Visible to the public Biblio

Found 115 results

Filters: Keyword is Virtual machining  [Clear All Filters]
Nie, Xin, Lou, Chengcheng.  2022.  Research on Communication Network Security Detection System based on Computer Big Data. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :273–276.
With the development of information networks, cloud computing, big data, and virtualization technologies promote the emergence of various new network applications to meet the needs of various Internet services. A security protection system for virtual host in cloud computing center is proposed in the article. The system takes “security as a service” as the starting point, takes virtual machines as the core, and takes virtual machine clusters as the unit to provide unified security protection against the borderless characteristics of virtualized computing. The thesis builds a network security protection system for APT attacks; uses the system dynamics method to establish a system capability model, and conducts simulation analysis. The simulation results prove the validity and rationality of the network communication security system framework and modeling analysis method proposed in the thesis. Compared with traditional methods, this method has more comprehensive modeling and analysis elements, and the deduced results are more instructive.
Alam, Mahfooz, Shahid, Mohammad, Mustajab, Suhel.  2022.  Security Oriented Deadline Aware Workflow Allocation Strategy for Infrastructure as a Service Clouds. 2022 3rd International Conference on Computation, Automation and Knowledge Management (ICCAKM). :1–6.
Cloud computing is a model of service provisioning in heterogeneous distributed systems that encourages many researchers to explore its benefits and drawbacks in executing workflow applications. Recently, high-quality security protection has been a new challenge in workflow allocation. Different tasks may and may not have varied security demands, security overhead may vary for different virtual machines (VMs) at which the task is assigned. This paper proposes a Security Oriented Deadline-Aware workflow allocation (SODA) strategy in an IaaS cloud environment to minimize the risk probability of the workflow tasks while considering the deadline met in a deterministic environment. SODA picks out the task based on the highest security upward rank and assigns the selected task to the trustworthy VMs. SODA tries to simultaneously satisfy each task’s security demand and deadline at the maximum possible level. The simulation studies show that SODA outperforms the HEFT strategy on account of the risk probability of the cloud system on scientific workflow, namely CyberShake.
Alyas, Tahir, Ateeq, Karamath, Alqahtani, Mohammed, Kukunuru, Saigeeta, Tabassum, Nadia, Kamran, Rukshanda.  2022.  Security Analysis for Virtual Machine Allocation in Cloud Computing. 2022 International Conference on Cyber Resilience (ICCR). :1–9.
A huge number of cloud users and cloud providers are threatened of security issues by cloud computing adoption. Cloud computing is a hub of virtualization that provides virtualization-based infrastructure over physically connected systems. With the rapid advancement of cloud computing technology, data protection is becoming increasingly necessary. It's important to weigh the advantages and disadvantages of moving to cloud computing when deciding whether to do so. As a result of security and other problems in the cloud, cloud clients need more time to consider transitioning to cloud environments. Cloud computing, like any other technology, faces numerous challenges, especially in terms of cloud security. Many future customers are wary of cloud adoption because of this. Virtualization Technologies facilitates the sharing of recourses among multiple users. Cloud services are protected using various models such as type-I and type-II hypervisors, OS-level, and unikernel virtualization but also offer a variety of security issues. Unfortunately, several attacks have been built in recent years to compromise the hypervisor and take control of all virtual machines running above it. It is extremely difficult to reduce the size of a hypervisor due to the functions it offers. It is not acceptable for a safe device design to include a large hypervisor in the Trusted Computing Base (TCB). Virtualization is used by cloud computing service providers to provide services. However, using these methods entails handing over complete ownership of data to a third party. This paper covers a variety of topics related to virtualization protection, including a summary of various solutions and risk mitigation in VMM (virtual machine monitor). In this paper, we will discuss issues possible with a malicious virtual machine. We will also discuss security precautions that are required to handle malicious behaviors. We notice the issues of investigating malicious behaviors in cloud computing, give the scientific categorization and demonstrate the future headings. We've identified: i) security specifications for virtualization in Cloud computing, which can be used as a starting point for securing Cloud virtual infrastructure, ii) attacks that can be conducted against Cloud virtual infrastructure, and iii) security solutions to protect the virtualization environment from DDOS attacks.
