Visible to the public Biblio

Found 919 results

Filters: Keyword is Servers  [Clear All Filters]
2023-05-11
Karayat, Ritik, Jadhav, Manish, Kondaka, Lakshmi Sudha, Nambiar, Ashwath.  2022.  Web Application Penetration Testing & Patch Development Using Kali Linux. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:1392–1397.
Nowadays, safety is a first-rate subject for all applications. There has been an exponential growth year by year in the number of businesses going digital since the few decades following the birth of the Internet. In these technologically advanced times, cyber security is a must mainly for internet applications, so we have the notion of diving deeper into the Cyber security domain and are determined to make a complete project. We aim to develop a website portal for ease of communication between us and the end user. Utilizing the power of python scripting and flask server to make independent automated tools for detection of SQLI, XSS & a Spider(Content Discovery Tool). We have also integrated skipfish as a website vulnerability scanner to our project using python and Kali Linux. Since conducting a penetration test on another website without permission is not legal, we thought of building a dummy website prone to OS Command Injection in addition to the above-mentioned attacks. A well-documented report will be generated after the penetration test/ vulnerability scan. In case the website is vulnerable, patching of the website will be done with the user's consent.
ISSN: 2575-7288
2023-04-28
Bálint, Krisztián.  2022.  Data Security Structure of a Students’ Attendance Register Based on Security Cameras and Blockchain Technology. 2022 IEEE 22nd International Symposium on Computational Intelligence and Informatics and 8th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics (CINTI-MACRo). :000185–000190.
The latest, modern security camera systems record numerous data at once. With the utilization of artificial intelligence, these systems can even compose an online attendance register of students present during the lectures. Data is primarily recorded on the hard disk of the NVR (Network Video Recorder), and in the long term, it is recommended to save the data in the blockchain. The purpose of the research is to demonstrate how university security cameras can be securely connected to the blockchain. This would be important for universities as this is sensitive student data that needs to be protected from unauthorized access. In my research, as part of the practical implementation, I therefore also use encryption methods and data fragmentation, which are saved at the nodes of the blockchain. Thus, even a DDoS (Distributed Denial of Service) type attack may be easily repelled, as data is not concentrated on a single, central server. To further increase security, it is useful to constitute a blockchain capable of its own data storage at the faculty itself, rather than renting data storage space, so we, ourselves may regulate the conditions of operation, and the policy of data protection. As a practical part of my research, therefore, I created a blockchain called UEDSC (Universities Data Storage Chain) where I saved the student's data.
ISSN: 2471-9269
López, Hiram H., Matthews, Gretchen L., Valvo, Daniel.  2022.  Secure MatDot codes: a secure, distributed matrix multiplication scheme. 2022 IEEE Information Theory Workshop (ITW). :149–154.
This paper presents secure MatDot codes, a family of evaluation codes that support secure distributed matrix multiplication via a careful selection of evaluation points that exploit the properties of the dual code. We show that the secure MatDot codes provide security against the user by using locally recoverable codes. These new codes complement the recently studied discrete Fourier transform codes for distributed matrix multiplication schemes that also provide security against the user. There are scenarios where the associated costs are the same for both families and instances where the secure MatDot codes offer a lower cost. In addition, the secure MatDot code provides an alternative way to handle the matrix multiplication by identifying the fastest servers in advance. In this way, it can determine a product using fewer servers, specified in advance, than the MatDot codes which achieve the optimal recovery threshold for distributed matrix multiplication schemes.
2023-04-27
Ahmad, Ashar, Saad, Muhammad, Al Ghamdi, Mohammed, Nyang, DaeHun, Mohaisen, David.  2022.  BlockTrail: A Service for Secure and Transparent Blockchain-Driven Audit Trails. IEEE Systems Journal. 16:1367–1378.
