Visible to the public Biblio

Filters: Keyword is Dsr  [Clear All Filters]
2021-08-02
Sharma, Nisha, Sharma, Durga Prasad, Sharma, Manish.  2020.  Wormhole Formation and Simulation in Dynamic Source Routing Protocol using NS3. 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). :318–322.
Mobile Ad hoc networks (MANET) are becoming extremely popular because of the expedient features that also make them more exposed to various kinds of security attacks. The Wormhole attack is considered to be the most unsafe attack due to its unusual pattern of tunnel creation between two malevolent nodes. In it, one malevolent node attracts all the traffic towards the tunnel and forwards it to another malevolent node at the other end of the tunnel and replays them again in the network. Once the Wormhole tunnel is created it can launch different kind of other attacks such as routing attack, packet dropping, spoofing etc. In past few years a lot of research is done for securing routing protocols. Dynamic Source Routing (DSR) protocol is considered foremost MANET routing protocols. In this paper we are forming the wormhole tunnel in which malevolent nodes use different interfaces for communication in DSR protocol. NS3 simulator is being used for the analysis of the DSR routing protocol under the wormhole attack. This paper provides better understanding of the wormhole attack in DSR protocol which can benefit further research.
2021-03-09
Venkataramana, B., Jadhav, A..  2020.  Performance Evaluation of Routing Protocols under Black Hole Attack in Cognitive Radio Mesh Network. 2020 International Conference on Emerging Smart Computing and Informatics (ESCI). :98–102.
Wireless technology is rapidly proliferating. Devices such as Laptops, PDAs and cell-phones gained a lot of importance due to the use of wireless technology. Nowadays there is also a huge demand for spectrum allocation and there is a need to utilize the maximum available spectrum in efficient manner. Cognitive Radio (CR) Network is one such intelligent radio network, designed to utilize the maximum licensed bandwidth to un-licensed users. Cognitive Radio has the capability to understand unused spectrum at a given time at a specific location. This capability helps to minimize the interference to the licensed users and improves the performance of the network. Routing protocol selection is one of the main strategies to design any wireless or wired networks. In Cognitive radio networks the selected routing protocol should be best in terms of establishing an efficient route, addressing challenges in network topology and should be able to reduce bandwidth consumption. Performance analysis of the protocols helps to select the best protocol in the network. Objective of this study is to evaluate performance of various cognitive radio network routing protocols like Spectrum Aware On Demand Routing Protocol (SORP), Spectrum Aware Mesh Routing in Cognitive Radio Networks (SAMER) and Dynamic Source Routing (DSR) with and without black hole attack using various performance parameters like Throughput, E2E delay and Packet delivery ratio with the help of NS2 simulator.
Oakley, I..  2020.  Solutions to Black Hole Attacks in MANETs. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1–6.
Self-organising networks, such as mobile ad-hoc networks (MANETs), are growing more and more in importance each day. However, due to their nature and constraints MANETs are vulnerable to a wide array of attacks, such as black hole attacks. Furthermore, there are numerous routing protocols in use in MANETs, and what works for one might not for another. In this paper, we present a review of previous surveys of black hole attack solutions, followed by a collation of recently published papers categorised by original routing protocol and evaluated on a set of common metrics. Finally, we suggest areas for further research.
2020-10-29
Dholey, Milan Kumar, Biswas, G. P..  2018.  Secure DSR Routing from Malicious Node by PGP Encryption. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1449—1453.

