Visible to the public Biblio

Found 563 results

Filters: Keyword is Servers  [Clear All Filters]
2020-08-10
Quijano, Andrew, Akkaya, Kemal.  2019.  Server-Side Fingerprint-Based Indoor Localization Using Encrypted Sorting. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). :53–57.
GPS signals, the main origin of navigation, are not functional in indoor environments. Therefore, Wi-Fi access points have started to be increasingly used for localization and tracking inside the buildings by relying on fingerprint-based approach. However, with these types of approaches, several concerns regarding the privacy of the users have arisen. Malicious individuals can determine a clients daily habits and activities by simply analyzing their wireless signals. While there are already efforts to incorporate privacy to the existing fingerprint-based approaches, they are limited to the characteristics of the homo-morphic cryptographic schemes they employed. In this paper, we propose to enhance the performance of these approaches by exploiting another homomorphic algorithm, namely DGK, with its unique encrypted sorting capability and thus pushing most of the computations to the server side. We developed an Android app and tested our system within a Columbia University dormitory. Compared to existing systems, the results indicated that more power savings can be achieved at the client side and DGK can be a viable option with more powerful server computation capabilities.
2020-08-07
Liu, Xiaohu, Li, Laiqiang, Ma, Zhuang, Lin, Xin, Cao, Junyang.  2019.  Design of APT Attack Defense System Based on Dynamic Deception. 2019 IEEE 5th International Conference on Computer and Communications (ICCC). :1655—1659.
Advanced Persistent Threat (APT) attack has the characteristics of complex attack means, long duration and great harmfulness. Based on the idea of dynamic deception, the paper proposed an APT defense system framework, and analyzed the deception defense process. The paper proposed a hybrid encryption communication mechanism based on socket, a dynamic IP address generation method based on SM4, a dynamic timing selection method based on Viterbi algorithm and a dynamic policy allocation mechanism based on DHCPv6. Tests show that the defense system can dynamically change and effectively defense APT attacks.
2020-08-03
Parmar, Manisha, Domingo, Alberto.  2019.  On the Use of Cyber Threat Intelligence (CTI) in Support of Developing the Commander's Understanding of the Adversary. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–6.
Cyber Threat Intelligence (CTI) is a rapidly developing field which has evolved in direct response to exponential growth in cyber related crimes and attacks. CTI supports Communication and Information System (CIS)Security in order to bolster defenses and aids in the development of threat models that inform an organization's decision making process. In a military organization like NATO, CTI additionally supports Cyberspace Operations by providing the Commander with essential intelligence about the adversary, their capabilities and objectives while operating in and through cyberspace. There have been many contributions to the CTI field; a noteworthy contribution is the ATT&CK® framework by the Mitre Corporation. ATT&CK® contains a comprehensive list of adversary tactics and techniques linked to custom or publicly known Advanced Persistent Threats (APT) which aids an analyst in the characterization of Indicators of Compromise (IOCs). The ATT&CK® framework also demonstrates possibility of supporting an organization with linking observed tactics and techniques to specific APT behavior, which may assist with adversary characterization and identification, necessary steps towards attribution. The NATO Allied Command Transformation (ACT) and the NATO Communication and Information Agency (NCI Agency) have been experimenting with the use of deception techniques (including decoys) to increase the collection of adversary related data. The collected data is mapped to the tactics and techniques described in the ATT&CK® framework, in order to derive evidence to support adversary characterization; this intelligence is pivotal for the Commander to support mission planning and determine the best possible multi-domain courses of action. This paper describes the approach, methodology, outcomes and next steps for the conducted experiments.
Li, Guanyu, Zhang, Menghao, Liu, Chang, Kong, Xiao, Chen, Ang, Gu, Guofei, Duan, Haixin.  2019.  NETHCF: Enabling Line-rate and Adaptive Spoofed IP Traffic Filtering. 2019 IEEE 27th International Conference on Network Protocols (ICNP). :1–12.
In this paper, we design NETHCF, a line-rate in-network system for filtering spoofed traffic. NETHCF leverages the opportunity provided by programmable switches to design a novel defense against spoofed IP traffic, and it is highly efficient and adaptive. One key challenge stems from the restrictions of the computational model and memory resources of programmable switches. We address this by decomposing the HCF system into two complementary components-one component for the data plane and another for the control plane. We also aggregate the IP-to-Hop-Count (IP2HC) mapping table for efficient memory usage, and design adaptive mechanisms to handle end-to-end routing changes, IP popularity changes, and network activity dynamics. We have built a prototype on a hardware Tofino switch, and our evaluation demonstrates that NETHCF can achieve line-rate and adaptive traffic filtering with low overheads.
2020-07-30
Liu, Junqiu, Wang, Fei, Zhao, Shuang, Wang, Xin, Chen, Shuhui.  2019.  iMonitor, An APP-Level Traffic Monitoring and Labeling System for iOS Devices. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :211—218.