Audit trails are critical components in enterprise business applications, typically used for storing, tracking, and auditing data. Entities in the audit trail applications have weak trust boundaries, which expose them to various security risks and attacks. To harden the security and develop secure by design applications, blockchain technology has been recently introduced in the audit trails. Blockchains take a consensus-driven clean slate approach to equip audit trails with secure and transparent data processing, without a trusted intermediary. On a downside, blockchains significantly increase the space-time complexity of the audit trails, leading to high storage costs and low transaction throughput. In this article, we introduce BlockTrail, a novel blockchain architecture that fragments the legacy blockchain systems into layers of codependent hierarchies, thereby reducing the space-time complexity and increasing the throughput. BlockTrail is prototyped on the “practical Byzantine fault tolerance” protocol with a custom-built blockchain. Experiments with BlockTrail show that compared to the conventional schemes, BlockTrail is secure and efficient, with low storage footprint.
Conference Name: IEEE Systems Journal
2023-04-14
Rao Varre, Durga Naga Malleswara, Bayana, Jayanag.  2022.  A Secured Botnet Prevention Mechanism for HTTP Flooding Based DDoS Attack. 2022 3rd International Conference for Emerging Technology (INCET). :1–5.
HTTP flood DDoS (Distributed Denial of Service) attacks send illegitimate HTTP requests to the targeted site or server. These kinds of attacks corrupt the networks with the help of massive attacking nodes thus blocking incoming traffic. Computer network connected devices are the major source to distributed denial of service attacks (or) botnet attacks. The computer manufacturers rapidly increase the network devices as per the requirement increases in the different environmental needs. Generally the manufacturers cannot ship computer network products with high level security. Those network products require additional security to prevent the DDoS attacks. The present technology is filled with 4G that will impact DDoS attacks. The million DDoS attacks had experienced in every year by companies or individuals. DDoS attack in a network would lead to loss of assets, data and other resources. Purchasing the new equipment and repair of the DDoS attacked network is financially becomes high in the value. The prevention mechanisms like CAPTCHA are now outdated to the bots and which are solved easily by the advanced bots. In the proposed work a secured botnet prevention mechanism provides network security by prevent and mitigate the http flooding based DDoS attack and allow genuine incoming traffic to the application or server in a network environment with the help of integrating invisible challenge and Resource Request Rate algorithms to the application. It offers double security layer to handle malicious bots to prevent and mitigate.
2023-03-31
Navuluri, Karthik, Mukkamala, Ravi, Ahmad, Aftab.  2016.  Privacy-Aware Big Data Warehouse Architecture. 2016 IEEE International Congress on Big Data (BigData Congress). :341–344.
Along with the ever increasing growth in data collection and its mining, there is an increasing fear of compromising individual and population privacy. Several techniques have been proposed in literature to preserve privacy of collected data while storing and processing. In this paper, we propose a privacy-aware architecture for storing and processing data in a Big Data warehouse. In particular, we propose a flexible, extendable, and adaptable architecture that enforces user specified privacy requirements in the form of Embedded Privacy Agreements. The paper discusses the details of the architecture with some implementation details.
2023-03-17
Dash, Lipsa, Sharma, Sanjeev, M, Manish, M, Chaitanya, P, Vamsi Krishna, Manna, Souvik.  2022.  Comparative Analysis of Secured Transport Systems using RFID Technology for Schools. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1–6.
Despite the strict measures taken by authorities for children safety, crime against children is increasing. To curb this crime, it is important to improve the safety of children. School authorities can be severely penalized for these incidents, hence monitoring the school bus is significantly important in limiting these incidents. The developing worry of families for the security and insurance of their kids has started incredible interest in creating strong frameworks that give successful following and oversight of kids driving among home and school. Coordinated transport following permits youngsters to partake more in their normal schoolwork longer than trusting that a transport will be late with the assistance of notice and guarantees the security of every understudy. These days, reacting to the necessities existing apart from everything else, numerous instructive foundations have begun to push more towards a compelling global positioning framework of their vehicles that ensures the wellbeing of their understudies. Effective transport following is accomplished by procuring the geographic directions utilizing the GPS module and communicating the informationto a distant server. The framework depends on prepared to-utilize inactive RFID peruses. Make a message pop-up from the server script subsequent to checking the understudy's RFID tag be. The RFID examine exhibiting that the understudy boarded the vehicle to the specific trained professionals and the parent. Successful transport following permits school specialists, guardians, and drivers to precisely design their schedules while protecting kids from the second they get on until they get off the transport. The framework overall makes it conceivable to educate the administration regarding crises or protests. A variety of reports can be generated for different school-wide real-time bus and vehicle activities. This paper reviews the various smart security transport systems proposed for providing security features.