Maddamsetty, Saketh, Tharwani, Ayush, Mishra, Debadatta.  2022.  MicroBlind: Flexible and Secure File System Middleware for Application Sandboxes. 2022 IEEE International Conference on Cloud Engineering (IC2E). :221–232.
Virtual machine (VM) based application sandboxes leverage strong isolation guarantees of virtualization techniques to address several security issues through effective containment of malware. Specifically, in end-user physical hosts, potentially vulnerable applications can be isolated from each other (and the host) using VM based sandboxes. However, sharing data across applications executing within different sandboxes is a non-trivial requirement for end-user systems because at the end of the day, all applications are used by the end-user owning the device. Existing file sharing techniques compromise the security or efficiency, especially considering lack of technical expertise of many end-users in the contemporary times. In this paper, we propose MicroBlind, a security hardened file sharing framework for virtualized sandboxes to support efficient data sharing across different application sandboxes. MicroBlind enables a simple file sharing management API for end users where the end user can orchestrate file sharing across different VM sandboxes in a secure manner. To demonstrate the efficacy of MicroBlind, we perform comprehensive empirical analysis against existing data sharing techniques (augmented for the sandboxing setup) and show that MicroBlind provides improved security and efficiency.
Syambas, Nana Rachmana, Juhana, Tutun, Hendrawan, Mulyana, Eueung, Edward, Ian Joseph Matheus, Situmorang, Hamonangan, Mayasari, Ratna, Negara, Ridha Muldina, Yovita, Leanna Vidya, Wibowo, Tody Ariefianto et al..  2022.  Research Progress On Name Data Networking To Achieve A Superior National Product In Indonesia. 2022 8th International Conference on Wireless and Telematics (ICWT). :1–6.
Global traffic data are proliferating, including in Indonesia. The number of internet users in Indonesia reached 205 million in January 2022. This data means that 73.7% of Indonesia’s population has used the internet. The median internet speed for mobile phones in Indonesia is 15.82 Mbps, while the median internet connection speed for Wi-Fi in Indonesia is 20.13 Mbps. As predicted by many, real-time traffic such as multimedia streaming dominates more than 79% of traffic on the internet network. This condition will be a severe challenge for the internet network, which is required to improve the Quality of Experience (QoE) for user mobility, such as reducing delay, data loss, and network costs. However, IP-based networks are no longer efficient at managing traffic. Named Data Network (NDN) is a promising technology for building an agile communication model that reduces delays through a distributed and adaptive name-based data delivery approach. NDN replaces the ‘where’ paradigm with the concept of ‘what’. User requests are no longer directed to a specific IP address but to specific content. This paradigm causes responses to content requests to be served by a specific server and can also be served by the closest device to the requested data. NDN router has CS to cache the data, significantly reducing delays and improving the internet network’s quality of Service (QoS). Motivated by this, in 2019, we began intensive research to achieve a national flagship product, an NDN router with different functions from ordinary IP routers. NDN routers have cache, forwarding, and routing functions that affect data security on name-based networks. Designing scalable NDN routers is a new challenge as NDN requires fast hierarchical name-based lookups, perpackage data field state updates, and large-scale forward tables. We have a research team that has conducted NDN research through simulation, emulation, and testbed approaches using virtual machines to get the best NDN router design before building a prototype. Research results from 2019 show that the performance of NDN-based networks is better than existing IP-based networks. The tests were carried out based on various scenarios on the Indonesian network topology using NDNsimulator, MATLAB, Mininet-NDN, and testbed using virtual machines. Various network performance parameters, such as delay, throughput, packet loss, resource utilization, header overhead, packet transmission, round trip time, and cache hit ratio, showed the best results compared to IP-based networks. In addition, NDN Testbed based on open source is free, and the flexibility of creating topology has also been successfully carried out. This testbed includes all the functions needed to run an NDN network. The resource capacity on the server used for this testbed is sufficient to run a reasonably complex topology. However, bugs are still found on the testbed, and some features still need improvement. The following exploration of the NDN testbed will run with more new strategy algorithms and add Artificial Intelligence (AI) to the NDN function. Using AI in cache and forwarding strategies can make the system more intelligent and precise in making decisions according to network conditions. It will be a step toward developing NDN router products by the Bandung Institute of Technology (ITB) Indonesia.
Torquato, Matheus, Maciel, Paulo, Vieira, Marco.  2022.  Software Rejuvenation Meets Moving Target Defense: Modeling of Time-Based Virtual Machine Migration Approach. 2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE). :205–216.