In this paper, we propose the first traffic monitoring and labeling system for iOS devices, named iMonitor, which not just captures mobile network traffic in .pcap files, but also provides comprehensive APP-related and user-related information of captured packets. Through further analysis, one can obtain the exact APP or device where each packet comes from. The labeled traffic can be used in many research areas for mobile security, such as privacy leakage detection and user profiling. Given the implementation methodology of NetworkExtension framework of iOS 9+, APP labels of iMonitor are reliable enough so that labeled traffic can be regarded as training data for any traffic classification methods. Evaluations on real iPhones demonstrate that iMonitor has no notable impact upon user experience even with slight packet latency. Also, the experiment result supports our motivation that mobile traffic monitoring for iOS is absolutely necessary, as traffic generated by different OSes like Android and iOS are different and unreplaceable in researches.
2020-07-27
Sudozai, M. A. K., Saleem, Shahzad.  2018.  Profiling of secure chat and calling apps from encrypted traffic. 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :502–508.
Increased use of secure chat and voice/ video apps has transformed the social life. While the benefits and facilitations are seemingly limitless, so are the asscoiacted vulnerabilities and threats. Besides ensuring confidentiality requirements for common users, known facts of non-readable contents over the network make these apps more attractive for criminals. Though access to contents of cryptograhically secure sessions is not possible, network forensics of secure apps can provide interesting information which can be of great help during criminal invetigations. In this paper, we presented a novel framework of profiling the secure chat and voice/ video calling apps which can be employed to extract hidden patterns about the app, information of involved parties, activities of chatting, voice/ video calls, status indications and notifications while having no information of communication protocol of the app and its security architecture. Signatures of any secure app can be developed though our framework and can become base of a large scale solution. Our methodology is considered very important for different cases of criminal investigations and bussiness intelligence solutions for service provider networks. Our results are applicable to any mobile platform of iOS, android and windows.
Zheng, Junjun, Okamura, Hiroyuki, Dohi, Tadashi.  2018.  A Pull-Type Security Patch Management of an Intrusion Tolerant System Under a Periodic Vulnerability Checking Strategy. 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC). 01:630–635.
In this paper, we consider a stochastic model to evaluate the system availability of an intrusion tolerant system (ITS), where the system undergoes the patch management with a periodic vulnerability checking strategy, i.e., a pull-type patch management. Based on the model, this paper discusses the appropriate timing for patch applying. In particular, the paper models the attack behavior of adversary and the system behaviors under reactive defense strategies by a composite stochastic reward net (SRN). Furthermore, we formulate the interval availability by applying the phase-type (PH) approximation to solve the Markov regenerative process (MRGP) models derived from the SRNs. Numerical experiments are conducted to study the sensitivity of the system availability with respect to the number of checking.
2020-07-24
Luzhnov, Vasiliy S., Sokolov, Alexander N., Barinov, Andrey E..  2019.  Simulation of Protected Industrial Control Systems Based on Reference Security Model using Weighted Oriented Graphs. 2019 International Russian Automation Conference (RusAutoCon). :1—5.
With the increase in the number of cyber attacks on industrial control systems, especially in critical infrastructure facilities, the problem of comprehensive analysis of the security of such systems becomes urgent. This, in turn, requires the availability of fundamental mathematical, methodological and instrumental basis for modeling automated systems, modeling attacks on their information resources, which would allow realtime system protection analysis. The paper proposes a basis for simulating protected industrial control systems, based on the developed reference security model, and a model for attacks on information resources of automated systems. On the basis of these mathematical models, a complex model of a protected automated system was developed, which can be used to build protection systems for automated systems used in production.
Chennam, KrishnaKeerthi, Muddana, Lakshmi.  2018.  Improving Privacy and Security with Fine Grained Access Control Policy using Two Stage Encryption with Partial Shuffling in Cloud. 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT). :686—690.
In a computer world, to identify anyone by doing a job or to authenticate by checking their identification and give access to computer. Access Control model comes in to picture when require to grant the permissions to individual and complete the duties. The access control models cannot give complete security when dealing with cloud computing area, where access control model failed to handle the attributes which are requisite to inhibit access based on time and location. When the data outsourced in the cloud, the information holders expect the security and confidentiality for their outsourced data. The data will be encrypted before outsourcing on cloud, still they want control on data in cloud server, where simple encryption is not a complete solution. To irradiate these issues, unlike access control models proposed Attribute Based Encryption standards (ABE). In ABE schemes there are different types like Key Policy-ABE (KP-ABE), Cipher Text-ABE (CP-ABE) and so on. The proposed method applied the access control policy of CP-ABE with Advanced Encryption Standard and used elliptic curve for key generation by using multi stage encryption which divides the users into two domains, public and private domains and shuffling the data base records to protect from inference attacks.