Mobile ad hoc network (MANET) is an infrastructure less, self organizing on demand wireless communication. The nodes communicate among themselves through their radio range and nodes within the range are known as neighbor nodes. DSR (Dynamic Source Routing), a MANET reactive routing protocol identify the destination by transmitting route request (RREQ) control message into the network and establishes a path after receiving route reply (RREP) control messages. The intermediate node lies in between source to destination may also send RREP control message, weather they have path information about that destination is present into their route cache due to any previous communication. A malicious node may enter within the network and may send RREP control message to the source before original RREP is being received. After receiving RREP without knowing about the destination source starts to send data and data may reached to a different location. In this paper we proposed a novel algorithm by which a malicious node, even stay in the network and send RREP control message but before data transmission source can authenticate the destination by applying PGP (pretty Good Privacy) encryption program. In order to design our algorithm we proposed to add an extra field with RREQ control message with a unique index value (UIV) and two extra fields in RREP applied over UIV to form a random key (Rk) in such a way that, our proposal can maintained two way authorization scheme. Even a malicious node may exists into the network but before data transmission source can identified weather RREP is received by the requested destination or a by a malicious node.

2020-05-26
Tripathi, Shripriya.  2019.  Performance Analysis of AODV and DSR Routing Protocols of MANET under Wormhole Attack and a Suggested Trust Based Routing Algorithm for DSR. 2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). :1–5.

The nodes in Mobile Ad hoc Network (MANET) can self-assemble themselves, locomote unreservedly and can interact with one another without taking any help from a centralized authority or fixed infrastructure. Due to its continuously changing and self-organizing nature, MANET is vulnerable to a variety of attacks like spoofing attack, wormhole attack, black hole attack, etc. This paper compares and analyzes the repercussion of the wormhole attack on MANET's two common routing protocols of reactive category, specifically, Dynamic Source Routing (DSR) and Ad-hoc On-Demand Distance Vector (AODV) by increasing the number of wormhole tunnels in MANET. The results received by simulation will reveal that DSR is greatly affected by this attack. So, as a solution, a routing algorithm for DSR which is based on trust is proposed to prevent the routes from caching malicious nodes.

2019-09-09
Dholey, M. K., Saha, M. K..  2018.  A Security Mechanism in DSR Routing for MANET. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :921-925.

Mobile Ad-hoc Network (MANET) is an autonomous collection of mobile nodes and communicate among them in their radio range. It is an infrastructure less, bandwidth constraint multi-hop wireless network. A various routing protocol is being evolved for MANET routing and also provide security mechanism to avoid security threads. Dynamic Source Routing (DSR), one of the popular reactive routing protocols for MANET, establishes path between source to destination before data communication take place using route request (RREQ) and route reply (RREP) control messages. Although in [1] authors propose to prevent route diversion due to a malicious node in the network using group Diffie-Hellman (GDH) key management applied over source address, but if any intermediate trusted node start to misbehave then there is no prevention mechanism. Here in this paper, we applied Hash function scheme over destination address to identify the misbehaving intermediate node that can provide wrong destination address. The path information towards the destination sent by the intermediate node through RREP is exactly for the intended required destination or not, here we can identified according to our proposed algorithm and pretend for further data transmission. Our proposed algorithm proves the authenticity of the destination and also prevent from misbehaving intermediate nodes.

2017-08-02
Amir, Mohammad, Nagar, Dhanroop Mal, Baghela, Vinay.  2016.  Secure DSR Routing Protocol Based on Homomorphic Digital Signature. Proceedings of the International Conference on Advances in Information Communication Technology & Computing. :84:1–84:5.

Mobile Ad-Hoc Network is a wireless networking exemplar of mobile hosts which are connected by wireless links without usual routing infrastructure and link fixed routers. Dynamic Source Routing (DSR) is one of the extensively used routing protocol for packet transfer from source to destination. It relies on maintaining most recent information, for which, each adhoc node maintains hop count and sequence number field. They are vulnerable to security attacks due to their mutable nature. Analogously, routing updates are transmitted in clear text, which again poses a security hazard. In this paper, we will propose an improved version of DSR routing protocol using Homomorphic Encryption Scheme which prevents pollution attack and accomplishes in maintaining Integrity Security Standard by following minimum hop count path. HDSR routing scheme is evaluated by simulation and results show that improved throughput and ETE delay can be obtained.