The use of Virtual Machine (VM) migration as support for software rejuvenation was introduced more than a decade ago. Since then, several works have validated this approach from experimental and theoretical perspectives. Recently, some works shed light on the possibility of using the same technique as Moving Target Defense (MTD). However, to date, no work evaluated the availability and security levels while applying VM migration for both rejuvenation and MTD (multipurpose VM migration). In this paper, we conduct a comprehensive evaluation using Stochastic Petri Net (SPN) models to tackle this challenge. The evaluation covers the steady-state system availability, expected MTD protection, and related metrics of a system under time-based multipurpose VM migration. Results show that the availability and security improvement due to VM migration deployment surpasses 50% in the best scenarios. However, there is a trade-off between availability and security metrics, meaning that improving one implies compromising the other.
Lin, Xinrong, Hua, Baojian, Fan, Qiliang.  2022.  On the Security of Python Virtual Machines: An Empirical Study. 2022 IEEE International Conference on Software Maintenance and Evolution (ICSME). :223—234.
Python continues to be one of the most popular programming languages and has been used in many safety-critical fields such as medical treatment, autonomous driving systems, and data science. These fields put forward higher security requirements to Python ecosystems. However, existing studies on machine learning systems in Python concentrate on data security, model security and model privacy, and just assume the underlying Python virtual machines (PVMs) are secure and trustworthy. Unfortunately, whether such an assumption really holds is still unknown.This paper presents, to the best of our knowledge, the first and most comprehensive empirical study on the security of CPython, the official and most deployed Python virtual machine. To this end, we first designed and implemented a software prototype dubbed PVMSCAN, then use it to scan the source code of the latest CPython (version 3.10) and other 10 versions (3.0 to 3.9), which consists of 3,838,606 lines of source code. Empirical results give relevant findings and insights towards the security of Python virtual machines, such as: 1) CPython virtual machines are still vulnerable, for example, PVMSCAN detected 239 vulnerabilities in version 3.10, including 55 null dereferences, 86 uninitialized variables and 98 dead stores; Python/C API-related vulnerabilities are very common and have become one of the most severe threats to the security of PVMs: for example, 70 Python/C API-related vulnerabilities are identified in CPython 3.10; 3) the overall quality of the code remained stable during the evolution of Python VMs with vulnerabilities per thousand line (VPTL) to be 0.50; and 4) automatic vulnerability rectification is effective: 166 out of 239 (69.46%) vulnerabilities can be rectified by a simple yet effective syntax-directed heuristics.We have reported our empirical results to the developers of CPython, and they have acknowledged us and already confirmed and fixed 2 bugs (as of this writing) while others are still being analyzed. This study not only demonstrates the effectiveness of our approach, but also highlights the need to improve the reliability of infrastructures like Python virtual machines by leveraging state-of-the-art security techniques and tools.
Guri, Mordechai.  2022.  SATAn: Air-Gap Exfiltration Attack via Radio Signals From SATA Cables. 2022 19th Annual International Conference on Privacy, Security & Trust (PST). :1—10.
This paper introduces a new type of attack on isolated, air-gapped workstations. Although air-gap computers have no wireless connectivity, we show that attackers can use the SATA cable as a wireless antenna to transfer radio signals at the 6 GHz frequency band. The Serial ATA (SATA) is a bus interface widely used in modern computers and connects the host bus to mass storage devices such as hard disk drives, optical drives, and solid-state drives. The prevalence of the SATA interface makes this attack highly available to attackers in a wide range of computer systems and IT environments. We discuss related work on this topic and provide technical background. We show the design of the transmitter and receiver and present the implementation of these components. We also demonstrate the attack on different computers and provide the evaluation. The results show that attackers can use the SATA cable to transfer a brief amount of sensitive information from highly secured, air-gap computers wirelessly to a nearby receiver. Furthermore, we show that the attack can operate from user mode, is effective even from inside a Virtual Machine (VM), and can successfully work with other running workloads in the background. Finally, we discuss defense and mitigation techniques for this new air-gap attack.
Liu, Bo, Bobbio, Andrea, Bai, Jing, Martinez, Jose, Chang, Xiaolin, Trivedi, Kishor S..  2021.  Transient Security and Dependability Analysis of MEC Micro Datacenter under Attack. 2021 Annual Reliability and Maintainability Symposium (RAMS). :1—7.
