Visible to the public Biblio

Filters: Keyword is game theoretic security  [Clear All Filters]
2021-03-29
Das, T., Eldosouky, A. R., Sengupta, S..  2020.  Think Smart, Play Dumb: Analyzing Deception in Hardware Trojan Detection Using Game Theory. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.
In recent years, integrated circuits (ICs) have become significant for various industries and their security has been given greater priority, specifically in the supply chain. Budgetary constraints have compelled IC designers to offshore manufacturing to third-party companies. When the designer gets the manufactured ICs back, it is imperative to test for potential threats like hardware trojans (HT). In this paper, a novel multi-level game-theoretic framework is introduced to analyze the interactions between a malicious IC manufacturer and the tester. In particular, the game is formulated as a non-cooperative, zero-sum, repeated game using prospect theory (PT) that captures different players' rationalities under uncertainty. The repeated game is separated into a learning stage, in which the defender learns about the attacker's tendencies, and an actual game stage, where this learning is used. Experiments show great incentive for the attacker to deceive the defender about their actual rationality by "playing dumb" in the learning stage (deception). This scenario is captured using hypergame theory to model the attacker's view of the game. The optimal deception rationality of the attacker is analytically derived to maximize utility gain. For the defender, a first-step deception mitigation process is proposed to thwart the effects of deception. Simulation results show that the attacker can profit from the deception as it can successfully insert HTs in the manufactured ICs without being detected.
Kotra, A., Eldosouky, A., Sengupta, S..  2020.  Every Anonymization Begins with k: A Game-Theoretic Approach for Optimized k Selection in k-Anonymization. 2020 International Conference on Advances in Computing and Communication Engineering (ICACCE). :1–6.
Privacy preservation is one of the greatest concerns when data is shared between different organizations. On the one hand, releasing data for research purposes is inevitable. On the other hand, sharing this data can jeopardize users' privacy. An effective solution, for the sharing organizations, is to use anonymization techniques to hide the users' sensitive information. One of the most popular anonymization techniques is k-Anonymization in which any data record is indistinguishable from at least k-1 other records. However, one of the fundamental challenges in choosing the value of k is the trade-off between achieving a higher privacy and the information loss associated with the anonymization. In this paper, the problem of choosing the optimal anonymization level for k-anonymization, under possible attacks, is studied when multiple organizations share their data to a common platform. In particular, two common types of attacks are considered that can target the k-anonymization technique. To this end, a novel game-theoretic framework is proposed to model the interactions between the sharing organizations and the attacker. The problem is formulated as a static game and its different Nash equilibria solutions are analytically derived. Simulation results show that the proposed framework can significantly improve the utility of the sharing organizations through optimizing the choice of k value.
Xu, Z., Easwaran, A..  2020.  A Game-Theoretic Approach to Secure Estimation and Control for Cyber-Physical Systems with a Digital Twin. 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). :20–29.
Cyber-Physical Systems (CPSs) play an increasingly significant role in many critical applications. These valuable applications attract various sophisticated attacks. This paper considers a stealthy estimation attack, which aims to modify the state estimation of the CPSs. The intelligent attackers can learn defense strategies and use clandestine attack strategies to avoid detection. To address the issue, we design a Chi-square detector in a Digital Twin (DT), which is an online digital model of the physical system. We use a Signaling Game with Evidence (SGE) to find the optimal attack and defense strategies. Our analytical results show that the proposed defense strategies can mitigate the impact of the attack on the physical estimation and guarantee the stability of the CPSs. Finally, we use an illustrative application to evaluate the performance of the proposed framework.
Liao, S., Wu, J., Li, J., Bashir, A. K..  2020.  Proof-of-Balance: Game-Theoretic Consensus for Controller Load Balancing of SDN. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :231–236.
