Visible to the public Biblio

Filters: Keyword is signal detection  [Clear All Filters]
Ben-Yaakov, Y., Meyer, J., Wang, X., An, B..  2020.  User detection of threats with different security measures. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1—6.

Cyber attacks and the associated costs made cybersecurity a vital part of any system. User behavior and decisions are still a major part in the coping with these risks. We developed a model of optimal investment and human decisions with security measures, given that the effectiveness of each measure depends partly on the performance of the others. In an online experiment, participants classified events as malicious or non-malicious, based on the value of an observed variable. Prior to making the decisions, they had invested in three security measures - a firewall, an IDS or insurance. In three experimental conditions, maximal investment in only one of the measures was optimal, while in a fourth condition, participants should not have invested in any of the measures. A previous paper presents the analysis of the investment decisions. This paper reports users' classifications of events when interacting with these systems. The use of security mechanisms helped participants gain higher scores. Participants benefited in particular from purchasing IDS and/or Cyber Insurance. Participants also showed higher sensitivity and compliance with the alerting system when they could benefit from investing in the IDS. Participants, however, did not adjust their behavior optimally to the security settings they had chosen. The results demonstrate the complex nature of risk-related behaviors and the need to consider human abilities and biases when designing cyber security systems.

Bouzegag, Y., Teguig, D., Maali, A., Sadoudi, S..  2020.  On the Impact of SSDF Attacks in Hard Combination Schemes in Cognitive Radio Networks. 020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP). :19–24.
One of the critical threats menacing the Cooperative Spectrum Sensing (CSS) in Cognitive Radio Networks (CRNs) is the Spectrum Sensing Data Falsification (SSDF) reports, which can deceive the decision of Fusion Center (FC) about the Primary User (PU) spectrum accessibility. In CSS, each CR user performs Energy Detection (ED) technique to detect the status of licensed frequency bands of the PU. This paper investigates the performance of different hard-decision fusion schemes (OR-rule, AND-rule, and MAJORITY-rule) in the presence of Always Yes and Always No Malicious User (AYMU and ANMU) over Rayleigh and Gaussian channels. More precisely, comparative study is conducted to evaluate the impact of such malicious users in CSS on the performance of various hard data combining rules in terms of miss detection and false alarm probabilities. Furthermore, computer simulations are carried out to show that the hard-decision fusion scheme with MAJORITY-rule is the best among hard-decision combination under AYMU attacks, OR-rule has the best detection performance under ANMU.
Joykutty, A. M., Baranidharan, B..  2020.  Cognitive Radio Networks: Recent Advances in Spectrum Sensing Techniques and Security. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :878–884.
Wireless networks are very significant in the present world owing to their widespread use and its application in domains like disaster management, smart cities, IoT etc. A wireless network is made up of a group of wireless nodes that communicate with each other without using any formal infrastructure. The topology of the wireless network is not fixed and it can vary. The huge increase in the number of wireless devices is a challenge owing to the limited availability of wireless spectrum. Opportunistic spectrum access by Cognitive radio enables the efficient usage of limited spectrum resources. The unused channels assigned to the primary users may go waste in idle time. Cognitive radio systems will sense the unused channel space and assigns it temporarily for secondary users. This paper discusses about the recent trends in the two most important aspects of Cognitive radio namely spectrum sensing and security.
Morozov, M. Y., Perfilov, O. Y., Malyavina, N. V., Teryokhin, R. V., Chernova, I. V..  2020.  Combined Approach to SSDF-Attacks Mitigation in Cognitive Radio Networks. 2020 Systems of Signals Generating and Processing in the Field of on Board Communications. :1–4.
Cognitive radio systems aim to solve the issue of spectrum scarcity through implementation of dynamic spectrum management and cooperative spectrum access. However, the structure of such systems introduced unique types of vulnerabilities and attacks, one of which is spectrum sensing data falsification attack (SSDF). In such attacks malicious users provide incorrect observations to the fusion center of the system, which may result in severe quality of service degradation and interference for licensed users. In this paper we investigate this type of attacks and propose a combined approach to their mitigation. On the first step a reputational method is used to isolate the initially untrustworthy nodes, on the second step specialized q-out-of-m fusion rule is utilized to mitigate the remains of attack. In this paper we present theoretical analysis of the proposed combined method.