Dong, Qiuxiang, Huang, Dijiang, Luo, Jim, Kang, Myong.  2018.  Achieving Fine-Grained Access Control with Discretionary User Revocation over Cloud Data. 2018 IEEE Conference on Communications and Network Security (CNS). :1—9.
Cloud storage solutions have gained momentum in recent years. However, cloud servers can not be fully trusted. Data access control have becomes one of the main impediments for further adoption. One appealing approach is to incorporate the access control into encrypted data, thus removing the need to trust the cloud servers. Among existing cryptographic solutions, Ciphertext Policy Attribute-Based Encryption (CP-ABE) is well suited for fine-grained data access control in cloud storage. As promising as it is, user revocation is a cumbersome problem that impedes its wide application. To address this issue, we design an access control system called DUR-CP-ABE, which implements identity-based User Revocation in a data owner Discretionary way. In short, the proposed solution provides the following salient features. First, user revocation enforcement is based on the discretion of the data owner, thus providing more flexibility. Second, no private key updates are needed when user revocation occurs. Third, the proposed scheme allows for group revocation of affiliated users in a batch operation. To the best of our knowledge, DUR-CP-ABE is the first CP-ABE solution to provide affiliation- based batch revocation functionality, which fits naturally into organizations' Identity and Access Management (IAM) structure. The analysis shows that the proposed access control system is provably secure and efficient in terms of computation, communi- cation and storage.
Navya, J M, Sanjay, H A, Deepika, KM.  2018.  Securing smart grid data under key exposure and revocation in cloud computing. 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C). :1—4.
Smart grid systems data has been exposed to several threats and attacks from different perspectives and have resulted in several system failures. Obtaining security of data and key exposure and enhancing system ability in data collection and transmission process are challenging, on the grounds smart grid data is sensitive and enormous sum. In this paper we introduce smart grid data security method along with advanced Cipher text policy attribute based encryption (CP-ABE). Cloud supported IoT is widely used in smart grid systems. Smart IoT devices collect data and perform status management. Data obtained from the IOT devices will be divided into blocks and encrypted data will be stored in different cloud server with different encrypted keys even when one cloud server is assaulted and encrypted key is exposed data cannot be decrypted, thereby the transmission and encryption process are done in correspondingly. We protect access-tree structure information even after the data is shared to user by solving revocation problem in which cloud will inform data owner to revoke and update encryption key after user has downloaded the data, which preserves the data privacy from unauthorized users. The analysis of the system concludes that our proposed system can meet the security requirements in smart grid systems along with cloud-Internet of things.
Wang, Wei, Zhang, Guidong, Shen, Yongjun.  2018.  A CP-ABE Scheme Supporting Attribute Revocation and Policy Hiding in Outsourced Environment. 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS). :96—99.
Aiming at the increasing popularity of mobile terminals, a CP-ABE scheme adapted to lightweight decryption at the mobile end is proposed. The scheme has the function of supporting timely attributes revocation and policy hiding. Firstly, we will introduce the related knowledge of attribute base encryption. After that, we will give a specific CP-ABE solution. Finally, in the part of the algorithm analysis, we will give analysis performance and related security, and compare this algorithm with other algorithms.
Li, Chunhua, He, Jinbiao, Lei, Cheng, Guo, Chan, Zhou, Ke.  2018.  Achieving Privacy-Preserving CP-ABE Access Control with Multi-Cloud. 2018 IEEE Intl Conf on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). :801—808.
Cloud storage service makes it very convenient for people to access and share data. At the same time, the confidentiality and privacy of user data is also facing great challenges. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme is widely considered to be the most suitable security access control technology for cloud storage environment. Aiming at the problem of privacy leakage caused by single-cloud CP-ABE which is commonly adopted in the current schemes, this paper proposes a privacy-preserving CP-ABE access control scheme using multi-cloud architecture. By improving the traditional CP-ABE algorithm and introducing a proxy to cut the user's private key, it can ensure that only a part of the user attribute set can be obtained by a single cloud, which effectively protects the privacy of user attributes. Meanwhile, the intermediate logical structure of the access policy tree is stored in proxy, and only the leaf node information is stored in the ciphertext, which effectively protects the privacy of the access policy. Security analysis shows that our scheme is effective against replay and man-in-the-middle attacks, as well as user collusion attack. Experimental results also demonstrates that the multi-cloud CP-ABE does not significantly increase the overhead of storage and encryption compared to the single cloud scheme, but the access control overhead decreases as the number of clouds increases. When the access policy is expressed with a AND gate structure, the decryption overhead is obviously less than that of a single cloud environment.
Wang, Fucai, Shi, Ting, Li, Shijin.  2019.  Authorization of Searchable CP-ABE Scheme with Attribute Revocation in Cloud Computing. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :204—208.