Software Defined Networking (SDN) focus on the isolation of control plane and data plane, greatly enhancing the network's support for heterogeneity and flexibility. However, although the programmable network greatly improves the performance of all aspects of the network, flexible load balancing across controllers still challenges the current SDN architecture. Complex application scenarios lead to flexible and changeable communication requirements, making it difficult to guarantee the Quality of Service (QoS) for SDN users. To address this issue, this paper proposes a paradigm that uses blockchain to incentive safe load balancing for multiple controllers. We proposed a controller consortium blockchain for secure and efficient load balancing of multi-controllers, which includes a new cryptographic currency balance coin and a novel consensus mechanism Proof-of-Balance (PoB). In addition, we have designed a novel game theory-based incentive mechanism to incentive controllers with tight communication resources to offload tasks to idle controllers. The security analysis and performance simulation results indicate the superiority and effectiveness of the proposed scheme.
Solovey, R., Lavrova, D..  2020.  Game-Theoretic Approach to Self-Regulation of Dynamic Network Infrastructure to Protect Against Cyber Attacks. 2020 International Scientific and Technical Conference Modern Computer Network Technologies (MoNeTeC). :1–7.
The paper presents the concept of applying a game theory approach in infrastructure of wireless dynamic networks to counter computer attacks. The applying of this approach will allow to create mechanism for adaptive reconfiguration of network structure in the context of implementation various types of computer attacks and to provide continuous operation of network even in conditions of destructive information impacts.
Lakhdhar, Y., Rekhis, S., Sabir, E..  2020.  A Game Theoretic Approach For Deploying Forensic Ready Systems. 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). :1–6.
Cyber incidents are occurring every day using various attack strategies. Deploying security solutions with strong configurations will reduce the attack surface and improve the forensic readiness, but will increase the security overhead and cost. In contrast, using moderate or low security configurations will reduce that overhead, but will inevitably decrease the investigation readiness. To avoid the use of cost-prohibitive approaches in developing forensic-ready systems, we present in this paper a game theoretic approach for deploying an investigation-ready infrastructure. The proposed game is a non-cooperative two-player game between an adaptive cyber defender that uses a cognitive security solution to increase the investigation readiness and reduce the attackers' untraceability, and a cyber attacker that wants to execute non-provable attacks with a low cost. The cognitive security solution takes its strategic decision, mainly based on its ability to make forensic experts able to differentiate between provable identifiable, provable non-identifiable, and non-provable attack scenarios, starting from the expected evidences to be generated. We study the behavior of the two strategic players, looking for a mixed Nash equilibrium during competition and computing the probabilities of attacking and defending. A simulation is conducted to prove the efficiency of the proposed model in terms of the mean percentage of gained security cost, the number of stepping stones that an attacker creates and the rate of defender false decisions compared to two different approaches.
Halabi, T., Wahab, O. A., Zulkernine, M..  2020.  A Game-Theoretic Approach for Distributed Attack Mitigation in Intelligent Transportation Systems. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1–6.
Intelligent Transportation Systems (ITS) play a vital role in the development of smart cities. They enable various road safety and efficiency applications such as optimized traffic management, collision avoidance, and pollution control through the collection and evaluation of traffic data from Road Side Units (RSUs) and connected vehicles in real time. However, these systems are highly vulnerable to data corruption attacks which can seriously influence their decision-making abilities. Traditional attack detection schemes do not account for attackers' sophisticated and evolving strategies and ignore the ITS's constraints on security resources. In this paper, we devise a security game model that allows the defense mechanism deployed in the ITS to optimize the distribution of available resources for attack detection while considering mixed attack strategies, according to which the attacker targets multiple RSUs in a distributed fashion. In our security game, the utility of the ITS is quantified in terms of detection rate, attack damage, and the relevance of the information transmitted by the RSUs. The proposed approach will enable the ITS to mitigate the impact of attacks and increase its resiliency. The results show that our approach reduces the attack impact by at least 20% compared to the one that fairly allocates security resources to RSUs indifferently to attackers' strategies.
Dai, Q., Shi, L..  2020.  A Game-Theoretic Analysis of Cyber Attack-Mitigation in Centralized Feeder Automation System. 2020 IEEE Power Energy Society General Meeting (PESGM). :1–5.
