Visible to the public Biblio

Filters: Keyword is Self-Organizing Map  [Clear All Filters]
2017-12-28
Boucher, A., Badri, M..  2017.  Predicting Fault-Prone Classes in Object-Oriented Software: An Adaptation of an Unsupervised Hybrid SOM Algorithm. 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS). :306–317.

Many fault-proneness prediction models have been proposed in literature to identify fault-prone code in software systems. Most of the approaches use fault data history and supervised learning algorithms to build these models. However, since fault data history is not always available, some approaches also suggest using semi-supervised or unsupervised fault-proneness prediction models. The HySOM model, proposed in literature, uses function-level source code metrics to predict fault-prone functions in software systems, without using any fault data. In this paper, we adapt the HySOM approach for object-oriented software systems to predict fault-prone code at class-level granularity using object-oriented source code metrics. This adaptation makes it easier to prioritize the efforts of the testing team as unit tests are often written for classes in object-oriented software systems, and not for methods. Our adaptation also generalizes one main element of the HySOM model, which is the calculation of the source code metrics threshold values. We conducted an empirical study using 12 public datasets. Results show that the adaptation of the HySOM model for class-level fault-proneness prediction improves the consistency and the performance of the model. We additionally compared the performance of the adapted model to supervised approaches based on the Naive Bayes Network, ANN and Random Forest algorithms.

2017-08-02
Nohara, Takumi, Uda, Ryuya.  2016.  Personal Identification by Flick Input Using Self-Organizing Maps with Acceleration Sensor and Gyroscope. Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication. :58:1–58:6.

Screen lock is vulnerable against shoulder surfing since password, personal identification numbers (PIN) and pattern can be seen when smart phones are used in public space although important information is stored in them and they are often used in public space. In this paper, we propose a new method in which passwords are combined with biometrics authentication which cannot be seen by shoulder surfing and difficult to be guessed by brute-force attacks. In our method, the motion of a finger is measured by sensors when a user controls a mobile terminal, and the motion which includes characteristics of the user is registered. In our method, registered characteristics are classified by learning with self-organizing maps. Users are identified by referring the self-organizing maps when they input passwords on mobile terminals.