Visible to the public Biblio

Filters: Keyword is TV  [Clear All Filters]
2021-07-07
Kanwal, Nadia, Asghar, Mamoona Naveed, Samar Ansari, Mohammad, Lee, Brian, Fleury, Martin, Herbst, Marco, Qiao, Yuansong.  2020.  Chain-of-Evidence in Secured Surveillance Videos using Steganography and Hashing. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :257–264.
Video sharing from closed-circuit television video recording or in social media interaction requires self-authentication for responsible and reliable data sharing. Similarly, surveillance video recording is a powerful method of deterring unlawful activities. A Solution-by-Design can be helpful in terms of making a captured video immutable, as such recordings cannot become a piece of evidence until proven to be unaltered. This paper presents a computationally inexpensive method of preserving a chain-of-evidence in surveillance videos using steganography and hashing. The method conforms to the data protection regulations which are increasingly adopted by governments, and is applicable to network edge storage. Security credentials are stored in a hardware wallet independently of the video capture device itself, while evidential information is stored within video frames themselves, independently of the content. The proposed method has turned out to not only preserve the integrity of the stored video data but also results in very limited degradation of the video data due to steganography. Despite the presence of steganographic information, video frames are still available for common image processing tasks such as tracking and classification.
2021-03-29
Al-Janabi, S. I. Ali, Al-Janabi, S. T. Faraj, Al-Khateeb, B..  2020.  Image Classification using Convolution Neural Network Based Hash Encoding and Particle Swarm Optimization. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI). :1–5.
Image Retrieval (IR) has become one of the main problems facing computer society recently. To increase computing similarities between images, hashing approaches have become the focus of many programmers. Indeed, in the past few years, Deep Learning (DL) has been considered as a backbone for image analysis using Convolutional Neural Networks (CNNs). This paper aims to design and implement a high-performance image classifier that can be used in several applications such as intelligent vehicles, face recognition, marketing, and many others. This work considers experimentation to find the sequential model's best configuration for classifying images. The best performance has been obtained from two layers' architecture; the first layer consists of 128 nodes, and the second layer is composed of 32 nodes, where the accuracy reached up to 0.9012. The proposed classifier has been achieved using CNN and the data extracted from the CIFAR-10 dataset by the inception model, which are called the Transfer Values (TRVs). Indeed, the Particle Swarm Optimization (PSO) algorithm is used to reduce the TRVs. In this respect, the work focus is to reduce the TRVs to obtain high-performance image classifier models. Indeed, the PSO algorithm has been enhanced by using the crossover technique from genetic algorithms. This led to a reduction of the complexity of models in terms of the number of parameters used and the execution time.
2018-08-23
Abbas, W., Laszka, A., Vorobeychik, Y., Koutsoukos, X..  2017.  Improving network connectivity using trusted nodes and edges. 2017 American Control Conference (ACC). :328–333.

Network connectivity is a primary attribute and a characteristic phenomenon of any networked system. A high connectivity is often desired within networks; for instance to increase robustness to failures, and resilience against attacks. A typical approach to increasing network connectivity is to strategically add links; however adding links is not always the most suitable option. In this paper, we propose an alternative approach to improving network connectivity, that is by making a small subset of nodes and edges “trusted,” which means that such nodes and edges remain intact at all times and are insusceptible to failures. We then show that by controlling the number of trusted nodes and edges, any desired level of network connectivity can be obtained. Along with characterizing network connectivity with trusted nodes and edges, we present heuristics to compute a small number of such nodes and edges. Finally, we illustrate our results on various networks.

2018-04-02
Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Security Modeling and Analysis of Cross-Protocol IoT Devices. 2017 IEEE Trustcom/BigDataSE/ICESS. :1043–1048.