Most searchable attribute-based encryption schemes only support the search for single-keyword without attribute revocation, the data user cannot quickly detect the validity of the ciphertext returned by the cloud service provider. Therefore, this paper proposes an authorization of searchable CP-ABE scheme with attribute revocation and applies the scheme to the cloud computing environment. The data user to send the authorization information to the authorization server for authorization, assists the data user to effectively detect the ciphertext information returned by the cloud service provider while supporting the revocation of the user attribute in a fine-grained access control structure without updating the key during revocation stage. In the random oracle model based on the calculation of Diffie-Hellman problem, it is proved that the scheme can satisfy the indistinguishability of ciphertext and search trapdoor. Finally, the performance analysis shows that the scheme has higher computational efficiency.

Wu, Zhijun, Xu, Enzhong, Liu, Liang, Yue, Meng.  2019.  CHTDS: A CP-ABE Access Control Scheme Based on Hash Table and Data Segmentation in NDN. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :843—848.

For future Internet, information-centric networking (ICN) is considered a potential solution to many of its current problems, such as content distribution, mobility, and security. Named Data Networking (NDN) is a more popular ICN project. However, concern regarding the protection of user data persists. Information caching in NDN decouples content and content publishers, which leads to content security threats due to lack of secure controls. Therefore, this paper presents a CP-ABE (ciphertext policy attribute based encryption) access control scheme based on hash table and data segmentation (CHTDS). Based on data segmentation, CHTDS uses a method of linearly splitting fixed data blocks, which effectively improves data management. CHTDS also introduces CP-ABE mechanism and hash table data structure to ensure secure access control and privilege revocation does not need to re-encrypt the published content. The analysis results show that CHTDS can effectively realize the security and fine-grained access control in the NDN environment, and reduce communication overhead for content access.