The intelligent electronic devices widely deployed across the distribution network are inevitably making the feeder automation (FA) system more vulnerable to cyber-attacks, which would lead to disastrous socio-economic impacts. This paper proposes a three-stage game-theoretic framework that the defender allocates limited security resources to minimize the economic impacts on FA system while the attacker deploys limited attack resources to maximize the corresponding impacts. Meanwhile, the probability of successful attack is calculated based on the Bayesian attack graph, and a fault-tolerant location technique for centralized FA system is elaborately considered during analysis. The proposed game-theoretic framework is converted into a two-level zero-sum game model and solved by the particle swarm optimization (PSO) combined with a generalized reduced gradient algorithm. Finally, the proposed model is validated on distribution network for RBTS bus 2.
2021-01-22
Zhang, H., Liu, H., Liang, J., Li, T., Geng, L., Liu, Y., Chen, S..  2020.  Defense Against Advanced Persistent Threats: Optimal Network Security Hardening Using Multi-stage Maze Network Game. 2020 IEEE Symposium on Computers and Communications (ISCC). :1—6.

Advanced Persistent Threat (APT) is a stealthy, continuous and sophisticated method of network attacks, which can cause serious privacy leakage and millions of dollars losses. In this paper, we introduce a new game-theoretic framework of the interaction between a defender who uses limited Security Resources(SRs) to harden network and an attacker who adopts a multi-stage plan to attack the network. The game model is derived from Stackelberg games called a Multi-stage Maze Network Game (M2NG) in which the characteristics of APT are fully considered. The possible plans of the attacker are compactly represented using attack graphs(AGs), but the compact representation of the attacker's strategies presents a computational challenge and reaching the Nash Equilibrium(NE) is NP-hard. We present a method that first translates AGs into Markov Decision Process(MDP) and then achieves the optimal SRs allocation using the policy hill-climbing(PHC) algorithm. Finally, we present an empirical evaluation of the model and analyze the scalability and sensitivity of the algorithm. Simulation results exhibit that our proposed reinforcement learning-based SRs allocation is feasible and efficient.

2020-12-21
Jithish, J., Sankaran, S., Achuthan, K..  2020.  Towards Ensuring Trustworthiness in Cyber-Physical Systems: A Game-Theoretic Approach. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :626–629.

The emergence of Cyber-Physical Systems (CPSs) is a potential paradigm shift for the usage of Information and Communication Technologies (ICT). From predominantly a facilitator of information and communication services, the role of ICT in the present age has expanded to the management of objects and resources in the physical world. Thus, it is imperative to devise mechanisms to ensure the trustworthiness of data to secure vulnerable devices against security threats. This work presents an analytical framework based on non-cooperative game theory to evaluate the trustworthiness of individual sensor nodes that constitute the CPS. The proposed game-theoretic model captures the factors impacting the trustworthiness of CPS sensor nodes. Further, the model is used to estimate the Nash equilibrium solution of the game, to derive a trust threshold criterion. The trust threshold represents the minimum trust score required to be maintained by individual sensor nodes during CPS operation. Sensor nodes with trust scores below the threshold are potentially malicious and may be removed or isolated to ensure the secure operation of CPS.

2020-06-08
Sahabandu, Dinuka, Moothedath, Shana, Bushnell, Linda, Poovendran, Radha, Aller, Joey, Lee, Wenke, Clark, Andrew.  2019.  A Game Theoretic Approach for Dynamic Information Flow Tracking with Conditional Branching. 2019 American Control Conference (ACC). :2289–2296.