In the Internet of Things (IoT), smart devices are connected using various communication protocols, such as Wi-Fi, ZigBee. Some IoT devices have multiple built-in communication modules. If an IoT device equipped with multiple communication protocols is compromised by an attacker using one communication protocol (e.g., Wi-Fi), it can be exploited as an entry point to the IoT network. Another protocol (e.g., ZigBee) of this IoT device could be used to exploit vulnerabilities of other IoT devices using the same communication protocol. In order to find potential attacks caused by this kind of cross-protocol devices, we group IoT devices based on their communication protocols and construct a graphical security model for each group of devices using the same communication protocol. We combine the security models via the cross-protocol devices and compute hidden attack paths traversing different groups of devices. We use two use cases in the smart home scenario to demonstrate our approach and discuss some feasible countermeasures.

2018-03-05
Guan, C., Mohaisen, A., Sun, Z., Su, L., Ren, K., Yang, Y..  2017.  When Smart TV Meets CRN: Privacy-Preserving Fine-Grained Spectrum Access. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). :1105–1115.

Dynamic spectrum sharing techniques applied in the UHF TV band have been developed to allow secondary WiFi transmission in areas with active TV users. This technique of dynamically controlling the exclusion zone enables vastly increasing secondary spectrum re-use, compared to the "TV white space" model where TV transmitters determine the exclusion zone and only "idle" channels can be re-purposed. However, in current such dynamic spectrum sharing systems, the sensitive operation parameters of both primary TV users (PUs) and secondary users (SUs) need to be shared with the spectrum database controller (SDC) for the purpose of realizing efficient spectrum allocation. Since such SDC server is not necessarily operated by a trusted third party, those current systems might cause essential threatens to the privacy requirement from both PUs and SUs. To address this privacy issue, this paper proposes a privacy-preserving spectrum sharing system between PUs and SUs, which realizes the spectrum allocation decision process using efficient multi-party computation (MPC) technique. In this design, the SDC only performs secure computation over encrypted input from PUs and SUs such that none of the PU or SU operation parameters will be revealed to SDC. The evaluation of its performance illustrates that our proposed system based on efficient MPC techniques can perform dynamic spectrum allocation process between PUs and SUs efficiently while preserving users' privacy.

2017-12-28
Duan, S., Li, Y., Levitt, K..  2016.  Cost sensitive moving target consensus. 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA). :272–281.

Consensus is a fundamental approach to implementing fault-tolerant services through replication. It is well known that there exists a tradeoff between the cost and the resilience. For instance, Crash Fault Tolerant (CFT) protocols have a low cost but can only handle crash failures while Byzantine Fault Tolerant (BFT) protocols handle arbitrary failures but have a higher cost. Hybrid protocols enjoy the benefits of both high performance without failures and high resiliency under failures by switching among different subprotocols. However, it is challenging to determine which subprotocols should be used. We propose a moving target approach to switch among protocols according to the existing system and network vulnerability. At the core of our approach is a formalized cost model that evaluates the vulnerability and performance of consensus protocols based on real-time Intrusion Detection System (IDS) signals. Based on the evaluation results, we demonstrate that a safe, cheap, and unpredictable protocol is always used and a high IDS error rate can be tolerated.

2017-03-08
Farias, F. d S., Waldir, S. S., Filho, E. B. de Lima, Melo, W. C..  2015.  Automated content detection on TVs and computer monitors. 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE). :177–178.

In a system manufacturing process that use screens, for exemple, TVs, computer monitors, or notebook, the inspection images is one of the most important quality tests. Due to increasing complexity of these systems, manual inspection became complex and slow. Thus, automatic inspection is an attractive alternative. In this paper, we present an automatic inspection system images using edge and line detection algorithms, rectangles recognition and image comparison metrics. The experiments, performed to 504 images (TVs, computer monitors, and notebook) demonstrate that the system has good performance.

2017-02-27
Wei, Q., Shi, X..  2015.  The optimal contracts in continuous time under Knightian uncertainty. 2015 34th Chinese Control Conference (CCC). :2450–2455.

In this paper, we focus on the principal-agent problems in continuous time when the participants have ambiguity on the output process in the framework of g-expectation. The first best (or, risk-sharing) type is studied. The necessary condition of the optimal contract is derived by means of the optimal control theory. Finally, we present some examples to clarify our results.

