Visible to the public Biblio

Filters: Keyword is convolutional neural networks  [Clear All Filters]
2020-06-03
Amato, Giuseppe, Falchi, Fabrizio, Gennaro, Claudio, Massoli, Fabio Valerio, Passalis, Nikolaos, Tefas, Anastasios, Trivilini, Alessandro, Vairo, Claudio.  2019.  Face Verification and Recognition for Digital Forensics and Information Security. 2019 7th International Symposium on Digital Forensics and Security (ISDFS). :1—6.

In this paper, we present an extensive evaluation of face recognition and verification approaches performed by the European COST Action MULTI-modal Imaging of FOREnsic SciEnce Evidence (MULTI-FORESEE). The aim of the study is to evaluate various face recognition and verification methods, ranging from methods based on facial landmarks to state-of-the-art off-the-shelf pre-trained Convolutional Neural Networks (CNN), as well as CNN models directly trained for the task at hand. To fulfill this objective, we carefully designed and implemented a realistic data acquisition process, that corresponds to a typical face verification setup, and collected a challenging dataset to evaluate the real world performance of the aforementioned methods. Apart from verifying the effectiveness of deep learning approaches in a specific scenario, several important limitations are identified and discussed through the paper, providing valuable insight for future research directions in the field.

2020-06-01
Xenya, Michael Christopher, Kwayie, Crentsil, Quist-Aphesti, Kester.  2019.  Intruder Detection with Alert Using Cloud Based Convolutional Neural Network and Raspberry Pi. 2019 International Conference on Computing, Computational Modelling and Applications (ICCMA). :46–464.
In this paper, an intruder detection system has been built with an implementation of convolutional neural network (CNN) using raspberry pi, Microsoft's Azure and Twilio cloud systems. The CNN algorithm which is stored in the cloud is implemented to basically classify input data as either intruder or user. By using the raspberry pi as the middleware and raspberry pi camera for image acquisition, efficient execution of the learning and classification operations are performed using higher resources that cloud computing offers. The cloud system is also programmed to alert designated users via multimedia messaging services (MMS) when intruders or users are detected. Furthermore, our work has demonstrated that, though convolutional neural network could impose high computing demands on a processor, the input data could be obtained with low-cost modules and middleware which are of low processing power while subjecting the actual learning algorithm execution to the cloud system.
2020-05-18
Lal Senanayaka, Jagath Sri, Van Khang, Huynh, Robbersmyr, Kjell G..  2018.  Multiple Fault Diagnosis of Electric Powertrains Under Variable Speeds Using Convolutional Neural Networks. 2018 XIII International Conference on Electrical Machines (ICEM). :1900–1905.
Electric powertrains are widely used in automotive and renewable energy industries. Reliable diagnosis for defects in the critical components such as bearings, gears and stator windings, is important to prevent failures and enhance the system reliability and power availability. Most of existing fault diagnosis methods are based on specific characteristic frequencies to single faults at constant speed operations. Once multiple faults occur in the system, such a method may not detect the faults effectively and may give false alarms. Furthermore, variable speed operations render a challenge of analysing nonstationary signals. In this work, a deep learning-based fault diagnosis method is proposed to detect common faults in the electric powertrains. The proposed method is based on pattern recognition using convolutional neural network to detect effectively not only single faults at constant speed but also multiple faults in variable speed operations. The effectiveness of the proposed method is validated via an in-house experimental setup.
2020-05-11
Liu, Weiyou, Liu, Xu, Di, Xiaoqiang, Qi, Hui.  2019.  A novel network intrusion detection algorithm based on Fast Fourier Transformation. 2019 1st International Conference on Industrial Artificial Intelligence (IAI). :1–6.
Deep learning techniques have been widely used in intrusion detection, but their application on convolutional neural networks (CNN) is still immature. The main challenge is how to represent the network traffic to improve performance of the CNN model. In this paper, we propose a network intrusion detection algorithm based on representation learning using Fast Fourier Transformation (FFT), which is first exploration that converts traffic to image by FFT to the best of our knowledge. Each traffic is converted to an image and then the intrusion detection problem is turned to image classification. The experiment results on NSL-KDD dataset show that the classification performence of the algorithm in the CNN model has obvious advantages compared with other algorithms.
Khan, Riaz Ullah, Zhang, Xiaosong, Alazab, Mamoun, Kumar, Rajesh.  2019.  An Improved Convolutional Neural Network Model for Intrusion Detection in Networks. 2019 Cybersecurity and Cyberforensics Conference (CCC). :74–77.