Woralert, Chutitep, Liu, Chen, Blasingame, Zander.  2022.  HARD-Lite: A Lightweight Hardware Anomaly Realtime Detection Framework Targeting Ransomware. 2022 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.
Recent years have witnessed a surge in ransomware attacks. Especially, many a new variant of ransomware has continued to emerge, employing more advanced techniques distributing the payload while avoiding detection. This renders the traditional static ransomware detection mechanism ineffective. In this paper, we present our Hardware Anomaly Realtime Detection - Lightweight (HARD-Lite) framework that employs semi-supervised machine learning method to detect ransomware using low-level hardware information. By using an LSTM network with a weighted majority voting ensemble and exponential moving average, we are able to take into consideration the temporal aspect of hardware-level information formed as time series in order to detect deviation in system behavior, thereby increasing the detection accuracy whilst reducing the number of false positives. Testing against various ransomware across multiple families, HARD-Lite has demonstrated remarkable effectiveness, detecting all cases tested successfully. What's more, with a hierarchical design that distributing the classifier from the user machine that is under monitoring to a server machine, Hard-Lite enables good scalability as well.
2023-03-03
Krishnamoorthy, R., Arun, S., Sujitha, N., Vijayalakshmi, K.M, Karthiga, S., Thiagarajan, R..  2022.  Proposal of HMAC based Protocol for Message Authenication in Kerberos Authentication Protocol. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :1443–1447.
Kerberos protocol is a derivative type of server used for the authentication purpose. Kerberos is a network-based authentication protocol which communicates the tickets from one network to another in a secured manner. Kerberos protocol encrypts the messages and provides mutual authentication. Kerberos uses the symmetric cryptography which uses the public key to strengthen the data confidentiality. The KDS Key Distribution System gives the center of securing the messages. Kerberos has certain disadvantages as it provides public key at both ends. In this proposed approach, the Kerberos are secured by using the HMAC Hash-based Message Authentication Code which is used for the authentication of message for integrity and authentication purpose. It verifies the data by authentication, verifies the e-mail address and message integrity. The computer network and security are authenticated by verifying the user or client. These messages which are transmitted and delivered have to be integrated by authenticating it. Kerberos authentication is used for the verification of a host or user. Authentication is based on the tickets on credentials in a secured way. Kerberos gives faster authentication and uses the unique ticketing system. It supports the authentication delegation with faster efficiency. These encrypt the standard by encrypting the tickets to pass the information.
Krishnan, Ashwin A, Rajendran, Satish Kumar, Sunil Kumar, T K.  2022.  Improved PKI Certificate Lifecycle Management With Centralized Device Management For Industrial IoT. 2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA). :1–5.
The present industrial scenario requires frequent transfer of data between remote servers and on premise devices and hence the risk of attacks on these data cannot be overlooked. Such security risk is even aggravated in case of sensitive information being compromised due to inefficient security implementations. Various forms of security implementations are being discussed and experimented for the same. With the introduction of devices with better processing capabilities, Public Key Infrastructure is a very popular technique being widely implemented, wherein symmetric and asymmetric key based encryptions are used inorder to secure the data being transferred and it has proven to be an effective technique. The PKI however suffers certain drawbacks and it is evident from the attacks. A system specifically designed for scenarios such as a factory having a centralised device management system requiring multiple devices to communicate and upload data safely to server is being put forward in this paper.