SUMMARY & CONCLUSIONSA Multi-access Edge Computing (MEC) micro data center (MEDC) consists of multiple MEC hosts close to endpoint devices. MEC service is delivered by instantiating a virtualization system (e.g., Virtual Machines or Containers) on a MEC host. MEDC faces more new security risks due to various device connections in an open environment. When more and more IoT/CPS systems are connected to MEDC, it is necessary for MEC service providers to quantitatively analyze any security loss and then make defense-related decision. This paper develops a CTMC model for quantitatively analyzing the security and dependability of a vulnerable MEDC system under lateral movement attacks, from the adversary’s initial successful access until the MEDC becomes resistant to the attack. The proposed model captures the behavior of the system in a scenario where (i) the rate of vulnerable MEC servers being infected increases with the increasing number of infected MEC servers, (ii) each infected MEC server can perform its compromising activity independently and randomly, and (iii) any infected MEC may fail and then cannot provide service. We also introduce the formulas for computing metrics. The proposed model and formula are verified to be approximately accurate by comparing numerical results and simulation results.
Wei, Song, Zhang, Kun, Tu, Bibo.  2021.  Performance Impact of Host Kernel Page Table Isolation on Virtualized Servers. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :912–919.
As Meltdown mitigation, Kernel Page Table I solation (KPTI) was merged into Linux kernel mainline, and the performance impact is significant on x86 processors. Most of the previous work focuses on how KPTI affects Linux kernel performance within the scope of virtual machines or physical machines on x86. However, whether host KPTI affects virtual machines has not been well studied. What's more, there is relatively little research on ARM CPUs. This paper presents an in-depth study of how KPTI on the host affects the virtualized server performance and compares ARMv8 and x86. We first run several application benchmarks to demonstrate the performance impact does exist. The reason is that with a para-virtual I/O scheme, guest offloads I/O requests to the host side, which may incur user/kernel transitions. For the network I/O, when using QEMU as the back-end device, we saw a 1.7% and 5.5% slowdown on ARMv8 and x86, respectively. vhost and vhost-user, originally proposed to optimize performance, inadvertently mitigate the performance impact introduced by host KPTI. For CPU and memory-intensive benchmarks, the performance impact is trivial. We also find that virtual machines on ARMv8 are less affected by KPTI. To diagnose the root cause, we port HyperBench to the ARM virtualization platform. The final results show that swapping the translation table pointer register on ARMv8 is about 3.5x faster than x86. Our findings have significant implications for tuning the x86 virtualization platform's performance and helping ARMv8 administrators enable KPTI with confidence.
G.A, Senthil, Prabha, R., Pomalar, A., Jancy, P. Leela, Rinthya, M..  2021.  Convergence of Cloud and Fog Computing for Security Enhancement. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :1—6.
Cloud computing is a modern type of service that provides each consumer with a large-scale computing tool. Different cyber-attacks can potentially target cloud computing systems, as most cloud computing systems offer services to so many people who are not known to be trustworthy. Therefore, to protect that Virtual Machine from threats, a cloud computing system must incorporate some security monitoring framework. There is a tradeoff between the security level of the security system and the performance of the system in this scenario. If a strong security is required then a stronger security service using more rules or patterns should be incorporated and then in proportion to the strength of security, it needs much more computing resources. So the amount of resources allocated to customers is decreasing so this research work will introduce a new way of security system in cloud environments to the VM in this research. The main point of Fog computing is to part of the cloud server's work in the ongoing study tells the step-by-step cloud server to change gigantic information measurement because the endeavor apps are relocated to the cloud to keep the framework cost. So the cloud server is devouring and changing huge measures of information step by step so it is rented to keep up the problem and additionally get terrible reactions in a horrible device environment. Cloud computing and Fog computing approaches were combined in this paper to review data movement and safe information about MDHC.
Massey, Keith, Moazen, Nadia, Halabi, Talal.  2021.  Optimizing the Allocation of Secure Fog Resources based on QoS Requirements. 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :143—148.
