Visible to the public Biblio

Filters: Keyword is patient monitoring  [Clear All Filters]
2021-03-29
Juyal, S., Sharma, S., Harbola, A., Shukla, A. S..  2020.  Privacy and Security of IoT based Skin Monitoring System using Blockchain Approach. 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). :1—5.

Remote patient monitoring is a system that focuses on patients care and attention with the advent of the Internet of Things (IoT). The technology makes it easier to track distance, but also to diagnose and provide critical attention and service on demand so that billions of people are safer and more safe. Skincare monitoring is one of the growing fields of medical care which requires IoT monitoring, because there is an increasing number of patients, but cures are restricted to the number of available dermatologists. The IoT-based skin monitoring system produces and store volumes of private medical data at the cloud from which the skin experts can access it at remote locations. Such large-scale data are highly vulnerable and otherwise have catastrophic results for privacy and security mechanisms. Medical organizations currently do not concentrate much on maintaining safety and privacy, which are of major importance in the field. This paper provides an IoT based skin surveillance system based on a blockchain data protection and safety mechanism. A secure data transmission mechanism for IoT devices used in a distributed architecture is proposed. Privacy is assured through a unique key to identify each user when he registers. The principle of blockchain also addresses security issues through the generation of hash functions on every transaction variable. We use blockchain consortiums that meet our criteria in a decentralized environment for controlled access. The solutions proposed allow IoT based skin surveillance systems to privately and securely store and share medical data over the network without disturbance.

2021-02-23
Liu, W., Park, E. K., Krieger, U., Zhu, S. S..  2020.  Smart e-Health Security and Safety Monitoring with Machine Learning Services. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—6.

This research provides security and safety extensions to a blockchain based solution whose target is e-health. The Advanced Blockchain platform is extended with intelligent monitoring for security and machine learning for detecting patient treatment medication safety issues. For the reasons of stringent HIPAA, HITECH, EU-GDPR and other regional regulations dictating security, safety and privacy requirements, the e-Health blockchains have to cover mandatory disclosure of violations or enforcements of policies during transaction flows involving healthcare. Our service solution further provides the benefits of resolving the abnormal flows of a medical treatment process, providing accountability of the service providers, enabling a trust health information environment for institutions to handle medication safely, giving patients a better safety guarantee, and enabling the authorities to supervise the security and safety of e-Health blockchains. The capabilities can be generalized to support a uniform smart solution across industry in a variety of blockchain applications.

2021-01-28
Fan, M., Yu, L., Chen, S., Zhou, H., Luo, X., Li, S., Liu, Y., Liu, J., Liu, T..  2020.  An Empirical Evaluation of GDPR Compliance Violations in Android mHealth Apps. 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE). :253—264.

The purpose of the General Data Protection Regulation (GDPR) is to provide improved privacy protection. If an app controls personal data from users, it needs to be compliant with GDPR. However, GDPR lists general rules rather than exact step-by-step guidelines about how to develop an app that fulfills the requirements. Therefore, there may exist GDPR compliance violations in existing apps, which would pose severe privacy threats to app users. In this paper, we take mobile health applications (mHealth apps) as a peephole to examine the status quo of GDPR compliance in Android apps. We first propose an automated system, named HPDROID, to bridge the semantic gap between the general rules of GDPR and the app implementations by identifying the data practices declared in the app privacy policy and the data relevant behaviors in the app code. Then, based on HPDROID, we detect three kinds of GDPR compliance violations, including the incompleteness of privacy policy, the inconsistency of data collections, and the insecurity of data transmission. We perform an empirical evaluation of 796 mHealth apps. The results reveal that 189 (23.7%) of them do not provide complete privacy policies. Moreover, 59 apps collect sensitive data through different measures, but 46 (77.9%) of them contain at least one inconsistent collection behavior. Even worse, among the 59 apps, only 8 apps try to ensure the transmission security of collected data. However, all of them contain at least one encryption or SSL misuse. Our work exposes severe privacy issues to raise awareness of privacy protection for app users and developers.