Agarwal, Shubham, Sable, Arjun, Sawant, Devesh, Kahalekar, Sunil, Hanawal, Manjesh K..  2022.  Threat Detection and Response in Linux Endpoints. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :447–449.
We demonstrate an in-house built Endpoint Detection and Response (EDR) for linux systems using open-sourced tools like Osquery and Elastic. The advantage of building an in-house EDR tools against using commercial EDR tools provides both the knowledge and the technical capability to detect and investigate security incidents. We discuss the architecture of the tools and advantages it offers. Specifically, in our method all the endpoint logs are collected at a common server which we leverage to perform correlation between events happening on different endpoints and automatically detect threats like pivoting and lateral movements. We discuss various attacks that can be detected by our tool.
ISSN: 2155-2509
2023-02-17
Das, Lipsa, Ahuja, Laxmi, Pandey, Adesh.  2022.  Analysis of Twitter Spam Detection Using Machine Learning Approach. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :764–769.
Now a days there are many online social networks (OSN) which are very popular among Internet users and use this platform for finding new connections, sharing their activities and thoughts. Twitter is such social media platforms which is very popular among this users. Survey says, it has more than 310 million monthly users who are very active and post around 500+ million tweets in a day and this attracts, the spammer or cyber-criminal to misuse this platform for their malicious benefits. Product advertisement, phishing true users, pornography propagation, stealing the trending news, sharing malicious link to get the victims for making money are the common example of the activities of spammers. In Aug-2014, Twitter made public that 8.5% of its active Twitter users (monthly) that is approx. 23+ million users, who have automatically contacted their servers for regular updates. Thus for a spam free environment in twitter, it is greatly required to detect and filter these spammer from the legitimate users. Here in our research paper, effectiveness & features of twitter spam detection, various methods are summarized with their benefits and limitations are presented. [1]
Mohan, K Venkata Murali, Kodati, Sarangam, Krishna, V..  2022.  Securing SDN Enabled IoT Scenario Infrastructure of Fog Networks From Attacks. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :1239–1243.
Nowadays, lives are very much easier with the help of IoT. Due to lack of protection and a greater number of connections, the management of IoT becomes more difficult To manage the network flow, a Software Defined Networking (SDN) has been introduced. The SDN has a great capability in automatic and dynamic distribution. For harmful attacks on the controller a centralized SDN architecture unlocks the scope. Therefore, to reduce these attacks in real-time, a securing SDN enabled IoT scenario infrastructure of Fog networks is preferred. The virtual switches have network enforcement authorized decisions and these are executed through the SDN network. Apart from this, SDN switches are generally powerful machines and simultaneously these are used as fog nodes. Therefore, SDN looks like a good selection for Fog networks of IoT. Moreover, dynamically distributing the necessary crypto keys are allowed by the centralized and software channel protection management solution, in order to establish the Datagram Transport Layer Security (DTIS) tunnels between the IoT devices, when demanded by the cyber security framework. Through the extensive deployment of this combination, the usage of CPU is observed to be 30% between devices and the latencies are in milliseconds range, and thus it presents the system feasibility with less delay. Therefore, by comparing with the traditional SDN, it is observed that the energy consumption is reduced by more than 90%.
Rekeraho, Alexandre, Balan, Titus, Cotfas, Daniel T., Cotfas, Petru A., Acheampong, Rebecca, Musuroi, Cristian.  2022.  Sandbox Integrated Gateway for the Discovery of Cybersecurity Vulnerabilities. 2022 International Symposium on Electronics and Telecommunications (ISETC). :1–4.
Emails are widely used as a form of communication and sharing files in an organization. However, email is widely used by cybercriminals to spread malware and carrying out cyber-attacks. We implemented an open-source email gateway in conjunction with a security sandbox for securing emails against malicious attachments. The email gateway scans all incoming and outgoing emails and stops emails containing suspicious files. An automated python script would then send the suspected email to the sandboxing element through sandbox API for further analysis, while the script is used also for the prevention of duplicate results. Moreover, the mail server administrator receives notifications from the email gateway about suspicious attachments. If detected attachment is a true positive based on the sandbox analysis result, email is deleted, otherwise, the email is delivered to the recipient. The paper describes in an empirical way the steps followed during the implementation, results, and conclusions of our research.