Fog computing plays a critical role in the provisioning of computing tasks in the context of Internet of Things (IoT) services. However, the security of IoT services against breaches and attacks relies heavily on the security of fog resources, which must be properly implemented and managed. Increasing security investments and integrating the security aspect into the core processes and operations of fog computing including resource management will increase IoT service protection as well as the trustworthiness of fog service providers. However, this requires careful modeling of the security requirements of IoT services as well as theoretical and experimental evaluation of the tradeoff between security and performance in fog infrastructures. To this end, this paper explores a new model for fog resource allocation according to security and Quality of Service (QoS). The problem is modeled as a multi-objective linear optimization problem and solved using conventional, off-the-shelf optimizers by applying the preemptive method. Specifically, two objective functions were defined: one representing the satisfaction of the security design requirements of IoT services and another that models the communication delay among the different virtual machines belonging to the same service request, which might be deployed on different intermediary fog nodes. The simulation results show that the optimization is efficient and achieves the required level of scalability in fog computing. Moreover, a tradeoff needs to be pondered between the two criteria during the resource allocation process.
Cheng, Jie, Zhang, Kun, Tu, Bibo.  2021.  Remote Attestation of Large-scale Virtual Machines in the Cloud Data Center. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :180—187.
With the development of cloud computing, remote attestation of virtual machines has received extensive attention. However, the current schemes mainly concentrate on the single prover, and the attestation of a large-scale virtualization environment will cause TPM bottleneck and network congestion, resulting in low efficiency of attestation. This paper proposes CloudTA, an extensible remote attestation architecture. CloudTA groups all virtual machines on each cloud server and introduces an integrity measurement group (IMG) to measure virtual machines and generate trusted evidence by a group. Subsequently, the cloud server reports the physical platform and VM group's trusted evidence for group verification, reducing latency and improving efficiency. Besides, CloudTA designs a hybrid high concurrency communication framework for supporting remote attestation of large-scale virtual machines by combining active requests and periodic reports. The evaluation results suggest that CloudTA has good efficiency and scalability and can support remote attestation of ten thousand virtual machines.
Liu, Xu, Fang, Dongxu, Xu, Peng.  2021.  Automated Performance Benchmarking Platform of IaaS Cloud. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1402—1405.
With the rapid development of cloud computing, IaaS (Infrastructure as a Service) becomes more and more popular. IaaS customers may not clearly know the actual performance of each cloud platform. Moreover, there are no unified standards in performance evaluation of IaaS VMs (virtual machine). The underlying virtualization technology of IaaS cloud is transparent to customers. In this paper, we will design an automated performance benchmarking platform which can automatically install, configure and execute each benchmarking tool with a configuration center. This platform can easily visualize multidimensional benchmarking parameters data of each IaaS cloud platform. We also rented four IaaS VMs from AliCloud-Beijing, AliCloud-Qingdao, UCloud and Huawei to validate our benchmarking system. Performance comparisons of multiple parameters between multiple platforms were shown in this paper. However, in practice, customers' applications running on VMs are often complex. Performance of complex applications may not depend on single benchmarking parameter (e.g. CPU, memory, disk I/O etc.). We ran a TPC-C test for example to get overall performance in MySQL application scenario. The effects of different benchmarking parameters differ in this specific scenario.
Chinnasamy, P., Vinothini, B., Praveena, V., Subaira, A.S., Ben Sujitha, B..  2021.  Providing Resilience on Cloud Computing. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1—4.
In Cloud Computing, a wide range of virtual platforms are integrated and offer users a flexible pay-as-you-need service. Compared to conventional computing systems, the provision of an acceptable degree of resilience to cloud services is a daunting challenge due to the complexities of the cloud environment and the need for efficient technology that could sustain cloud advantages over other technologies. For a cloud guest resilience service solution, we provide architectural design, installation specifics, and performance outcomes throughout this article. Virtual Machine Manager (VMM) enables execution statistical test of the virtual machine states to be monitored and avoids to reach faulty states.
Aumayr, Lukas, Maffei, Matteo, Ersoy, Oğuzhan, Erwig, Andreas, Faust, Sebastian, Riahi, Siavash, Hostáková, Kristina, Moreno-Sanchez, Pedro.  2021.  Bitcoin-Compatible Virtual Channels. 2021 IEEE Symposium on Security and Privacy (SP). :901–918.