Touati, Lyes, Challal, Yacine.  2016.  Collaborative KP-ABE for cloud-based Internet of Things applications. 2016 IEEE International Conference on Communications (ICC). :1—7.
KP-ABE mechanism emerges as one of the most suitable security scheme for asymmetric encryption. It has been widely used to implement access control solutions. However, due to its expensive overhead, it is difficult to consider this cryptographic scheme in resource-limited networks, such as the IoT. As the cloud has become a key infrastructural support for IoT applications, it is interesting to exploit cloud resources to perform heavy operations. In this paper, a collaborative variant of KP-ABE named C-KP-ABE for cloud-based IoT applications is proposed. Our proposal is based on the use of computing power and storage capacities of cloud servers and trusted assistant nodes to run heavy operations. A performance analysis is conducted to show the effectiveness of the proposed solution.
2020-07-20
Liu, Zechao, Wang, Xuan, Cui, Lei, Jiang, Zoe L., Zhang, Chunkai.  2017.  White-box traceable dynamic attribute based encryption. 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC). :526–530.
Ciphertext policy attribute-based encryption (CP-ABE) is a promising technology that offers fine-grained access control over encrypted data. In a CP-ABE scheme, any user can decrypt the ciphertext using his secret key if his attributes satisfy the access policy embedded in the ciphertext. Since the same ciphertext can be decrypted by multiple users with their own keys, the malicious users may intentionally leak their decryption keys for financial profits. So how to trace the malicious users becomes an important issue in a CP-ABE scheme. In addition, from the practical point of view, users may leave the system due to resignation or dismissal. So user revocation is another hot issue that should be solved. In this paper, we propose a practical CP-ABE scheme. On the one hand, our scheme has the properties of traceability and large universe. On the other hand, our scheme can solve the dynamic issue of user revocation. The proposed scheme is proved selectively secure in the standard model.
2020-07-13
Hepp, Thomas, Spaeh, Fabian, Schoenhals, Alexander, Ehret, Philip, Gipp, Bela.  2019.  Exploring Potentials and Challenges of Blockchain-based Public Key Infrastructures. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :847–852.
Traditional public key infrastructures (PKIs), in particular, X.509 and PGP, is plagued by security and usability issues. As reoccurring incidents show, these are not only of theoretical nature but allow attackers to inflict severe damage. Emerging blockchain technology allows for advances in this area, facilitating a trustless immutable ledger with fast consensus. There have been numerous proposals for utilization of the blockchain in the area of PKI, either as extensions upon existing methods or independent solutions. In this paper, we first study traditional PKI, then proceed with novel approaches, showing how they can improve upon recent issues. We provide a comprehensive evaluation, finding that independent blockchain-based solutions are preferable in the future, mainly due to their stronger security. However, global adoption of these yet requires advances in blockchain development, e.g., concerning scalability.
Kurbatov, Oleksandr, Shapoval, Oleksiy, Poluyanenko, Nikolay, Kuznetsova, Tetiana, Kravchenko, Pavel.  2019.  Decentralized Identification and Certification System. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S T). :507–510.
This article describes an approach to identification and certification in decentralized environment. The protocol proposes a way of integration for blockchain technology and web-of-trust concept to create decentralized public key infrastructure with flexible management for user identificators. Besides changing the current public key infrastructure, this system can be used in the Internet of Things (IoT). Each individual IoT sensor must correctly communicate with other components of the system it's in. To provide safe interaction, components should exchange encrypted messages with ability to check their integrity and authenticity, which is presented by this scheme.
Li, Tao, Ren, Yongzhen, Ren, Yongjun, Wang, Lina, Wang, Lingyun, Wang, Lei.  2019.  NMF-Based Privacy-Preserving Collaborative Filtering on Cloud Computing. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :476–481.
The security of user personal information on cloud computing is an important issue for the recommendation system. In order to provide high quality recommendation services, privacy of user is often obtained by untrusted recommendation systems. At the same time, malicious attacks often use the recommendation results to try to guess the private data of user. This paper proposes a hybrid algorithm based on NMF and random perturbation technology, which implements the recommendation system and solves the protection problem of user privacy data in the recommendation process on cloud computing. Compared with the privacy protection algorithm of SVD, the elements of the matrix after the decomposition of the new algorithm are non-negative elements, avoiding the meaninglessness of negative numbers in the matrix formed by texts, images, etc., and it has a good explanation for the local characteristics of things. Experiments show that the new algorithm can produce recommendation results with certain accuracy under the premise of protecting users' personal privacy on cloud computing.
2020-07-10
Mi, Xianghang, Feng, Xuan, Liao, Xiaojing, Liu, Baojun, Wang, XiaoFeng, Qian, Feng, Li, Zhou, Alrwais, Sumayah, Sun, Limin, Liu, Ying.  2019.  Resident Evil: Understanding Residential IP Proxy as a Dark Service. 2019 IEEE Symposium on Security and Privacy (SP). :1185—1201.