2021-01-11
Majhi, D., Rao, M., Sahoo, S., Dash, S. P., Mohapatra, D. P..  2020.  Modified Grey Wolf Optimization(GWO) based Accident Deterrence in Internet of Things (IoT) enabled Mining Industry. 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA). :1–4.
The occurrences of accidents in mining industries owing to the fragile health conditions of mine workers are reportedly increasing. Health conditions measured as heart rate or pulse, glycemic index, and blood pressure are often crucial parameters that lead to failure in proper reasoning when not within acceptable ranges. These parameters, such as heartbeat rate can be measured continuously using sensors. The data can be monitored remotely and, when found to be of concern, can send necessary alarms to the mine manager. The early alarm notification enables the mine manager with better preparedness for managing the reach of first aid to the accident spot and thereby reduce mine fatalities drastically. This paper presents a framework for deterring accidents in mines with the help of the Grey Wolf Optimization approach.
2020-10-12
Khayat, Mohamad, Barka, Ezedin, Sallabi, Farag.  2019.  SDN\_Based Secure Healthcare Monitoring System(SDN-SHMS). 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1–7.
Healthcare experts and researchers have been promoting the need for IoT-based remote health monitoring systems that take care of the health of elderly people. However, such systems may generate large amounts of data, which makes the security and privacy of such data to become imperative. This paper studies the security and privacy concerns of the existing Healthcare Monitoring System (HMS) and proposes a reference architecture (security integration framework) for managing IoT-based healthcare monitoring systems that ensures security, privacy, and reliable service delivery for patients and elderly people to reduce and avoid health related risks. Our proposed framework will be in the form of state-of-the-art Security Platform, for HMS, using the emerging Software Defined Network (SDN) networking paradigm. Our proposed integration framework eliminates the dependency on specific Software or vendor for different security systems, and allows for the benefits from the functional and secure applications, and services provided by the SDN platform.
2020-07-13
Abuella, Hisham, Ekin, Sabit.  2019.  A New Paradigm for Non-contact Vitals Monitoring using Visible Light Sensing. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–2.
Typical techniques for tracking vital signs require body contact and most of these techniques are intrusive in nature. Body-contact methods might irritate the patient's skin and he/she might feel uncomfortable while sensors are touching his/her body. In this study, we present a new wireless (non-contact) method for monitoring human vital signs (breathing and heartbeat). We have demonstrated for the first time1 that vitals signs can be measured wirelessly through visible light signal reflected from a human subject, also referred to as visible light sensing (VLS). In this method, the breathing and heartbeat rates are measured without any body-contact device, using only a simple photodetector and a light source (e.g., LED). The light signal reflected from human subject is modulated by the physical motions during breathing and heartbeats. Signal processing tools such as filtering and Fourier transform are used to convert these small variations in the received light signal power to vitals data.We implemented the VLS-based non-contact vital signs monitoring system by using an off-the-shelf light source, a photodetector and a signal acquisition and processing unit. We observed more than 94% of accuracy as compared to a contact-based FDA (The Food and Drug Administration) approved devices. Additional evaluations are planned to assess the performance of the developed vitals monitoring system, e.g., different subjects, environments, etc. Non-contact vitals monitoring system can be used in various areas and scenarios such as medical facilities, residential homes, security and human-computer-interaction (HCI) applications.
2020-04-10
Newaz, AKM Iqtidar, Sikder, Amit Kumar, Rahman, Mohammad Ashiqur, Uluagac, A. Selcuk.  2019.  HealthGuard: A Machine Learning-Based Security Framework for Smart Healthcare Systems. 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS). :389—396.
The integration of Internet-of-Things and pervasive computing in medical devices have made the modern healthcare system “smart.” Today, the function of the healthcare system is not limited to treat the patients only. With the help of implantable medical devices and wearables, Smart Healthcare System (SHS) can continuously monitor different vital signs of a patient and automatically detect and prevent critical medical conditions. However, these increasing functionalities of SHS raise several security concerns and attackers can exploit the SHS in numerous ways: they can impede normal function of the SHS, inject false data to change vital signs, and tamper a medical device to change the outcome of a medical emergency. In this paper, we propose HealthGuard, a novel machine learning-based security framework to detect malicious activities in a SHS. HealthGuard observes the vital signs of different connected devices of a SHS and correlates the vitals to understand the changes in body functions of the patient to distinguish benign and malicious activities. HealthGuard utilizes four different machine learning-based detection techniques (Artificial Neural Network, Decision Tree, Random Forest, k-Nearest Neighbor) to detect malicious activities in a SHS. We trained HealthGuard with data collected for eight different smart medical devices for twelve benign events including seven normal user activities and five disease-affected events. Furthermore, we evaluated the performance of HealthGuard against three different malicious threats. Our extensive evaluation shows that HealthGuard is an effective security framework for SHS with an accuracy of 91 % and an F1 score of 90 %.