Current permissionless cryptocurrencies such as Bitcoin suffer from a limited transaction rate and slow confirmation time, which hinders further adoption. Payment channels are one of the most promising solutions to address these problems, as they allow the parties of the channel to perform arbitrarily many payments in a peer-to-peer fashion while uploading only two transactions on the blockchain. This concept has been generalized into payment channel networks where a path of payment channels is used to settle the payment between two users that might not share a direct channel between them. However, this approach requires the active involvement of each user in the path, making the system less reliable (they might be offline), more expensive (they charge fees per payment), and slower (intermediaries need to be actively involved in the payment). To mitigate this issue, recent work has introduced the concept of virtual channels (IEEE S&P’19), which involve intermediaries only in the initial creation of a bridge between payer and payee, who can later on independently perform arbitrarily many off-chain transactions. Unfortunately, existing constructions are only available for Ethereum, as they rely on its account model and Turing-complete scripting language. The realization of virtual channels in other blockchain technologies with limited scripting capabilities, like Bitcoin, was so far considered an open challenge.In this work, we present the first virtual channel protocols that are built on the UTXO-model and require a scripting language supporting only a digital signature scheme and a timelock functionality, being thus backward compatible with virtually every cryptocurrency, including Bitcoin. We formalize the security properties of virtual channels as an ideal functionality in the Universal Composability framework and prove that our protocol constitutes a secure realization thereof. We have prototyped and evaluated our protocol on the Bitcoin blockchain, demonstrating its efficiency: for n sequential payments, they require an off-chain exchange of 9+2n transactions or a total of 3524+695n bytes, with no on-chain footprint in the optimistic case. This is a substantial improvement compared to routing payments in a payment channel network, which requires 8n transactions with a total of 3026n bytes to be exchanged.
Swann, Matthew, Rose, Joseph, Bendiab, Gueltoum, Shiaeles, Stavros, Li, Fudong.  2021.  Open Source and Commercial Capture The Flag Cyber Security Learning Platforms - A Case Study. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :198—205.
The use of gamified learning platforms as a method of introducing cyber security education, training and awareness has risen greatly. With this rise, the availability of platforms to create, host or otherwise provide the challenges that make up the foundation of this education has also increased. In order to identify the best of these platforms, we need a method to compare their feature sets. In this paper, we compare related work on identifying the best platforms for a gamified cyber security learning platform as well as contemporary literature that describes the most needed feature sets for an ideal platform. We then use this to develop a metric for comparing these platforms, before then applying this metric to popular current platforms.
Vekaria, Komal Bhupendra, Calyam, Prasad, Wang, Songjie, Payyavula, Ramya, Rockey, Matthew, Ahmed, Nafis.  2021.  Cyber Range for Research-Inspired Learning of “Attack Defense by Pretense” Principle and Practice. IEEE Transactions on Learning Technologies. 14:322—337.
There is an increasing trend in cloud adoption of enterprise applications in, for example, manufacturing, healthcare, and finance. Such applications are routinely subject to targeted cyberattacks, which result in significant loss of sensitive data (e.g., due to data exfiltration in advanced persistent threats) or valuable utilities (e.g., due to resource the exfiltration of power in cryptojacking). There is a critical need to train highly skilled cybersecurity professionals, who are capable of defending against such targeted attacks. In this article, we present the design, development, and evaluation of the Mizzou Cyber Range, an online platform to learn basic/advanced cyber defense concepts and perform training exercises to engender the next-generation cybersecurity workforce. Mizzou Cyber Range features flexibility, scalability, portability, and extendability in delivering cyberattack/defense learning modules to students. We detail our “research-inspired learning” and “learn-apply-create” three-phase pedagogy methodologies in the development of four learning modules that include laboratory exercises and self-study activities using realistic cloud-based application testbeds. The learning modules allow students to gain skills in using latest technologies (e.g., elastic capacity provisioning, software-defined everything infrastructure) to implement sophisticated “attack defense by pretense” techniques. Students can also use the learning modules to understand the attacker-defender game in order to create disincentives (i.e., pretense initiation) that make the attacker's tasks more difficult, costly, time consuming, and uncertain. Lastly, we show the benefits of our Mizzou Cyber Range through the evaluation of student learning using auto-grading, rank assessments with peer standing, and monitoring of students' performance via feedback from prelab evaluation surveys and postlab technical assessments.