Thanuja, T. C., Daman, K. A., Patil, A. S..  2020.  Optimized Spectrum sensing Techniques for Enhanced Throughput in Cognitive Radio Network. 2020 International Conference on Emerging Smart Computing and Informatics (ESCI). :137–141.
The wireless communication is a backbone for a development of a nation. But spectrum is finite resource and issues like spectrum scarcity, loss of signal quality, transmission delay, raised in wireless communication system due to growth of wireless applications and exponentially increased number of users. Secondary use of a spectrum using Software Defined Radio (SDR) is one of the solutions which is also supported by TRAI. The spectrum sensing is key process in communication based on secondary use of spectrum. But energy consumption, added delay, primary users security are some threats in this system. Here in this paper we mainly focused on throughput optimization in secondary use of spectrum based on optimal sensing time and number of Secondary users during cooperative spectrum sensing in Cognitive radio networks.
Salama, G. M., Taha, S. A..  2020.  Cooperative Spectrum Sensing and Hard Decision Rules for Cognitive Radio Network. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
Cognitive radio is development of wireless communication and mobile computing. Spectrum is a limited source. The licensed spectrum is proposed to be used only by the spectrum owners. Cognitive radio is a new view of the recycle licensed spectrum in an unlicensed manner. The main condition of the cognitive radio network is sensing the spectrum hole. Cognitive radio can be detect unused spectrum. It shares this with no interference to the licensed spectrum. It can be a sense signals. It makes viable communication in the middle of multiple users through co-operation in a self-organized manner. The energy detector method is unseen signal detector because it reject the data of the signal.In this paper, has implemented Simulink Energy Detection of spectrum sensing cognitive radio in a MATLAB Simulink to Exploit spectrum holes and avoid damaging interference to licensed spectrum and unlicensed spectrum. The hidden primary user problem will happened because fading or shadowing. Ithappens when cognitive radio could not be detected by primer users because of its location. Cooperative sensing spectrum sensing is the best-proposed method to solve the hidden problem.
Xie, L. F., Ho, I. W., Situ, Z., Li, P..  2020.  The Impact of CFO on OFDM based Physical-layer Network Coding with QPSK Modulation. 2020 IEEE Wireless Communications and Networking Conference (WCNC). :1—6.
This paper studies Physical-layer Network Coding (PNC) in a two-way relay channel (TWRC) operated based on OFDM and QPSK modulation but with the presence of carrier frequency offset (CFO). CFO, induced by node motion and/or oscillator mismatch, causes inter-carrier interference (ICI) that impairs received signals in PNC. Our ultimate goal is to empower the relay in TWRC to decode network-coded information of the end users at a low bit error rate (BER) under CFO, as it is impossible to eliminate the CFO of both end users. For that, we first put forth two signal detection and channel decoding schemes at the relay in PNC. For signal detection, both schemes exploit the signal structure introduced by ICI, but they aim for different output, thus differing in the subsequent channel decoding. We then consider CFO compensation that adjusts the CFO values of the end nodes simultaneously and find that an optimal choice is to yield opposite CFO values in PNC. Particularly, we reveal that pilot insertion could play an important role against the CFO effect, indicating that we may trade more pilots for not just a better channel estimation but also a lower BER at the relay in PNC. With our proposed measures, we conduct simulation using repeat-accumulate (RA) codes and QPSK modulation to show that PNC can achieve a BER at the relay comparable to that of point-to-point transmissions for low to medium CFO levels.
Huang, H., Wang, X., Jiang, Y., Singh, A. K., Yang, M., Huang, L..  2020.  On Countermeasures Against the Thermal Covert Channel Attacks Targeting Many-core Systems. 2020 57th ACM/IEEE Design Automation Conference (DAC). :1—6.
Although it has been demonstrated in multiple studies that serious data leaks could occur to many-core systems thanks to the existence of the thermal covert channels (TCC), little has been done to produce effective countermeasures that are necessary to fight against such TCC attacks. In this paper, we propose a three-step countermeasure to address this critical defense issue. Specifically, the countermeasure includes detection based on signal frequency scanning, positioning affected cores, and blocking based on Dynamic Voltage Frequency Scaling (DVFS) technique. Our experiments have confirmed that on average 98% of the TCC attacks can be detected, and with the proposed defense, the bit error rate of a TCC attack can soar to 92%, literally shutting down the attack in practical terms. The performance penalty caused by the inclusion of the proposed countermeasures is only 3% for an 8×8 system.