2020-03-09
Hermawan, Indra, Ma’sum, M. Anwar, Riskyana Dewi Intan, P, Jatmiko, Wisnu, Wiweko, Budi, Boediman, Alfred, Pradekso, Beno K..  2019.  Temporal feature and heuristics-based Noise Detection over Classical Machine Learning for ECG Signal Quality Assessment. 2019 International Workshop on Big Data and Information Security (IWBIS). :1–8.
This study proposes a method for ECG signals quality assessment (SQA) by using temporal feature, and heuristic rule. The ECG signal will be classified as acceptable or unacceptable. Seven types of noise were able to be detected by the prosed method. The noises are: FL, TVN, BW, AB, MA, PLI and AWGN. The proposed method is aimed to have better performance for SQA than classical machine learning method. The experiment is conducted by using 1000 instances ECG signal. The experiment result shows that db8 has the best performance with 0.86, 0.85 and 85.6% on lead-1 signal and 0.69, 0.79, and 74% on lead-5 signal for specificity, sensitivity and accuracy respectively. Compared to the classical machine learning, the proposed heuristic method has same accuracy but has 48% and 31% better specificity for lead-1 and lead-5. It means that the proposed method has far better ability to detect noise.
2020-02-17
Shang, Jiacheng, Wu, Jie.  2019.  A Usable Authentication System Using Wrist-Worn Photoplethysmography Sensors on Smartwatches. 2019 IEEE Conference on Communications and Network Security (CNS). :1–9.
Smartwatches are expected to become the world's best-selling electronic product after smartphones. Various smart-watches have been released to the private consumer market, but the data on smartwatches is not well protected. In this paper, we show for the first time that photoplethysmography (PPG)signals influenced by hand gestures can be used to authenticate users on smartwatches. The insight is that muscle and tendon movements caused by hand gestures compress the arterial geometry with different degrees, which has a significant impact on the blood flow. Based on this insight, novel approaches are proposed to detect the starting point and ending point of the hand gesture from raw PPG signals and determine if these PPG signals are from a normal user or an attacker. Different from existing solutions, our approach leverages the PPG sensors that are available on most smartwatches and does not need to collect training data from attackers. Also, our system can be used in more general scenarios wherever users can perform hand gestures and is robust against shoulder surfing attacks. We conduct various experiments to evaluate the performance of our system and show that our system achieves an average authentication accuracy of 96.31 % and an average true rejection rate of at least 91.64% against two types of attacks.
Yang, Chen, Liu, Tingting, Zuo, Lulu, Hao, Zhiyong.  2019.  An Empirical Study on the Data Security and Privacy Awareness to Use Health Care Wearable Devices. 2019 16th International Conference on Service Systems and Service Management (ICSSSM). :1–6.
Recently, several health care wearable devices which can intervene in health and collect personal health data have emerged in the medical market. Although health care wearable devices promote the integration of multi-layer medical resources and bring new ways of health applications for users, it is inevitable that some problems will be brought. This is mainly manifested in the safety protection of medical and health data and the protection of user's privacy. From the users' point of view, the irrational use of medical and health data may bring psychological and physical negative effects to users. From the government's perspective, it may be sold by private businesses in the international arena and threaten national security. The most direct precaution against the problem is users' initiative. For better understanding, a research model is designed by the following five aspects: Security knowledge (SK), Security attitude (SAT), Security practice (SP), Security awareness (SAW) and Security conduct (SC). To verify the model, structural equation analysis which is an empirical approach was applied to examine the validity and all the results showed that SK, SAT, SP, SAW and SC are important factors affecting users' data security and privacy protection awareness.
2019-01-21
Zhao, J., Kong, K., Hei, X., Tu, Y., Du, X..  2018.  A Visible Light Channel Based Access Control Scheme for Wireless Insulin Pump Systems. 2018 IEEE International Conference on Communications (ICC). :1–6.
Smart personal insulin pumps have been widely adopted by type 1 diabetes. However, many wireless insulin pump systems lack security mechanisms to protect them from malicious attacks. In previous works, the read-write attacks over RF channels can be launched stealthily and could jeopardize patients' lives. Protecting patients from such attacks is urgent. To address this issue, we propose a novel visible light channel based access control scheme for wireless infusion insulin pumps. This scheme employs an infrared photodiode sensor as a receiver in an insulin pump, and an infrared LED as an emitter in a doctor's reader (USB) to transmit a PIN/shared key to authenticate the doctor's USB. The evaluation results demonstrate that our scheme can reliably pass the authentication process with a low false accept rate (0.05% at a distance of 5cm).
2018-04-02
Vhaduri, S., Poellabauer, C..  2017.  Wearable Device User Authentication Using Physiological and Behavioral Metrics. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). :1–6.