In this paper, we study system security against Advanced Persistent Threats (APTs). APTs are stealthy and persistent but APTs interact with system and introduce information flows in the system as data-flow and control-flow commands. Dynamic Information Flow Tracking (DIFT) is a promising detection mechanism against APTs which taints suspicious input sources in the system and performs online security analysis when a tainted information is used in unauthorized manner. Our objective in this paper is to model DIFT that handle data-flow and conditional branches in the program that arise from control-flow commands. We use game theoretic framework and provide the first analytical model of DIFT with data-flow and conditional-branch tracking. Our game model which is an undiscounted infinite-horizon stochastic game captures the interaction between APTs and DIFT and the notion of conditional branching. We prove that the best response of the APT is a maximal reachability probability problem and provide a polynomial-time algorithm to find the best response by solving a linear optimization problem. We formulate the best response of the defense as a linear optimization problem and show that an optimal solution to the linear program returns a deterministic optimal policy for the defense. Since finding Nash equilibrium for infinite-horizon undiscounted stochastic games is computationally difficult, we present a nonlinear programming based polynomial-time algorithm to find an E-Nash equilibrium. Finally, we perform experimental analysis of our algorithm on real-world data for NetRecon attack augmented with conditional branching.
Homsi, Soamar, Quan, Gang, Wen, Wujie, Chapparo-Baquero, Gustavo A., Njilla, Laurent.  2019.  Game Theoretic-Based Approaches for Cybersecurity-Aware Virtual Machine Placement in Public Cloud Clusters. 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). :272–281.
Allocating several Virtual Machines (VMs) onto a single server helps to increase cloud computing resource utilization and to reduce its operating expense. However, multiplexing VMs with different security levels on a single server gives rise to major VM-to-VM cybersecurity interdependency risks. In this paper, we address the problem of the static VM allocation with cybersecurity loss awareness by modeling it as a two-player zero-sum game between an attacker and a provider. We first obtain optimal solutions by employing the mathematical programming approach. We then seek to find the optimal solutions by quickly identifying the equilibrium allocation strategies in our formulated zero-sum game. We mean by "equilibrium" that none of the provider nor the attacker has any incentive to deviate from one's chosen strategy. Specifically, we study the characteristics of the game model, based on which, to develop effective and efficient allocation algorithms. Simulation results show that our proposed cybersecurity-aware consolidation algorithms can significantly outperform the commonly used multi-dimensional bin packing approaches for large-scale cloud data centers.
He, Fei, Chandrasekar, Santhosh, Rao, Nageswara S. V., Ma, Chris Y. T..  2019.  Effects of Interdependencies on Game-Theoretic Defense of Cyber-Physical Infrastructures. 2019 22th International Conference on Information Fusion (FUSION). :1–8.
Resilience and security of infrastructures depend not only on their constituent systems but also on interdependencies among them. This paper studies how these interdependencies in infrastructures affect the defense effort needed to counter external attacks, by formulating a simultaneous game between a service provider (i.e., defender) and an attacker. Effects of interdependencies in three basic topological structures, namely, bus, star and ring, are considered and compared in terms of the game-theoretic defense strategy. Results show that in a star topology, the attacker's and defender's pure strategies at Nash Equilibrium (NE) are sensitive to interdependency levels whereas in a bus structure, the interdependencies show little impact on both defender's and attacker's pure strategies. The sensitivity estimates of defense and attack strategies at NE with respect to target valuation and unit cost are also presented. The results provide insights into infrastructure design and resource allocation for reinforcement of constituent systems.
Hu, Qin, Wang, Shengling, Cheng, Xiuzhen.  2019.  A Game Theoretic Analysis on Block Withholding Attacks Using the Zero-Determinant Strategy. 2019 IEEE/ACM 27th International Symposium on Quality of Service (IWQoS). :1–10.
In Bitcoin's incentive system that supports open mining pools, block withholding attacks incur huge security threats. In this paper, we investigate the mutual attacks among pools as this determines the macroscopic utility of the whole distributed system. Existing studies on pools' interactive attacks usually employ the conventional game theory, where the strategies of the players are considered pure and equal, neglecting the existence of powerful strategies and the corresponding favorable game results. In this study, we take advantage of the Zero-Determinant (ZD) strategy to analyze the block withholding attack between any two pools, where the ZD adopter has the unilateral control on the expected payoffs of its opponent and itself. In this case, we are faced with the following questions: who can adopt the ZD strategy? individually or simultaneously? what can the ZD player achieve? In order to answer these questions, we derive the conditions under which two pools can individually or simultaneously employ the ZD strategy and demonstrate the effectiveness. To the best of our knowledge, we are the first to use the ZD strategy to analyze the block withholding attack among pools.
van den Berg, Eric, Robertson, Seth.  2019.  Game-Theoretic Planning to Counter DDoS in NEMESIS. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–6.