ISSN: 2475-7861
Syambas, Nana Rachmana, Juhana, Tutun, Hendrawan, Mulyana, Eueung, Edward, Ian Joseph Matheus, Situmorang, Hamonangan, Mayasari, Ratna, Negara, Ridha Muldina, Yovita, Leanna Vidya, Wibowo, Tody Ariefianto et al..  2022.  Research Progress On Name Data Networking To Achieve A Superior National Product In Indonesia. 2022 8th International Conference on Wireless and Telematics (ICWT). :1–6.
Global traffic data are proliferating, including in Indonesia. The number of internet users in Indonesia reached 205 million in January 2022. This data means that 73.7% of Indonesia’s population has used the internet. The median internet speed for mobile phones in Indonesia is 15.82 Mbps, while the median internet connection speed for Wi-Fi in Indonesia is 20.13 Mbps. As predicted by many, real-time traffic such as multimedia streaming dominates more than 79% of traffic on the internet network. This condition will be a severe challenge for the internet network, which is required to improve the Quality of Experience (QoE) for user mobility, such as reducing delay, data loss, and network costs. However, IP-based networks are no longer efficient at managing traffic. Named Data Network (NDN) is a promising technology for building an agile communication model that reduces delays through a distributed and adaptive name-based data delivery approach. NDN replaces the ‘where’ paradigm with the concept of ‘what’. User requests are no longer directed to a specific IP address but to specific content. This paradigm causes responses to content requests to be served by a specific server and can also be served by the closest device to the requested data. NDN router has CS to cache the data, significantly reducing delays and improving the internet network’s quality of Service (QoS). Motivated by this, in 2019, we began intensive research to achieve a national flagship product, an NDN router with different functions from ordinary IP routers. NDN routers have cache, forwarding, and routing functions that affect data security on name-based networks. Designing scalable NDN routers is a new challenge as NDN requires fast hierarchical name-based lookups, perpackage data field state updates, and large-scale forward tables. We have a research team that has conducted NDN research through simulation, emulation, and testbed approaches using virtual machines to get the best NDN router design before building a prototype. Research results from 2019 show that the performance of NDN-based networks is better than existing IP-based networks. The tests were carried out based on various scenarios on the Indonesian network topology using NDNsimulator, MATLAB, Mininet-NDN, and testbed using virtual machines. Various network performance parameters, such as delay, throughput, packet loss, resource utilization, header overhead, packet transmission, round trip time, and cache hit ratio, showed the best results compared to IP-based networks. In addition, NDN Testbed based on open source is free, and the flexibility of creating topology has also been successfully carried out. This testbed includes all the functions needed to run an NDN network. The resource capacity on the server used for this testbed is sufficient to run a reasonably complex topology. However, bugs are still found on the testbed, and some features still need improvement. The following exploration of the NDN testbed will run with more new strategy algorithms and add Artificial Intelligence (AI) to the NDN function. Using AI in cache and forwarding strategies can make the system more intelligent and precise in making decisions according to network conditions. It will be a step toward developing NDN router products by the Bandung Institute of Technology (ITB) Indonesia.
2023-02-13
[Anonymous].  2022.  A Trust Based DNS System to Prevent Eclipse Attack on Blockchain Networks. 2022 15th International Conference on Security of Information and Networks (SIN). :01—08.
