activity Networks. 2019 AEIT International Annual Conference (AEIT). :1–6.
The ongoing digitalization of the power distribution grid will improve the operational support and automation which is believed to increase the system reliability. However, in an integrated and interdependent cyber-physical system, new threats appear which must be understood and dealt with. Of particular concern, in this paper, is the causes of an inconsistent view between the physical system (here power grid) and the Information and Communication Technology (ICT) system (here Distribution Management System). In this paper we align the taxonomy used in International Electrotechnical Commission (power eng.) and International Federation for Information Processing (ICT community), define a metric for inconsistencies, and present a modelling approach using Stochastic Activity Networks to assess the consequences of inconsistencies. The feasibility of the approach is demonstrated in a simple use case.
2020-01-21
Suksomboon, Kalika, Shen, Zhishu, Ueda, Kazuaki, Tagami, Atsushi.  2019.  C2P2: Content-Centric Privacy Platform for Privacy-Preserving Monitoring Services. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:252–261.
Motivated by ubiquitous surveillance cameras in a smart city, a monitoring service can be provided to citizens. However, the rise of privacy concerns may disrupt this advanced service. Yet, the existing cloud-based services have not clearly proven that they can preserve Wth-privacy in which the relationship of three types of information, i.e., who requests the service, what the target is and where the camera is, does not leak. We address this problem by proposing a content-centric privacy platform (C2P2) that enables the construction of a Wth-privacy-preserving monitoring service without cloud dependency. C2P2 uses an image classification model of a target serving as the key to access the monitoring service specific to the target. In C2P2, communication is based on information-centric networking (ICN) that enables privacy preservation to be centered on the content itself rather than relying on a centralized system. Moreover, to preserve the privacy of bystanders, C2P2 separates the sensitive information (e.g., human faces) from the non-sensitive information (e.g., image background), while the privacy-aware forwarding strategies in C2P2 enable data aggregation and prevent privacy leakage resulting from false positive of image recognition. We evaluate the privacy leakage of C2P2 compared to that of the cloud-based system. The privacy analysis shows that, compared to the cloud-based system, C2P2 achieves a lower privacy loss ratio while reducing the communication cost significantly.
2019-08-12
Benzer, R., Yildiz, M. C..  2018.  YOLO Approach in Digital Object Definition in Military Systems. 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT). :35–37.

Today, as surveillance systems are widely used for indoor and outdoor monitoring applications, there is a growing interest in real-time generation detection and there are many different applications for real-time generation detection and analysis. Two-dimensional videos; It is used in multimedia content-based indexing, information acquisition, visual surveillance and distributed cross-camera surveillance systems, human tracking, traffic monitoring and similar applications. It is of great importance for the development of systems for national security by following a moving target within the scope of military applications. In this research, a more efficient solution is proposed in addition to the existing methods. Therefore, we present YOLO, a new approach to object detection for military applications.

Eetha, S., Agrawal, S., Neelam, S..  2018.  Zynq FPGA Based System Design for Video Surveillance with Sobel Edge Detection. 2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :76–79.

Advancements in semiconductor domain gave way to realize numerous applications in Video Surveillance using Computer vision and Deep learning, Video Surveillances in Industrial automation, Security, ADAS, Live traffic analysis etc. through image understanding improves efficiency. Image understanding requires input data with high precision which is dependent on Image resolution and location of camera. The data of interest can be thermal image or live feed coming for various sensors. Composite(CVBS) is a popular video interface capable of streaming upto HD(1920x1080) quality. Unlike high speed serial interfaces like HDMI/MIPI CSI, Analog composite video interface is a single wire standard supporting longer distances. Image understanding requires edge detection and classification for further processing. Sobel filter is one the most used edge detection filter which can be embedded into live stream. This paper proposes Zynq FPGA based system design for video surveillance with Sobel edge detection, where the input Composite video decoded (Analog CVBS input to YCbCr digital output), processed in HW and streamed to HDMI display simultaneously storing in SD memory for later processing. The HW design is scalable for resolutions from VGA to Full HD for 60fps and 4K for 24fps. The system is built on Xilinx ZC702 platform and TVP5146 to showcase the functional path.