An emerging Internet business is residential proxy (RESIP) as a service, in which a provider utilizes the hosts within residential networks (in contrast to those running in a datacenter) to relay their customers' traffic, in an attempt to avoid server- side blocking and detection. With the prominent roles the services could play in the underground business world, little has been done to understand whether they are indeed involved in Cybercrimes and how they operate, due to the challenges in identifying their RESIPs, not to mention any in-depth analysis on them. In this paper, we report the first study on RESIPs, which sheds light on the behaviors and the ecosystem of these elusive gray services. Our research employed an infiltration framework, including our clients for RESIP services and the servers they visited, to detect 6 million RESIP IPs across 230+ countries and 52K+ ISPs. The observed addresses were analyzed and the hosts behind them were further fingerprinted using a new profiling system. Our effort led to several surprising findings about the RESIP services unknown before. Surprisingly, despite the providers' claim that the proxy hosts are willingly joined, many proxies run on likely compromised hosts including IoT devices. Through cross-matching the hosts we discovered and labeled PUP (potentially unwanted programs) logs provided by a leading IT company, we uncovered various illicit operations RESIP hosts performed, including illegal promotion, Fast fluxing, phishing, malware hosting, and others. We also reverse engi- neered RESIP services' internal infrastructures, uncovered their potential rebranding and reselling behaviors. Our research takes the first step toward understanding this new Internet service, contributing to the effective control of their security risks.

Yang, Ying, Yang, Lina, Yang, Meihong, Yu, Huanhuan, Zhu, Guichun, Chen, Zhenya, Chen, Lijuan.  2019.  Dark web forum correlation analysis research. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :1216—1220.

With the rapid development of the Internet, the dark network has also been widely used in the Internet [1]. Due to the anonymity of the dark network, many illegal elements have committed illegal crimes on the dark. It is difficult for law enforcement officials to track the identity of these cyber criminals using traditional network survey techniques based on IP addresses [2]. The threat information is mainly from the dark web forum and the dark web market. In this paper, we introduce the current mainstream dark network communication system TOR and develop a visual dark web forum post association analysis system to graphically display the relationship between various forum messages and posters, and help law enforcement officers to explore deep levels. Clues to analyze crimes in the dark network.

Reshmi, T S, Daniel Madan Raja, S.  2019.  A Review on Self Destructing Data:Solution for Privacy Risks in OSNs. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :231—235.

Online Social Networks(OSN) plays a vital role in our day to day life. The most popular social network, Facebook alone counts currently 2.23 billion users worldwide. Online social network users are aware of the various security risks that exist in this scenario including privacy violations and they are utilizing the privacy settings provided by OSN providers to make their data safe. But most of them are unaware of the risk which exists after deletion of their data which is not really getting deleted from the OSN server. Self destruction of data is one of the prime recommended methods to achieve assured deletion of data. Numerous techniques have been developed for self destruction of data and this paper discusses and evaluates these techniques along with the various privacy risks faced by an OSN user in this web centered world.

Ra, Gyeong-Jin, Lee, Im-Yeong.  2019.  A Study on Hybrid Blockchain-based XGS (XOR Global State) Injection Technology for Efficient Contents Modification and Deletion. 2019 Sixth International Conference on Software Defined Systems (SDS). :300—305.

Blockchain is a database technology that provides the integrity and trust of the system can't make arbitrary modifications and deletions by being an append-only distributed ledger. That is, the blockchain is not a modification or deletion but a CRAB (Create-Retrieve-Append-Burn) method in which data can be read and written according to a legitimate user's access right(For example, owner private key). However, this can not delete the created data once, which causes problems such as privacy breach. In this paper, we propose an on-off block-chained Hybrid Blockchain system to separate the data and save the connection history to the blockchain. In addition, the state is changed to the distributed database separately from the ledger record, and the state is changed by generating the arbitrary injection in the XOR form, so that the history of modification / deletion of the Off Blockchain can be efficiently retrieved.

2020-07-06
Hasan, Kamrul, Shetty, Sachin, Hassanzadeh, Amin, Ullah, Sharif.  2019.  Towards Optimal Cyber Defense Remediation in Cyber Physical Systems by Balancing Operational Resilience and Strategic Risk. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–8.
A prioritized cyber defense remediation plan is critical for effective risk management in cyber-physical systems (CPS). The increased integration of Information Technology (IT)/Operational Technology (OT) in CPS has to lead to the need to identify the critical assets which, when affected, will impact resilience and safety. In this work, we propose a methodology for prioritized cyber risk remediation plan that balances operational resilience and economic loss (safety impacts) in CPS. We present a platform for modeling and analysis of the effect of cyber threats and random system faults on the safety of CPS that could lead to catastrophic damages. We propose to develop a data-driven attack graph and fault graph-based model to characterize the exploitability and impact of threats in CPS. We develop an operational impact assessment to quantify the damages. Finally, we propose the development of a strategic response decision capability that proposes optimal mitigation actions and policies that balances the trade-off between operational resilience (Tactical Risk) and Strategic Risk.