Network intrusion detection is an important component of network security. Currently, the popular detection technology used the traditional machine learning algorithms to train the intrusion samples, so as to obtain the intrusion detection model. However, these algorithms have the disadvantage of low detection rate. Deep learning is more advanced technology that automatically extracts features from samples. In view of the fact that the accuracy of intrusion detection is not high in traditional machine learning technology, this paper proposes a network intrusion detection model based on convolutional neural network algorithm. The model can automatically extract the effective features of intrusion samples, so that the intrusion samples can be accurately classified. Experimental results on KDD99 datasets show that the proposed model can greatly improve the accuracy of intrusion detection.
2020-05-08
Shen, Weiguo, Wang, Wei.  2018.  Node Identification in Wireless Network Based on Convolutional Neural Network. 2018 14th International Conference on Computational Intelligence and Security (CIS). :238—241.
Aiming at the problem of node identification in wireless networks, a method of node identification based on deep learning is proposed, which starts with the tiny features of nodes in radiofrequency layer. Firstly, in order to cut down the computational complexity, Principal Component Analysis is used to reduce the dimension of node sample data. Secondly, a convolution neural network containing two hidden layers is designed to extract local features of the preprocessed data. Stochastic gradient descent method is used to optimize the parameters, and the Softmax Model is used to determine the output label. Finally, the effectiveness of the method is verified by experiments on practical wireless ad-hoc network.
2020-04-13
M.R., Anala, Makker, Malika, Ashok, Aakanksha.  2019.  Anomaly Detection in Surveillance Videos. 2019 26th International Conference on High Performance Computing, Data and Analytics Workshop (HiPCW). :93–98.
Every public or private area today is preferred to be under surveillance to ensure high levels of security. Since the surveillance happens round the clock, data gathered as a result is huge and requires a lot of manual work to go through every second of the recorded videos. This paper presents a system which can detect anomalous behaviors and alarm the user on the type of anomalous behavior. Since there are a myriad of anomalies, the classification of anomalies had to be narrowed down. There are certain anomalies which are generally seen and have a huge impact on public safety, such as explosions, road accidents, assault, shooting, etc. To narrow down the variations, this system can detect explosion, road accidents, shooting, and fighting and even output the frame of their occurrence. The model has been trained with videos belonging to these classes. The dataset used is UCF Crime dataset. Learning patterns from videos requires the learning of both spatial and temporal features. Convolutional Neural Networks (CNN) extract spatial features and Long Short-Term Memory (LSTM) networks learn the sequences. The classification, using an CNN-LSTM model achieves an accuracy of 85%.
2020-04-06
Chen, Chia-Mei, Wang, Shi-Hao, Wen, Dan-Wei, Lai, Gu-Hsin, Sun, Ming-Kung.  2019.  Applying Convolutional Neural Network for Malware Detection. 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST). :1—5.

Failure to detect malware at its very inception leaves room for it to post significant threat and cost to cyber security for not only individuals, organizations but also the society and nation. However, the rapid growth in volume and diversity of malware renders conventional detection techniques that utilize feature extraction and comparison insufficient, making it very difficult for well-trained network administrators to identify malware, not to mention regular users of internet. Challenges in malware detection is exacerbated since complexity in the type and structure also increase dramatically in these years to include source code, binary file, shell script, Perl script, instructions, settings and others. Such increased complexity offers a premium on misjudgment. In order to increase malware detection efficiency and accuracy under large volume and multiple types of malware, this research adopts Convolutional Neural Networks (CNN), one of the most successful deep learning techniques. The experiment shows an accuracy rate of over 90% in identifying malicious and benign codes. The experiment also presents that CNN is effective with detecting source code and binary code, it can further identify malware that is embedded into benign code, leaving malware no place to hide. This research proposes a feasible solution for network administrators to efficiently identify malware at the very inception in the severe network environment nowadays, so that information technology personnel can take protective actions in a timely manner and make preparations for potential follow-up cyber-attacks.