The blockchain network is often considered a reliable and secure network. However, some security attacks, such as eclipse attacks, have a significant impact on blockchain networks. In order to perform an eclipse attack, the attacker must be able to control enough IP addresses. This type of attack can be mitigated by blocking incoming connections. Connected machines may only establish outbound connections to machines they trust, such as those on a whitelist that other network peers maintain. However, this technique is not scalable since the solution does not allow nodes with new incoming communications to join the network. In this paper, we propose a scalable and secure trust-based solution against eclipse attacks with a peer-selection strategy that minimizes the probability of eclipse attacks from nodes in the network by developing a trust point. Finally, we experimentally analyze the proposed solution by creating a network simulation environment. The analysis results show that the proposed solution reduces the probability of an eclipse attack and has a success rate of over 97%.
2023-02-03
Revathi, K., Tamilselvi, T., Tamilselvi, K., Shanthakumar, P., Samydurai, A..  2022.  Context Aware Fog-Assisted Vital Sign Monitoring System: Design and Implementation. 2022 International Conference on Edge Computing and Applications (ICECAA). :108–112.
The Internet of Things (IoT) aims to introduce pervasive computation into the human environment. The processing on a cloud platform is suggested due to the IoT devices' resource limitations. High latency while transmitting IoT data from its edge network to the cloud is the primary limitation. Modern IoT applications frequently use fog computing, an unique architecture, as a replacement for the cloud since it promises faster reaction times. In this work, a fog layer is introduced in smart vital sign monitor design in order to serve faster. Context aware computing makes use of environmental or situational data around the object to invoke proactive services upon its usable content. Here in this work the fog layer is intended to provide local data storage, data preprocessing, context awareness and timely analysis.
2023-01-20
Joshi, Sanskruti, Li, Ruixiao, Bhattacharjee, Shameek, Das, Sajal K., Yamana, Hayato.  2022.  Privacy-Preserving Data Falsification Detection in Smart Grids using Elliptic Curve Cryptography and Homomorphic Encryption. 2022 IEEE International Conference on Smart Computing (SMARTCOMP). :229—234.
In an advanced metering infrastructure (AMI), the electric utility collects power consumption data from smart meters to improve energy optimization and provides detailed information on power consumption to electric utility customers. However, AMI is vulnerable to data falsification attacks, which organized adversaries can launch. Such attacks can be detected by analyzing customers' fine-grained power consumption data; however, analyzing customers' private data violates the customers' privacy. Although homomorphic encryption-based schemes have been proposed to tackle the problem, the disadvantage is a long execution time. This paper proposes a new privacy-preserving data falsification detection scheme to shorten the execution time. We adopt elliptic curve cryptography (ECC) based on homomorphic encryption (HE) without revealing customer power consumption data. HE is a form of encryption that permits users to perform computations on the encrypted data without decryption. Through ECC, we can achieve light computation. Our experimental evaluation showed that our proposed scheme successfully achieved 18 times faster than the CKKS scheme, a common HE scheme.
Fujii, Shota, Kawaguchi, Nobutaka, Kojima, Shoya, Suzuki, Tomoya, Yamauchi, Toshihiro.  2022.  Design and Implementation of System for URL Signature Construction and Impact Assessment. 2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI). :95–100.
The attacker’s server plays an important role in sending attack orders and receiving stolen information, particularly in the more recent cyberattacks. Under these circumstances, it is important to use network-based signatures to block malicious communications in order to reduce the damage. However, in addition to blocking malicious communications, signatures are also required not to block benign communications during normal business operations. Therefore, the generation of signatures requires a high level of understanding of the business, and highly depends on individual skills. In addition, in actual operation, it is necessary to test whether the generated signatures do not interfere with benign communications, which results in high operational costs. In this paper, we propose SIGMA, a system that automatically generates signatures to block malicious communication without interfering with benign communication and then automatically evaluates the impact of the signatures. SIGMA automatically extracts the common parts of malware communication destinations by clustering them and generates multiple candidate signatures. After that, SIGMA automatically calculates the impact on normal communication based on business logs, etc., and presents the final signature to the analyst, which has the highest blockability of malicious communication and non-blockability of normal communication. Our objectives with this system are to reduce the human factor in generating the signatures, reduce the cost of the impact evaluation, and support the decision of whether to apply the signatures. In the preliminary evaluation, we showed that SIGMA can automatically generate a set of signatures that detect 100% of suspicious URLs with an over-detection rate of just 0.87%, using the results of 14,238 malware analyses and actual business logs. This result suggests that the cost for generation of signatures and the evaluation of their impact on business operations can be suppressed, which used to be a time-consuming and human-intensive process.
