Biblio
Routing protocols in wireless sensor network are vulnerable to various malicious security attacks that can degrade network performance and lifetime. This becomes more important in cluster routing protocols that is composed of multiple node and cluster head, such as low energy adaptive clustering hierarchy (LEACH) protocol. Namely, if an attack succeeds in failing the cluster head, then the entire set of nodes fail. Therefore, it is necessary to develop robust recovery schemes to overcome security attacks and recover packets at short times. Hence this paper proposes a detection and recovery scheme for selective forwarding attacks in wireless sensor networks using LEACH protocol. The proposed solution features near-instantaneous recovery times, without the requirement for feedback or retransmissions once an attack occurs.
As chips become more and more connected, they are more exposed (both to network and to physical attacks). Therefore one shall ensure they enjoy a sufficient protection level. Security within chips is accordingly becoming a hot topic. Incident detection and reporting is one novel function expected from chips. In this talk, we explain why it is worthwhile to resort to Artificial Intelligence (AI) for security event handling. Drivers are the need to aggregate multiple and heterogeneous security sensors, the need to digest this information quickly to produce exploitable information, and so while maintaining a low false positive detection rate. Key features are adequate learning procedures and fast and secure classification accelerated by hardware. A challenge is to embed such security-oriented AI logic, while not compromising chip power budget and silicon area. This talk accounts for the opportunities permitted by the symbiotic encounter between chip security and AI.
With the rapid development of Internet of Things applications, the power Internet of Things technologies and applications covering the various production links of the power grid "transmission, transmission, transformation, distribution and use" are becoming more and more popular, and the terminal, network and application security risks brought by them are receiving more and more attention. Combined with the architecture and risk of power Internet of Things, this paper first proposes the overall security protection technology system and strategy for power Internet of Things; then analyzes terminal identity authentication and authority control, edge area autonomy and data transmission protection, and application layer cloud fog security management. And the whole process real-time security monitoring; Finally, through the analysis of security risks and protection, the technical difficulties and directions for the security protection of the Internet of Things are proposed.
Recently, as the age of the Internet of Things is approaching, there are more and more devices that communicate data with each other by incorporating sensors and communication functions in various objects. If the IoT is miniaturized, it can be regarded as a sensor having only the sensing ability and the low performance communication ability. Low-performance sensors are difficult to use high-quality communication, and wireless security used in expensive wireless communication devices cannot be applied. Therefore, this paper proposes authentication and key Agreement that can be applied in sensor networks using communication with speed less than 1 Kbps and has limited performances.
The Internet of Things (IoT) is the network where physical devices, sensors, appliances and other different objects can communicate with each other without the need for human intervention. Wireless Sensor Networks (WSNs) are main building blocks of the IoT. Both the IoT and WSNs have many critical and non-critical applications that touch almost every aspect of our modern life. Unfortunately, these networks are prone to various types of security threats. Therefore, the security of IoT and WSNs became crucial. Furthermore, the resource limitations of the devices used in these networks complicate the problem. One of the most recent and effective approaches to address such challenges is machine learning. Machine learning inspires many solutions to secure the IoT and WSNs. In this paper, we survey the different threats that can attack both IoT and WSNs and the machine learning techniques developed to counter them.
Post-quantum secure communication has attracted much interest in recent years. Known computationally secure post-quantum key agreement protocols are resource intensive for small devices. These devices may need to securely send frequent short messages, for example to report the measurement of a sensor. Secure communication using physical assumptions provides information-theoretic security (and so quantum-safe) with small computational over-head. Security and efficiency analysis of these systems however is asymptotic. In this poster we consider two secure message communication systems, and derive and compare their security and efficiency for finite length messages. Our results show that these systems indeed provide an attractive alternative for post-quantum security.
An attack detection scheme is proposed to detect data integrity attacks on sensors in Cyber-Physical Systems (CPSs). A combined fingerprint for sensor and process noise is created during the normal operation of the system. Under sensor spoofing attack, noise pattern deviates from the fingerprinted pattern enabling the proposed scheme to detect attacks. To extract the noise (difference between expected and observed value) a representative model of the system is derived. A Kalman filter is used for the purpose of state estimation. By subtracting the state estimates from the real system states, a residual vector is obtained. It is shown that in steady state the residual vector is a function of process and sensor noise. A set of time domain and frequency domain features is extracted from the residual vector. Feature set is provided to a machine learning algorithm to identify the sensor and process. Experiments are performed on two testbeds, a real-world water treatment (SWaT) facility and a water distribution (WADI) testbed. A class of zero-alarm attacks, designed for statistical detectors on SWaT are detected by the proposed scheme. It is shown that a multitude of sensors can be uniquely identified with accuracy higher than 90% based on the noise fingerprint.
Embedded and mobile devices forming part of the Internet-of-Things (IoT) need new authentication technologies and techniques. This requirement is due to the increase in effort and time attackers will use to compromise a device, often remote, based on the possibility of a significant monetary return. This paper proposes exploiting a device's accelerometers in-built functionality to implement multi-factor authentication. An experimental embedded system designed to emulate a typical mobile device is used to implement the ideas and investigated as proof-of-concept.
Authentication of smartphone users is important because a lot of sensitive data is stored in the smartphone and the smartphone is also used to access various cloud data and services. However, smartphones are easily stolen or co-opted by an attacker. Beyond the initial login, it is highly desirable to re-authenticate end-users who are continuing to access security-critical services and data. Hence, this paper proposes a novel authentication system for implicit, continuous authentication of the smartphone user based on behavioral characteristics, by leveraging the sensors already ubiquitously built into smartphones. We propose novel context-based authentication models to differentiate the legitimate smartphone owner versus other users. We systematically show how to achieve high authentication accuracy with different design alternatives in sensor and feature selection, machine learning techniques, context detection and multiple devices. Our system can achieve excellent authentication performance with 98.1% accuracy with negligible system overhead and less than 2.4% battery consumption.