Wearables, such as Fitbit, Apple Watch, and Microsoft Band, with their rich collection of sensors, facilitate the tracking of healthcare- and wellness-related metrics. However, the assessment of the physiological metrics collected by these devices could also be useful in identifying the user of the wearable, e.g., to detect unauthorized use or to correctly associate the data to a user if wearables are shared among multiple users. Further, researchers and healthcare providers often rely on these smart wearables to monitor research subjects and patients in their natural environments over extended periods of time. Here, it is important to associate the sensed data with the corresponding user and to detect if a device is being used by an unauthorized individual, to ensure study compliance. Existing one-time authentication approaches using credentials (e.g., passwords, certificates) or trait-based biometrics (e.g., face, fingerprints, iris, voice) might fail, since such credentials can easily be shared among users. In this paper, we present a continuous and reliable wearable-user authentication mechanism using coarse-grain minute-level physical activity (step counts) and physiological data (heart rate, calorie burn, and metabolic equivalent of task). From our analysis of 421 Fitbit users from a two-year long health study, we are able to statistically distinguish nearly 100% of the subject-pairs and to identify subjects with an average accuracy of 92.97%.

Odesile, A., Thamilarasu, G..  2017.  Distributed Intrusion Detection Using Mobile Agents in Wireless Body Area Networks. 2017 Seventh International Conference on Emerging Security Technologies (EST). :144–149.

Technological advances in wearable and implanted medical devices are enabling wireless body area networks to alter the current landscape of medical and healthcare applications. These systems have the potential to significantly improve real time patient monitoring, provide accurate diagnosis and deliver faster treatment. In spite of their growth, securing the sensitive medical and patient data relayed in these networks to protect patients' privacy and safety still remains an open challenge. The resource constraints of wireless medical sensors limit the adoption of traditional security measures in this domain. In this work, we propose a distributed mobile agent based intrusion detection system to secure these networks. Specifically, our autonomous mobile agents use machine learning algorithms to perform local and network level anomaly detection to detect various security attacks targeted on healthcare systems. Simulation results show that our system performs efficiently with high detection accuracy and low energy consumption.

2018-03-19
Naik, B. B., Singh, D., Samaddar, A. B., Lee, H. J..  2017.  Security Attacks on Information Centric Networking for Healthcare System. 2017 19th International Conference on Advanced Communication Technology (ICACT). :436–441.

The Information Centric Networking (ICN) is a novel concept of a large scale ecosystem of wireless actuators and computing technologies. ICN technologies are getting popular in the development of various applications to bring day-to-day comfort and ease in human life. The e-healthcare monitoring services is a subset of ICN services which has been utilized to monitor patient's health condition in a smart and ubiquitous way. However, there are several challenges and attacks on ICN. In this paper we have discussed ICN attacks and ICN based healthcare scenario. We have proposed a novel ICN stack for healthcare scenario for securing biomedical data communication instead of communication networks. However, the biomedical data communication between patient and Doctor requires reliable and secure networks for the global access.

2018-01-23
Aledhari, M., Marhoon, A., Hamad, A., Saeed, F..  2017.  A New Cryptography Algorithm to Protect Cloud-Based Healthcare Services. 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE). :37–43.

The revolution of smart devices has a significant and positive impact on the lives of many people, especially in regard to elements of healthcare. In part, this revolution is attributed to technological advances that enable individuals to wear and use medical devices to monitor their health activities, but remotely. Also, these smart, wearable medical devices assist health care providers in monitoring their patients remotely, thereby enabling physicians to respond quickly in the event of emergencies. An ancillary advantage is that health care costs will be reduced, another benefit that, when paired with prompt medical treatment, indicates significant advances in the contemporary management of health care. However, the competition among manufacturers of these medical devices creates a complexity of small and smart wearable devices such as ECG and EMG. This complexity results in other issues such as patient security, privacy, confidentiality, and identity theft. In this paper, we discuss the design and implementation of a hybrid real-time cryptography algorithm to secure lightweight wearable medical devices. The proposed system is based on an emerging innovative technology between the genomic encryptions and the deterministic chaos method to provide a quick and secure cryptography algorithm for real-time health monitoring that permits for threats to patient confidentiality to be addressed. The proposed algorithm also considers the limitations of memory and size of the wearable health devices. The experimental results and the encryption analysis indicate that the proposed algorithm provides a high level of security for the remote health monitoring system.

2017-03-08
Vizer, L. M., Sears, A..  2015.  Classifying Text-Based Computer Interactions for Health Monitoring. IEEE Pervasive Computing. 14:64–71.