2023-01-13
Leclerc, Griffin, Bartos, Radim.  2022.  Experimental Analysis of the Performance and Scalability of Network Time Security for the Network Time Protocol. 2022 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS). :1–7.
Network Time Security (NTS) standardizes mechanisms that allow clients to authenticate timing information received via Network Time Protocol (NTP). NTS includes a new key establishment protocol, NTS-KE, and extension fields for NTPv4 which, when utilized together, allow clients to authenticate messages from time servers. Utilizing an open source implementation of each, we determine the existence and severity of any performance or scalability impact introduced by NTS when compared to NTP. We found that conducting individual authenticated time transfer takes approximately 116% longer when utilizing NTS over NTP. Additionally, we found that NTS-KE can only support approximately 2000 requests per second before a substantial and consistent increase in turnaround time is observed.
Cabral, Warren Z., Sikos, Leslie F., Valli, Craig.  2022.  Shodan Indicators Used to Detect Standard Conpot Implementations and Their Improvement Through Sophisticated Customization. 2022 IEEE Conference on Dependable and Secure Computing (DSC). :1—7.
Conpot is a low-interaction SCADA honeypot system that mimics a Siemens S7-200 proprietary device on default deployments. Honeypots operating using standard configurations can be easily detected by adversaries using scanning tools such as Shodan. This study focuses on the capabilities of the Conpot honeypot, and how these competences can be used to lure attackers. In addition, the presented research establishes a framework that enables for the customized configuration, thereby enhancing its functionality to achieve a high degree of deceptiveness and realism when presented to the Shodan scanners. A comparison between the default and configured deployments is further conducted to prove the modified deployments' effectiveness. The resulting annotations can assist cybersecurity personnel to better acknowledge the effectiveness of the honeypot's artifacts and how they can be used deceptively. Lastly, it informs and educates cybersecurity audiences on how important it is to deploy honeypots with advanced deceptive configurations to bait cybercriminals.
2023-01-06
Erbil, Pinar, Gursoy, M. Emre.  2022.  Detection and Mitigation of Targeted Data Poisoning Attacks in Federated Learning. 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :1—8.
Federated learning (FL) has emerged as a promising paradigm for distributed training of machine learning models. In FL, several participants train a global model collaboratively by only sharing model parameter updates while keeping their training data local. However, FL was recently shown to be vulnerable to data poisoning attacks, in which malicious participants send parameter updates derived from poisoned training data. In this paper, we focus on defending against targeted data poisoning attacks, where the attacker’s goal is to make the model misbehave for a small subset of classes while the rest of the model is relatively unaffected. To defend against such attacks, we first propose a method called MAPPS for separating malicious updates from benign ones. Using MAPPS, we propose three methods for attack detection: MAPPS + X-Means, MAPPS + VAT, and their Ensemble. Then, we propose an attack mitigation approach in which a "clean" model (i.e., a model that is not negatively impacted by an attack) can be trained despite the existence of a poisoning attempt. We empirically evaluate all of our methods using popular image classification datasets. Results show that we can achieve \textgreater 95% true positive rates while incurring only \textless 2% false positive rate. Furthermore, the clean models that are trained using our proposed methods have accuracy comparable to models trained in an attack-free scenario.
2023-01-05
Yang, Haonan, Zhong, Yongchao, Yang, Bo, Yang, Yiyu, Xu, Zifeng, Wang, Longjuan, Zhang, Yuqing.  2022.  An Overview of Sybil Attack Detection Mechanisms in VFC. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :117–122.