2020-02-10
Zubov, Ilya G., Lysenko, Nikolai V., Labkov, Gleb M..  2019.  Detection of the Information Hidden in Image by Convolutional Neural Networks. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :393–394.

This article shows the possibility of detection of the hidden information in images. This is the approach to steganalysis than the basic data about the image and the information about the hiding method of the information are unknown. The architecture of the convolutional neural network makes it possible to detect small changes in the image with high probability.

2020-01-13
Zegzhda, Dmitry, Lavrova, Daria, Khushkeev, Aleksei.  2019.  Detection of information security breaches in distributed control systems based on values prediction of multidimensional time series. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). :780–784.
Proposed an approach for information security breaches detection in distributed control systems based on prediction of multidimensional time series formed of sensor and actuator data.
2019-10-02
Hussein, A., Salman, O., Chehab, A., Elhajj, I., Kayssi, A..  2019.  Machine Learning for Network Resiliency and Consistency. 2019 Sixth International Conference on Software Defined Systems (SDS). :146–153.

Being able to describe a specific network as consistent is a large step towards resiliency. Next to the importance of security lies the necessity of consistency verification. Attackers are currently focusing on targeting small and crutial goals such as network configurations or flow tables. These types of attacks would defy the whole purpose of a security system when built on top of an inconsistent network. Advances in Artificial Intelligence (AI) are playing a key role in ensuring a fast responce to the large number of evolving threats. Software Defined Networking (SDN), being centralized by design, offers a global overview of the network. Robustness and adaptability are part of a package offered by programmable networking, which drove us to consider the integration between both AI and SDN. The general goal of our series is to achieve an Artificial Intelligence Resiliency System (ARS). The aim of this paper is to propose a new AI-based consistency verification system, which will be part of ARS in our future work. The comparison of different deep learning architectures shows that Convolutional Neural Networks (CNN) give the best results with an accuracy of 99.39% on our dataset and 96% on our consistency test scenario.

2019-08-12
Verdoliva, Luisa.  2018.  Deep Learning in Multimedia Forensics. Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. :3–3.
With the widespread diffusion of powerful media editing tools, falsifying images and videos has become easier and easier in the last few years. Fake multimedia, often used to support fake news, represents a growing menace in many fields of life, notably in politics, journalism, and the judiciary. In response to this threat, the signal processing community has produced a major research effort. A large number of methods have been proposed for source identification, forgery detection and localization, relying on the typical signal processing tools. The advent of deep learning, however, is changing the rules of the game. On one hand, new sophisticated methods based on deep learning have been proposed to accomplish manipulations that were previously unthinkable. On the other hand, deep learning provides also the analyst with new powerful forensic tools. Given a suitably large training set, deep learning architectures ensure usually a significant performance gain with respect to conventional methods, and a much higher robustness to post-processing and evasions. In this talk after reviewing the main approaches proposed in the literature to ensure media authenticity, the most promising solutions relying on Convolutional Neural Networks will be explored with special attention to realistic scenarios, such as when manipulated images and videos are spread out over social networks. In addition, an analysis of the efficacy of adversarial attacks on such methods will be presented.
2019-06-10
Kim, C. H., Kabanga, E. K., Kang, S..  2018.  Classifying Malware Using Convolutional Gated Neural Network. 2018 20th International Conference on Advanced Communication Technology (ICACT). :40-44.

Malware or Malicious Software, are an important threat to information technology society. Deep Neural Network has been recently achieving a great performance for the tasks of malware detection and classification. In this paper, we propose a convolutional gated recurrent neural network model that is capable of classifying malware to their respective families. The model is applied to a set of malware divided into 9 different families and that have been proposed during the Microsoft Malware Classification Challenge in 2015. The model shows an accuracy of 92.6% on the available dataset.

Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D. B., Wang, Y., Iqbal, F..  2018.  Malware Classification with Deep Convolutional Neural Networks. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1-5.

In this paper, we propose a deep learning framework for malware classification. There has been a huge increase in the volume of malware in recent years which poses a serious security threat to financial institutions, businesses and individuals. In order to combat the proliferation of malware, new strategies are essential to quickly identify and classify malware samples so that their behavior can be analyzed. Machine learning approaches are becoming popular for classifying malware, however, most of the existing machine learning methods for malware classification use shallow learning algorithms (e.g. SVM). Recently, Convolutional Neural Networks (CNN), a deep learning approach, have shown superior performance compared to traditional learning algorithms, especially in tasks such as image classification. Motivated by this success, we propose a CNN-based architecture to classify malware samples. We convert malware binaries to grayscale images and subsequently train a CNN for classification. Experiments on two challenging malware classification datasets, Malimg and Microsoft malware, demonstrate that our method achieves better than the state-of-the-art performance. The proposed method achieves 98.52% and 99.97% accuracy on the Malimg and Microsoft datasets respectively.

Kornish, D., Geary, J., Sansing, V., Ezekiel, S., Pearlstein, L., Njilla, L..  2018.  Malware Classification Using Deep Convolutional Neural Networks. 2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). :1-6.

In recent years, deep convolution neural networks (DCNNs) have won many contests in machine learning, object detection, and pattern recognition. Furthermore, deep learning techniques achieved exceptional performance in image classification, reaching accuracy levels beyond human capability. Malware variants from similar categories often contain similarities due to code reuse. Converting malware samples into images can cause these patterns to manifest as image features, which can be exploited for DCNN classification. Techniques for converting malware binaries into images for visualization and classification have been reported in the literature, and while these methods do reach a high level of classification accuracy on training datasets, they tend to be vulnerable to overfitting and perform poorly on previously unseen samples. In this paper, we explore and document a variety of techniques for representing malware binaries as images with the goal of discovering a format best suited for deep learning. We implement a database for malware binaries from several families, stored in hexadecimal format. These malware samples are converted into images using various approaches and are used to train a neural network to recognize visual patterns in the input and classify malware based on the feature vectors. Each image type is assessed using a variety of learning models, such as transfer learning with existing DCNN architectures and feature extraction for support vector machine classifier training. Each technique is evaluated in terms of classification accuracy, result consistency, and time per trial. Our preliminary results indicate that improved image representation has the potential to enable more effective classification of new malware.

2019-05-09
Kravchik, Moshe, Shabtai, Asaf.  2018.  Detecting Cyber Attacks in Industrial Control Systems Using Convolutional Neural Networks. Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy. :72-83.

This paper presents a study on detecting cyber attacks on industrial control systems (ICS) using convolutional neural networks. The study was performed on a Secure Water Treatment testbed (SWaT) dataset, which represents a scaled-down version of a real-world industrial water treatment plant. We suggest a method for anomaly detection based on measuring the statistical deviation of the predicted value from the observed value. We applied the proposed method by using a variety of deep neural network architectures including different variants of convolutional and recurrent networks. The test dataset included 36 different cyber attacks. The proposed method successfully detected 31 attacks with three false positives thus improving on previous research based on this dataset. The results of the study show that 1D convolutional networks can be successfully used for anomaly detection in industrial control systems and outperform recurrent networks in this setting. The findings also suggest that 1D convolutional networks are effective at time series prediction tasks which are traditionally considered to be best solved using recurrent neural networks. This observation is a promising one, as 1D convolutional neural networks are simpler, smaller, and faster than the recurrent neural networks.

2019-04-05
Chen, S., Chen, Y., Tzeng, W..  2018.  Effective Botnet Detection Through Neural Networks on Convolutional Features. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :372-378.