NEMESIS provides powerful and cost-effective defenses against extreme Distributed Denial of Service (DDos) attacks through a number of network maneuvers. However, selection of which maneuvers to deploy when and with what parameters requires great care to achieve optimal outcomes in the face of overwhelming attack. Analytical wargaming allows game theoretic optimal Courses of Action (COA) to be created real-time during live operations, orders of magnitude faster than packet-level simulation and with equivalent outcomes to even expert human hand-crafted COAs.
Boubakri, Wided, Abdallah, Walid, Boudriga, Noureddine.  2019.  Game-Based Attack Defense Model to Provide Security for Relay Selection in 5G Mobile Networks. 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :160–167.

5G mobile networks promise universal communication environment and aims at providing higher bandwidth, increased communication and networking capabilities, and extensive signal coverage by using multiple communication technologies including Device-to-Device (D-to-D). This paradigm, will allow scalable and ubiquitous connectivity for large-scale mobile networks where a huge number of heterogeneous devices with limited resources will cooperate to enhance communication efficiency in terms of link reliability, spectral efficiency, system capacity, and transmission range. However, owing to its decentralized nature, cooperative D-to-D communication could be vulnerable to attacks initiated on relay nodes. Consequently, a source node has the interest to select the more protected relay to ensure the security of its traffic. Nevertheless, an improvement in the protection level has a counterpart cost that must be sustained by the device. To address this trade-off as well as the interaction between the attacker and the source device, we propose a dynamic game theoretic based approach to model and analyze this problem as a cost model. The utility function of the proposed non-cooperative game is based on the concepts of return on protection and return on attack which illustrate the gain of selecting a relay for transmitting a data packet by a source node and the reward of the attacker to perform an attack to compromise the transmitted data. Moreover, we discuss and analyze Nash equilibrium convergence of this attack-defense model and we propose an heuristic algorithm that can determine the equilibrium state in a limited number of running stages. Finally, we perform simulation work to show the effectiveness of the game model in assessing the behavior of the source node and the attacker and its ability to reach equilibrium within a finite number of steps.

Pirani, Mohammad, Nekouei, Ehsan, Sandberg, Henrik, Johansson, Karl Henrik.  2019.  A Game-theoretic Framework for Security-aware Sensor Placement Problem in Networked Control Systems. 2019 American Control Conference (ACC). :114–119.
This paper studies the sensor placement problem in a networked control system for improving its security against cyber-physical attacks. The problem is formulated as a zero-sum game between an attacker and a detector. The attacker's decision is to select f nodes of the network to attack whereas the detector's decision is to place f sensors to detect the presence of the attack signals. In our formulation, the attacker minimizes its visibility, defined as the system L2 gain from the attack signals to the deployed sensors' outputs, and the detector maximizes the visibility of the attack signals. The equilibrium strategy of the game determines the optimal locations of the sensors. The existence of Nash equilibrium for the attacker-detector game is studied when the underlying connectivity graph is a directed or an undirected tree. When the game does not admit a Nash equilibrium, it is shown that the Stackelberg equilibrium of the game, with the detector as the game leader, can be computed efficiently. Our results show that, under the optimal sensor placement strategy, an undirected topology provides a higher security level for a networked control system compared with its corresponding directed topology.
Zhu, Ziming.  2019.  Game theoretic framework for cyber-physical system security incorporating bounded rationality. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :360–365.

This paper presents a novel game theoretic attack-defence decision making framework for cyber-physical system (CPS) security. Game theory is a powerful tool to analyse the interaction between the attacker and the defender in such scenarios. In the formulation of games, participants are usually assumed to be rational. They will always choose the action to pursuit maximum payoff according to the knowledge of the strategic situation they are in. However, in reality the capacity of rationality is often bounded by the level of intelligence, computational resources and the amount of available information. This paper formulates the concept of bounded rationality into the decision making process, in order to optimise the defender's strategy considering that the defender and the attacker have incomplete information of each other and limited computational capacity. Under the proposed framework, the defender can often benefit from deviating from the minimax Nash Equilibrium strategy, the theoretically expected outcome of rational game playing. Numerical results are presented and discussed in order to demonstrate the proposed technique.