Fursova, Natalia, Dovgalyuk, Pavel, Vasiliev, Ivan, Klimushenkova, Maria, Egorov, Danila.  2021.  Detecting Attack Surface With Full-System Taint Analysis. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :1161–1162.
Attack surface detection for the complex software is needed to find targets for the fuzzing, because testing the whole system with many inputs is not realistic. Researchers that previously applied taint analysis for dealing with different security tasks in the virtual machines did not examined how to apply it for attack surface detection. I.e., getting the program modules and functions, that may be affected by input data. We propose using taint tracking within a virtual machine and virtual machine introspection to create a new approach that can detect the internal module interfaces that can be fuzz tested to assure that software is safe or find the vulnerabilities.
Ma, Lele.  2021.  One Layer for All: Efficient System Security Monitoring for Edge Servers. 2021 IEEE International Performance, Computing, and Communications Conference (IPCCC). :1–8.
Edge computing promises higher bandwidth and lower latency to end-users. However, edge servers usually have limited computing resources and are geographically distributed over the edge. This imposes new challenges for efficient system monitoring and control of edge servers.In this paper, we propose EdgeVMI, a framework to monitor and control services running on edge servers with lightweight virtual machine introspection(VMI). The key of our technique is to run the monitor in a lightweight virtual machine which can leverage hardware events for monitoring memory read and writes. In addition, the small binary size and memory footprints of the monitor could reduce the start/stop time of service, the runtime overhead, as well as the deployment efforts.Inspired by unikernels, we build our monitor with only the necessary system modules, libraries, and functionalities of a specific monitor task. To reduce the security risk of the monitoring behavior, we separate the monitor into two isolated modules: one acts as a sensor to collect security information and another acts as an actuator to conduct control commands. Our evaluation shows the effectiveness and the efficiency of the monitoring system, with an average performance overhead of 2.7%.
Aribisala, Adedayo, Khan, Mohammad S., Husari, Ghaith.  2021.  MACHINE LEARNING ALGORITHMS AND THEIR APPLICATIONS IN CLASSIFYING CYBER-ATTACKS ON A SMART GRID NETWORK. 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0063–0069.
Smart grid architecture and Software-defined Networking (SDN) have evolved into a centrally controlled infrastructure that captures and extracts data in real-time through sensors, smart-meters, and virtual machines. These advances pose a risk and increase the vulnerabilities of these infrastructures to sophisticated cyberattacks like distributed denial of service (DDoS), false data injection attack (FDIA), and Data replay. Integrating machine learning with a network intrusion detection system (NIDS) can improve the system's accuracy and precision when detecting suspicious signatures and network anomalies. Analyzing data in real-time using trained and tested hyperparameters on a network traffic dataset applies to most network infrastructures. The NSL-KDD dataset implemented holds various classes, attack types, protocol suites like TCP, HTTP, and POP, which are critical to packet transmission on a smart grid network. In this paper, we leveraged existing machine learning (ML) algorithms, Support vector machine (SVM), K-nearest neighbor (KNN), Random Forest (RF), Naïve Bayes (NB), and Bagging; to perform a detailed performance comparison of selected classifiers. We propose a multi-level hybrid model of SVM integrated with RF for improved accuracy and precision during network filtering. The hybrid model SVM-RF returned an average accuracy of 94% in 10-fold cross-validation and 92.75%in an 80-20% split during class classification.
Morbitzer, Mathias, Proskurin, Sergej, Radev, Martin, Dorfhuber, Marko, Salas, Erick Quintanar.  2021.  SEVerity: Code Injection Attacks against Encrypted Virtual Machines. 2021 IEEE Security and Privacy Workshops (SPW). :444–455.