Botnet is one of the major threats on the Internet for committing cybercrimes, such as DDoS attacks, stealing sensitive information, spreading spams, etc. It is a challenging issue to detect modern botnets that are continuously improving for evading detection. In this paper, we propose a machine learning based botnet detection system that is shown to be effective in identifying P2P botnets. Our approach extracts convolutional version of effective flow-based features, and trains a classification model by using a feed-forward artificial neural network. The experimental results show that the accuracy of detection using the convolutional features is better than the ones using the traditional features. It can achieve 94.7% of detection accuracy and 2.2% of false positive rate on the known P2P botnet datasets. Furthermore, our system provides an additional confidence testing for enhancing performance of botnet detection. It further classifies the network traffic of insufficient confidence in the neural network. The experiment shows that this stage can increase the detection accuracy up to 98.6% and decrease the false positive rate up to 0.5%.

2019-04-01
Stein, G., Peng, Q..  2018.  Low-Cost Breaking of a Unique Chinese Language CAPTCHA Using Curriculum Learning and Clustering. 2018 IEEE International Conference on Electro/Information Technology (EIT). :0595–0600.

Text-based CAPTCHAs are still commonly used to attempt to prevent automated access to web services. By displaying an image of distorted text, they attempt to create a challenge image that OCR software can not interpret correctly, but a human user can easily determine the correct response to. This work focuses on a CAPTCHA used by a popular Chinese language question-and-answer website and how resilient it is to modern machine learning methods. While the majority of text-based CAPTCHAs focus on transcription tasks, the CAPTCHA solved in this work is based on localization of inverted symbols in a distorted image. A convolutional neural network (CNN) was created to evaluate the likelihood of a region in the image belonging to an inverted character. It is used with a feature map and clustering to identify potential locations of inverted characters. Training of the CNN was performed using curriculum learning and compared to other potential training methods. The proposed method was able to determine the correct response in 95.2% of cases of a simulated CAPTCHA and 67.6% on a set of real CAPTCHAs. Potential methods to increase difficulty of the CAPTCHA and the success rate of the automated solver are considered.

Liu, F., Li, Z., Li, X., Lv, T..  2018.  A Text-Based CAPTCHA Cracking System with Generative Adversarial Networks. 2018 IEEE International Symposium on Multimedia (ISM). :192–193.
As a multimedia security mechanism, CAPTCHAs are completely automated public turing test to tell computers and humans apart. Although cracking CAPTCHA has been explored for many years, it is still a challenging problem for real practice. In this demo, we present a text based CAPTCHA cracking system by using convolutional neural networks(CNN). To solve small sample problem, we propose to combine conditional deep convolutional generative adversarial networks(cDCGAN) and CNN, which makes a tremendous progress in accuracy. In addition, we also select multiple models with low pearson correlation coefficients for majority voting ensemble, which further improves the accuracy. The experimental results show that the system has great advantages and provides a new mean for cracking CAPTCHAs.
Zhang, T., Zheng, H., Zhang, L..  2018.  Verification CAPTCHA Based on Deep Learning. 2018 37th Chinese Control Conference (CCC). :9056–9060.
At present, the captcha is widely used in the Internet. The method of captcha recognition using the convolutional neural networks was introduced in this paper. It was easier to apply the convolution neural network model of simple training to segment the captcha, and the network structure was established imitating VGGNet model. and the correct rate can be reached more than 90%. For the more difficult segmentation captcha, it can be used the end-to-end thought to the captcha as a whole to training, In this way, the recognition rate of the more difficult segmentation captcha can be reached about 85%.
2019-03-15
Lin, W., Lin, H., Wang, P., Wu, B., Tsai, J..  2018.  Using Convolutional Neural Networks to Network Intrusion Detection for Cyber Threats. 2018 IEEE International Conference on Applied System Invention (ICASI). :1107-1110.

In practice, Defenders need a more efficient network detection approach which has the advantages of quick-responding learning capability of new network behavioural features for network intrusion detection purpose. In many applications the capability of Deep Learning techniques has been confirmed to outperform classic approaches. Accordingly, this study focused on network intrusion detection using convolutional neural networks (CNNs) based on LeNet-5 to classify the network threats. The experiment results show that the prediction accuracy of intrusion detection goes up to 99.65% with samples more than 10,000. The overall accuracy rate is 97.53%.