Detecting early trends indicating cognitive decline can allow older adults to better manage their health, but current assessments present barriers precluding the use of such continuous monitoring by consumers. To explore the effects of cognitive status on computer interaction patterns, the authors collected typed text samples from older adults with and without pre-mild cognitive impairment (PreMCI) and constructed statistical models from keystroke and linguistic features for differentiating between the two groups. Using both feature sets, they obtained a 77.1 percent correct classification rate with 70.6 percent sensitivity, 83.3 percent specificity, and a 0.808 area under curve (AUC). These results are in line with current assessments for MC–a more advanced disease–but using an unobtrusive method. This research contributes a combination of features for text and keystroke analysis and enhances understanding of how clinicians or older adults themselves might monitor for PreMCI through patterns in typed text. It has implications for embedded systems that can enable healthcare providers and consumers to proactively and continuously monitor changes in cognitive function.

2015-05-06
Malik, O.A., Arosha Senanayake, S.M.N., Zaheer, D..  2015.  An Intelligent Recovery Progress Evaluation System for ACL Reconstructed Subjects Using Integrated 3-D Kinematics and EMG Features. Biomedical and Health Informatics, IEEE Journal of. 19:453-463.

An intelligent recovery evaluation system is presented for objective assessment and performance monitoring of anterior cruciate ligament reconstructed (ACL-R) subjects. The system acquires 3-D kinematics of tibiofemoral joint and electromyography (EMG) data from surrounding muscles during various ambulatory and balance testing activities through wireless body-mounted inertial and EMG sensors, respectively. An integrated feature set is generated based on different features extracted from data collected for each activity. The fuzzy clustering and adaptive neuro-fuzzy inference techniques are applied to these integrated feature sets in order to provide different recovery progress assessment indicators (e.g., current stage of recovery, percentage of recovery progress as compared to healthy group, etc.) for ACL-R subjects. The system was trained and tested on data collected from a group of healthy and ACL-R subjects. For recovery stage identification, the average testing accuracy of the system was found above 95% (95-99%) for ambulatory activities and above 80% (80-84%) for balance testing activities. The overall recovery evaluation performed by the proposed system was found consistent with the assessment made by the physiotherapists using standard subjective/objective scores. The validated system can potentially be used as a decision supporting tool by physiatrists, physiotherapists, and clinicians for quantitative rehabilitation analysis of ACL-R subjects in conjunction with the existing recovery monitoring systems.
 

Gazzarata, R., Vergari, F., Cinotti, T.S., Giacomini, M..  2014.  A Standardized SOA for Clinical Data Interchange in a Cardiac Telemonitoring Environment. Biomedical and Health Informatics, IEEE Journal of. 18:1764-1774.

Care of chronic cardiac patients requires information interchange between patients' homes, clinical environments, and the electronic health record. Standards are emerging to support clinical information collection, exchange and management and to overcome information fragmentation and actors delocalization. Heterogeneity of information sources at patients' homes calls for open solutions to collect and accommodate multidomain information, including environmental data. Based on the experience gained in a European Research Program, this paper presents an integrated and open approach for clinical data interchange in cardiac telemonitoring applications. This interchange is supported by the use of standards following the indications provided by the national authorities of the countries involved. Taking into account the requirements provided by the medical staff involved in the project, the authors designed and implemented a prototypal middleware, based on a service-oriented architecture approach, to give a structured and robust tool to congestive heart failure patients for their personalized telemonitoring. The middleware is represented by a health record management service, whose interface is compliant to the healthcare services specification project Retrieve, Locate and Update Service standard (Level 0), which allows communication between the agents involved through the exchange of Clinical Document Architecture Release 2 documents. Three performance tests were carried out and showed that the prototype completely fulfilled all requirements indicated by the medical staff; however, certain aspects, such as authentication, security and scalability, should be deeply analyzed within a future engineering phase.
 

2015-04-30
Ben Othman, S., Trad, A., Youssef, H..  2014.  Security architecture for at-home medical care using Wireless Sensor Network. Wireless Communications and Mobile Computing Conference (IWCMC), 2014 International. :304-309.

Distributed wireless sensor network technologies have become one of the major research areas in healthcare industries due to rapid maturity in improving the quality of life. Medical Wireless Sensor Network (MWSN) via continuous monitoring of vital health parameters over a long period of time can enable physicians to make more accurate diagnosis and provide better treatment. The MWSNs provide the options for flexibilities and cost saving to patients and healthcare industries. Medical data sensors on patients produce an increasingly large volume of increasingly diverse real-time data. The transmission of this data through hospital wireless networks becomes a crucial problem, because the health information of an individual is highly sensitive. It must be kept private and secure. In this paper, we propose a security model to protect the transfer of medical data in hospitals using MWSNs. We propose Compressed Sensing + Encryption as a strategy to achieve low-energy secure data transmission in sensor networks.