2020-02-26
Zhong, Xiaoxiong, Lu, Renhao, Li, Li, Wang, Xinghan, Zheng, Yanbin.  2019.  DSOR: A Traffic-Differentiated Secure Opportunistic Routing with Game Theoretic Approach in MANETs. 2019 IEEE Symposium on Computers and Communications (ISCC). :1–6.

Recently, the increase of different services makes the design of routing protocols more difficult in mobile ad hoc networks (MANETs), e.g., how to guarantee the QoS of different types of traffics flows in MANETs with resource constrained and malicious nodes. opportunistic routing (OR) can make full use of the broadcast characteristics of wireless channels to improve the performance of MANETs. In this paper, we propose a traffic-differentiated secure opportunistic routing from a game theoretic perspective, DSOR. In the proposed scheme, we use a novel method to calculate trust value, considering node's forwarding capability and the status of different types of flows. According to the resource status of the network, we propose a service price and resource price for the auction model, which is used to select optimal candidate forwarding sets. At the same time, the optimal bid price has been proved and a novel flow priority decision for transmission is presented, which is based on waiting time and requested time. The simulation results show that the network lifetime, packet delivery rate and delay of the DSOR are better than existing works.

2020-02-17
Paul, Shuva, Ni, Zhen.  2019.  A Strategic Analysis of Attacker-Defender Repeated Game in Smart Grid Security. 2019 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Traditional power grid security schemes are being replaced by highly advanced and efficient smart security schemes due to the advancement in grid structure and inclusion of cyber control and monitoring tools. Smart attackers create physical, cyber, or cyber-physical attacks to gain the access of the power system and manipulate/override system status, measurements and commands. In this paper, we formulate the environment for the attacker-defender interaction in the smart power grid. We provide a strategic analysis of the attacker-defender strategic interaction using a game theoretic approach. We apply repeated game to formulate the problem, implement it in the power system, and investigate for optimal strategic behavior in terms of mixed strategies of the players. In order to define the utility or cost function for the game payoffs calculation, generation power is used. Attack-defense budget is also incorporated with the attacker-defender repeated game to reflect a more realistic scenario. The proposed game model is validated using IEEE 39 bus benchmark system. A comparison between the proposed game model and the all monitoring model is provided to validate the observations.

2019-12-30
Shirasaki, Yusuke, Takyu, Osamu, Fujii, Takeo, Ohtsuki, Tomoaki, Sasamori, Fumihito, Handa, Shiro.  2018.  Consideration of security for PLNC with untrusted relay in game theoretic perspective. 2018 IEEE Radio and Wireless Symposium (RWS). :109–112.
A physical layer network coding (PLNC) is a highly efficient scheme for exchanging information between two nodes. Since the relay receives the interfered signal between two signals sent by two nodes, it hardly decodes any information from received signal. Therefore, the secure wireless communication link to the untrusted relay is constructed. The two nodes optimize the transmit power control for maximizing the secure capacity but these depend on the channel state information informed by the relay station. Therefore, the untrusted relay disguises the informed CSI for exploiting the information from two nodes. This paper constructs the game of two optimizations between the legitimate two nodes and the untrusted relay for clarifying the security of PLNC with untrusted relay.
Belavagi, Manjula C, Muniyal, Balachandra.  2016.  Game theoretic approach towards intrusion detection. 2016 International Conference on Inventive Computation Technologies (ICICT). 1:1–5.