2019-03-11
Go, Wooyoung, Lee, Daewoo.  2018.  Toward Trustworthy Deep Learning in Security. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :2219–2221.

In the security area, there has been an increasing tendency to apply deep learning, which is perceived as a black box method because of the lack of understanding of its internal functioning. Can we trust deep learning models when they achieve high test accuracy? Using a visual explanation method, we find that deep learning models used in security tasks can easily focus on semantically non-discriminative parts of input data even though they produce the right answers. Furthermore, when a model is re-trained without any change in the learning procedure (i.e., no change in training/validation data, initialization/optimization methods and hyperparameters), it can focus on significantly different parts of many samples while producing the same answers. For trustworthy deep learning in security, therefore, we argue that it is necessary to verify the classification criteria of deep learning models before deploying them, even though they successfully achieve high test accuracy.

2019-02-25
Popovac, M., Karanovic, M., Sladojevic, S., Arsenovic, M., Anderla, A..  2018.  Convolutional Neural Network Based SMS Spam Detection. 2018 26th Telecommunications Forum (℡FOR). :1–4.
SMS spam refers to undesired text message. Machine Learning methods for anti-spam filters have been noticeably effective in categorizing spam messages. Dataset used in this research is known as Tiago's dataset. Crucial step in the experiment was data preprocessing, which involved reducing text to lower case, tokenization, removing stopwords. Convolutional Neural Network was the proposed method for classification. Overall model's accuracy was 98.4%. Obtained model can be used as a tool in many applications.
2019-02-14
Georgakopoulos, Spiros V., Tasoulis, Sotiris K., Vrahatis, Aristidis G., Plagianakos, Vassilis P..  2018.  Convolutional Neural Networks for Toxic Comment Classification. Proceedings of the 10th Hellenic Conference on Artificial Intelligence. :35:1-35:6.
Flood of information is produced in a daily basis through the global internet usage arising from the online interactive communications among users. While this situation contributes significantly to the quality of human life, unfortunately it involves enormous dangers, since online texts with high toxicity can cause personal attacks, online harassment and bullying behaviors. This has triggered both industrial and research community in the last few years while there are several attempts to identify an efficient model for online toxic comment prediction. However, these steps are still in their infancy and new approaches and frameworks are required. On parallel, the data explosion that appears constantly, makes the construction of new machine learning computational tools for managing this information, an imperative need. Thankfully advances in hardware, cloud computing and big data management allow the development of Deep Learning approaches appearing very promising performance so far. For text classification in particular the use of Convolutional Neural Networks (CNN) have recently been proposed approaching text analytics in a modern manner emphasizing in the structure of words in a document. In this work, we employ this approach to discover toxic comments in a large pool of documents provided by a current Kaggle's competition regarding Wikipedia's talk page edits. To justify this decision we choose to compare CNNs against the traditional bag-of-words approach for text analysis combined with a selection of algorithms proven to be very effective in text classification. The reported results provide enough evidence that CNN enhance toxic comment classification reinforcing research interest towards this direction.
2018-12-10
Murray, B., Islam, M. A., Pinar, A. J., Havens, T. C., Anderson, D. T., Scott, G..  2018.  Explainable AI for Understanding Decisions and Data-Driven Optimization of the Choquet Integral. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.
To date, numerous ways have been created to learn a fusion solution from data. However, a gap exists in terms of understanding the quality of what was learned and how trustworthy the fusion is for future-i.e., new-data. In part, the current paper is driven by the demand for so-called explainable AI (XAI). Herein, we discuss methods for XAI of the Choquet integral (ChI), a parametric nonlinear aggregation function. Specifically, we review existing indices, and we introduce new data-centric XAI tools. These various XAI-ChI methods are explored in the context of fusing a set of heterogeneous deep convolutional neural networks for remote sensing.