Modern enterprises increasingly take advantage of cloud infrastructures. Yet, outsourcing code and data into the cloud requires enterprises to trust cloud providers not to meddle with their data. To reduce the level of trust towards cloud providers, AMD has introduced Secure Encrypted Virtualization (SEV). By encrypting Virtual Machines (VMs), SEV aims to ensure data confidentiality, despite a compromised or curious Hypervisor. The SEV Encrypted State (SEV-ES) extension additionally protects the VM’s register state from unauthorized access. Yet, both extensions do not provide integrity of the VM’s memory, which has already been abused to leak the protected data or to alter the VM’s control-flow. In this paper, we introduce the SEVerity attack; a missing puzzle piece in the series of attacks against the AMD SEV family. Specifically, we abuse the system’s lack of memory integrity protection to inject and execute arbitrary code within SEV-ES-protected VMs. Contrary to previous code execution attacks against the AMD SEV family, SEVerity neither relies on a specific CPU version nor on any code gadgets inside the VM. Instead, SEVerity abuses the fact that SEV-ES prohibits direct memory access into the encrypted memory. Specifically, SEVerity injects arbitrary code into the encrypted VM through I/O channels and uses the Hypervisor to locate and trigger the execution of the encrypted payload. This allows us to sidestep the protection mechanisms of SEV-ES. Overall, our results demonstrate a success rate of 100% and hence highlight that memory integrity protection is an obligation when encrypting VMs. Consequently, our work presents the final stroke in a series of attacks against AMD SEV and SEV-ES and renders the present implementation as incapable of protecting against a curious, vulnerable, or malicious Hypervisor.

Li, Shih-Wei, Li, Xupeng, Gu, Ronghui, Nieh, Jason, Zhuang Hui, John.  2021.  A Secure and Formally Verified Linux KVM Hypervisor. 2021 IEEE Symposium on Security and Privacy (SP). :1782–1799.

Commodity hypervisors are widely deployed to support virtual machines (VMs) on multiprocessor hardware. Their growing complexity poses a security risk. To enable formal verification over such a large codebase, we introduce microverification, a new approach that decomposes a commodity hypervisor into a small core and a set of untrusted services so that we can prove security properties of the entire hypervisor by verifying the core alone. To verify the multiprocessor hypervisor core, we introduce security-preserving layers to modularize the proof without hiding information leakage so we can prove each layer of the implementation refines its specification, and the top layer specification is refined by all layers of the core implementation. To verify commodity hypervisor features that require dynamically changing information flow, we introduce data oracles to mask intentional information flow. We can then prove noninterference at the top layer specification and guarantee the resulting security properties hold for the entire hypervisor implementation. Using microverification, we retrofitted the Linux KVM hypervisor with only modest modifications to its codebase. Using Coq, we proved that the hypervisor protects the confidentiality and integrity of VM data, while retaining KVM’s functionality and performance. Our work is the first machine-checked security proof for a commodity multiprocessor hypervisor.

Li, Fulin, Ji, Huifang, Zhou, Hongwei, Zhang, Chang.  2021.  A Dynamic and Secure Migration Method of Cryptographic Service Virtual Machine for Cloud Environment. 2021 7th International Conference on Computer and Communications (ICCC). :583–588.
In order to improve the continuity of cryptographic services and ensure the quality of services in the cloud environment, a dynamic migration framework of cryptographic service virtual machines based on the network shared storage system is proposed. Based on the study of the security threats in the migration process, a dynamic migration attack model is established, and the security requirement of dynamic migration is analyzed. It designs and implements the dynamic security migration management software, which includes a dynamic migration security enhancement module based on the Libvirt API, role-based access control policy, and transmission channel protection module. A cryptographic service virtual machine migration environment is built, and the designed management software and security mechanism are verified and tested. The experimental results show that the method proposed in the paper can effectively improve the security of cryptographic service virtual machine migration.
Aldawood, Mansour, Jhumka, Arshad.  2021.  Secure Allocation for Graph-Based Virtual Machines in Cloud Environments. 2021 18th International Conference on Privacy, Security and Trust (PST). :1–7.

Cloud computing systems (CCSs) enable the sharing of physical computing resources through virtualisation, where a group of virtual machines (VMs) can share the same physical resources of a given machine. However, this sharing can lead to a so-called side-channel attack (SCA), widely recognised as a potential threat to CCSs. Specifically, malicious VMs can capture information from (target) VMs, i.e., those with sensitive information, by merely co-located with them on the same physical machine. As such, a VM allocation algorithm needs to be cognizant of this issue and attempts to allocate the malicious and target VMs onto different machines, i.e., the allocation algorithm needs to be security-aware. This paper investigates the allocation patterns of VM allocation algorithms that are more likely to lead to a secure allocation. A driving objective is to reduce the number of VM migrations during allocation. We also propose a graph-based secure VMs allocation algorithm (GbSRS) to minimise SCA threats. Our results show that algorithms following a stacking-based behaviour are more likely to produce secure VMs allocation than those following spreading or random behaviours.