Vehicular Fog Computing (VFC) has been proposed to address the security and response time issues of Vehicular Ad Hoc Networks (VANETs) in latency-sensitive vehicular network environments, due to the frequent interactions that VANETs need to have with cloud servers. However, the anonymity protection mechanism in VFC may cause the attacker to launch Sybil attacks by fabricating or creating multiple pseudonyms to spread false information in the network, which poses a severe security threat to the vehicle driving. Therefore, in this paper, we summarize different types of Sybil attack detection mechanisms in VFC for the first time, and provide a comprehensive comparison of these schemes. In addition, we also summarize the possible impacts of different types of Sybil attacks on VFC. Finally, we summarize challenges and prospects of future research on Sybil attack detection mechanisms in VFC.
2022-12-23
Montano, Isabel Herrera, de La Torre Díez, Isabel, Aranda, Jose Javier García, Diaz, Juan Ramos, Cardín, Sergio Molina, López, Juan José Guerrero.  2022.  Secure File Systems for the Development of a Data Leak Protection (DLP) Tool Against Internal Threats. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–7.
Data leakage by employees is a matter of concern for companies and organizations today. Previous studies have shown that existing Data Leakage Protection (DLP) systems on the market, the more secure they are, the more intrusive and tedious they are to work with. This paper proposes and assesses the implementation of four technologies that enable the development of secure file systems for insider threat-focused, low-intrusive and user-transparent DLP tools. Two of these technologies are configurable features of the Windows operating system (Minifilters and Server Message Block), the other two are virtual file systems (VFS) Dokan and WinFsp, which mirror the real file system (RFS) allowing it to incorporate security techniques. In the assessment of the technologies, it was found that the implementation of VFS was very efficient and simple. WinFsp and Dokan presented a performance of 51% and 20% respectively, with respect to the performance of the operations in the RFS. This result may seem relatively low, but it should be taken into account that the calculation includes read and write encryption and decryption operations as appropriate for each prototype. Server Message Block (SMB) presented a low performance (3%) so it is not considered viable for a solution like this, while Minifilters present the best performance but require high programming knowledge for its evolution. The prototype presented in this paper and its strategy provides an acceptable level of comfort for the user, and a high level of security.
ISSN: 2166-0727
2022-12-20
Siewert, Hendrik, Kretschmer, Martin, Niemietz, Marcus, Somorovsky, Juraj.  2022.  On the Security of Parsing Security-Relevant HTTP Headers in Modern Browsers. 2022 IEEE Security and Privacy Workshops (SPW). :342–352.

Web browsers are among the most important but also complex software solutions to access the web. It is therefore not surprising that web browsers are an attractive target for attackers. Especially in the last decade, security researchers and browser vendors have developed sandboxing mechanisms like security-relevant HTTP headers to tackle the problem of getting a more secure browser. Although the security community is aware of the importance of security-relevant HTTP headers, legacy applications and individual requests from different parties have led to possible insecure configurations of these headers. Even if specific security headers are configured correctly, conflicts in their functionalities may lead to unforeseen browser behaviors and vulnerabilities. Recently, the first work which analyzed duplicated headers and conflicts in headers was published by Calzavara et al. at USENIX Security [1]. The authors focused on inconsistent protections by using both, the HTTP header X-Frame-Options and the framing protection of the Content-Security-Policy.We extend their work by analyzing browser behaviors when parsing duplicated headers, conflicting directives, and values that do not conform to the defined ABNF metalanguage specification. We created an open-source testbed running over 19,800 test cases, at which nearly 300 test cases are executed in the set of 66 different browsers. Our work shows that browsers conform to the specification and behave securely. However, all tested browsers behave differently when it comes, for example, to parsing the Strict-Transport-Security header. Moreover, Chrome, Safari, and Firefox behave differently if the header contains a character, which is not allowed by the defined ABNF. This results in the protection mechanism being fully enforced, partially enforced, or not enforced and thus completely bypassable.

ISSN: 2770-8411