Today's network is distributed and heterogeneous in nature and has numerous applications which affect day to day life, such as e-Banking, e-Booking of tickets, on line shopping etc. Hence the security of the network is crucial. Threats in the network can be due to intrusions. Such threats can be observed and handled using Intrusion Detection System. The security can be achieved using intrusion detection system, which observes the data traffic and identifies it as an intrusion or not. The objective of this paper is to design a model using game theoretic approach for intrusion detection. Game model is designed by defining players, strategies and utility functions to identify the Probe attacks. This model is tested with NSLKDD data set. The model is the Probe attacks are identified by dominated strategies elimination method. Experimental results shows that game model identifies the attacks with good detection rate.
Chen, Jing, Du, Ruiying.  2009.  Fault Tolerance and Security in Forwarding Packets Using Game Theory. 2009 International Conference on Multimedia Information Networking and Security. 2:534–537.
In self-organized wireless network, such as ad hoc network, sensor network or mesh network, nodes are independent individuals which have different benefit; Therefore, selfish nodes refuse to forward packets for other nodes in order to save energy which causes the network fault. At the same time, some nodes may be malicious, whose aim is to damage the network. In this paper, we analyze the cooperation stimulation and security in self-organized wireless networks under a game theoretic framework. We first analyze a four node wireless network in which nodes share the channel by relaying for others during its idle periods in order to help the other nodes, each node has to use a part of its available channel capacity. And then, the fault tolerance and security problem is modeled as a non-cooperative game in which each player maximizes its own utility function. The goal of the game is to maximize the utility function in the giving condition in order to get better network efficiency. At last, for characterizing the efficiency of Nash equilibria, we analyze the so called price of anarchy, as the ratio between the objective function at the worst Nash equilibrium and the optimal objective function. Our results show that the players can get the biggest payoff if they obey cooperation strategy.
Tootaghaj, Diman Zad, Farhat, Farshid, Pakravan, Mohammad-Reza, Aref, Mohammad-Reza.  2011.  Game-theoretic approach to mitigate packet dropping in wireless Ad-hoc networks. 2011 IEEE Consumer Communications and Networking Conference (CCNC). :163–165.
Performance of routing is severely degraded when misbehaving nodes drop packets instead of properly forwarding them. In this paper, we propose a Game-Theoretic Adaptive Multipath Routing (GTAMR) protocol to detect and punish selfish or malicious nodes which try to drop information packets in routing phase and defend against collaborative attacks in which nodes try to disrupt communication or save their power. Our proposed algorithm outranks previous schemes because it is resilient against attacks in which more than one node coordinate their misbehavior and can be used in networks which wireless nodes use directional antennas. We then propose a game theoretic strategy, ERTFT, for nodes to promote cooperation. In comparison with other proposed TFT-like strategies, ours is resilient to systematic errors in detection of selfish nodes and does not lead to unending death spirals.
Yang, Lei, Zhang, Mengyuan, He, Shibo, Li, Ming, Zhang, Junshan.  2018.  Crowd-Empowered Privacy-Preserving Data Aggregation for Mobile Crowdsensing. Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing. :151–160.
We develop an auction framework for privacy-preserving data aggregation in mobile crowdsensing, where the platform plays the role as an auctioneer to recruit workers for a sensing task. In this framework, the workers are allowed to report privacy-preserving versions of their data to protect their data privacy; and the platform selects workers based on their sensing capabilities, which aims to address the drawbacks of game-theoretic models that cannot ensure the accuracy level of the aggregated result, due to the existence of multiple Nash Equilibria. Observe that in this auction based framework, there exists externalities among workers' data privacy, because the data privacy of each worker depends on both her injected noise and the total noise in the aggregated result that is intimately related to which workers are selected to fulfill the task. To achieve a desirable accuracy level of the data aggregation in a cost-effective manner, we explicitly characterize the externalities, i.e., the impact of the noise added by each worker on both the data privacy and the accuracy of the aggregated result. Further, we explore the problem structure, characterize the hidden monotonicity property of the problem, and determine the critical bid of workers, which makes it possible to design a truthful, individually rational and computationally efficient incentive mechanism. The proposed incentive mechanism can recruit a set of workers to approximately minimize the cost of purchasing private sensing data from workers subject to the accuracy requirement of the aggregated result. We validate the proposed scheme through theoretical analysis as well as extensive simulations.