2015-05-04
Jun-Yong Lee, Hyoung-Gook Kim.  2014.  Audio fingerprinting to identify TV commercial advertisement in real-noisy environment. Communications and Information Technologies (ISCIT), 2014 14th International Symposium on. :527-530.

This paper proposes a high-performance audio fingerprint extraction method for identifying TV commercial advertisement. In the proposed method, a salient audio peak pair fingerprints based on constant Q transform (CQT) are hashed and stored, to be efficiently compared to one another. Experimental results confirm that the proposed method is quite robust in different noise conditions and improves the accuracy of the audio fingerprinting system in real noisy environments.

2015-04-30
Fonseca, J., Vieira, M., Madeira, H..  2014.  Evaluation of Web Security Mechanisms Using Vulnerability amp; Attack Injection. Dependable and Secure Computing, IEEE Transactions on. 11:440-453.

In this paper we propose a methodology and a prototype tool to evaluate web application security mechanisms. The methodology is based on the idea that injecting realistic vulnerabilities in a web application and attacking them automatically can be used to support the assessment of existing security mechanisms and tools in custom setup scenarios. To provide true to life results, the proposed vulnerability and attack injection methodology relies on the study of a large number of vulnerabilities in real web applications. In addition to the generic methodology, the paper describes the implementation of the Vulnerability & Attack Injector Tool (VAIT) that allows the automation of the entire process. We used this tool to run a set of experiments that demonstrate the feasibility and the effectiveness of the proposed methodology. The experiments include the evaluation of coverage and false positives of an intrusion detection system for SQL Injection attacks and the assessment of the effectiveness of two top commercial web application vulnerability scanners. Results show that the injection of vulnerabilities and attacks is indeed an effective way to evaluate security mechanisms and to point out not only their weaknesses but also ways for their improvement.

Athanasiou, G., Fengou, M.-A., Beis, A., Lymberopoulos, D..  2014.  A novel trust evaluation method for Ubiquitous Healthcare based on cloud computational theory. Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE. :4503-4506.

The notion of trust is considered to be the cornerstone on patient-psychiatrist relationship. Thus, a trustfully background is fundamental requirement for provision of effective Ubiquitous Healthcare (UH) service. In this paper, the issue of Trust Evaluation of UH Providers when register UH environment is addressed. For that purpose a novel trust evaluation method is proposed, based on cloud theory, exploiting User Profile attributes. This theory mimics human thinking, regarding trust evaluation and captures fuzziness and randomness of this uncertain reasoning. Two case studies are investigated through simulation in MATLAB software, in order to verify the effectiveness of this novel method.

Liu, Yuanyuan, Cheng, Jianping, Zhang, Li, Xing, Yuxiang, Chen, Zhiqiang, Zheng, Peng.  2014.  A low-cost dual energy CT system with sparse data. Tsinghua Science and Technology. 19:184-194.

Dual Energy CT (DECT) has recently gained significant research interest owing to its ability to discriminate materials, and hence is widely applied in the field of nuclear safety and security inspection. With the current technological developments, DECT can be typically realized by using two sets of detectors, one for detecting lower energy X-rays and another for detecting higher energy X-rays. This makes the imaging system expensive, limiting its practical implementation. In 2009, our group performed a preliminary study on a new low-cost system design, using only a complete data set for lower energy level and a sparse data set for the higher energy level. This could significantly reduce the cost of the system, as it contained much smaller number of detector elements. Reconstruction method is the key point of this system. In the present study, we further validated this system and proposed a robust method, involving three main steps: (1) estimation of the missing data iteratively with TV constraints; (2) use the reconstruction from the complete lower energy CT data set to form an initial estimation of the projection data for higher energy level; (3) use ordered views to accelerate the computation. Numerical simulations with different number of detector elements have also been examined. The results obtained in this study demonstrate that 1 + 14% CT data is sufficient enough to provide a rather good reconstruction of both the effective atomic number and electron density distributions of the scanned object, instead of 2 sets CT data.