Arjoune, Y., Salahdine, F., Islam, M. S., Ghribi, E., Kaabouch, N..  2020.  A Novel Jamming Attacks Detection Approach Based on Machine Learning for Wireless Communication. 2020 International Conference on Information Networking (ICOIN). :459–464.
Jamming attacks target a wireless network creating an unwanted denial of service. 5G is vulnerable to these attacks despite its resilience prompted by the use of millimeter wave bands. Over the last decade, several types of jamming detection techniques have been proposed, including fuzzy logic, game theory, channel surfing, and time series. Most of these techniques are inefficient in detecting smart jammers. Thus, there is a great need for efficient and fast jamming detection techniques with high accuracy. In this paper, we compare the efficiency of several machine learning models in detecting jamming signals. We investigated the types of signal features that identify jamming signals, and generated a large dataset using these parameters. Using this dataset, the machine learning algorithms were trained, evaluated, and tested. These algorithms are random forest, support vector machine, and neural network. The performance of these algorithms was evaluated and compared using the probability of detection, probability of false alarm, probability of miss detection, and accuracy. The simulation results show that jamming detection based random forest algorithm can detect jammers with a high accuracy, high detection probability and low probability of false alarm.
Taggu, Amar, Marchang, Ningrinla.  2019.  Random-Byzantine Attack Mitigation in Cognitive Radio Networks using a Multi-Hidden Markov Model System. 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA). :1—5.
Cognitive Radio Networks (CRN) are opportunistic networks which aim to harness the white space in the television frequency spectrum, on a need-to-need basis, without interfering the incumbent, called the Primary User (PU). Cognitive radios (CR) that sense the spectrum periodically for sensing the PU activity, are called Secondary Users (SU). CRNs are susceptible to two major attacks, Byzantine attacks and Primary User Emulation Attack (PUEA). Both the attacks are capable of rendering a CRN useless, by either interfering with the PU itself or capturing the entire channel for themselves. Byzantine attacks detection and mitigation is an important security issue in CRN. Hence, the current work proposes using a multi-Hidden Markov Model system with an aim to detect different types of random-Byzantine attacks. Simulation results show good detection rate across all the attacks.
Simpson, Oluyomi, Sun, Yichuang.  2019.  A Stochastic based Physical Layer Security in Cognitive Radio Networks: Cognitive Relay to Fusion Center. 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC). :1—7.
Cognitive radio networks (CRNs) are found to be, without difficulty wide-open to external malicious threats. Secure communication is an important prerequisite for forthcoming fifth-generation (5G) systems, and CRs are not exempt. A framework for developing the accomplishable benefits of physical layer security (PLS) in an amplify-and-forward cooperative spectrum sensing (AF-CSS) in a cognitive radio network (CRN) using a stochastic geometry is proposed. In the CRN the spectrum sensing data from secondary users (SU) are collected by a fusion center (FC) with the assistance of access points (AP) as cognitive relays, and when malicious eavesdropping SU are listening. In this paper we focus on the secure transmission of active APs relaying their spectrum sensing data to the FC. Closed expressions for the average secrecy rate are presented. Analytical formulations and results substantiate our analysis and demonstrate that multiple antennas at the APs is capable of improving the security of an AF-CSSCRN. The obtained numerical results also show that increasing the number of FCs, leads to an increase in the secrecy rate between the AP and its correlated FC.
Chandrala, M S, Hadli, Pooja, Aishwarya, R, Jejo, Kevin C, Sunil, Y, Sure, Pallaviram.  2019.  A GUI for Wideband Spectrum Sensing using Compressive Sampling Approaches. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
Cognitive Radio is a prominent solution for effective spectral resource utilization. The rapidly growing device to device (D2D) communications and the next generation networks urge the cognitive radio networks to facilitate wideband spectrum sensing in order to assure newer spectral opportunities. As Nyquist sampling rates are formidable owing to complexity and cost of the ADCs, compressive sampling approaches are becoming increasingly popular. One such approach exploited in this paper is the Modulated Wideband Converter (MWC) to recover the spectral support. On the multiple measurement vector (MMV) framework provided by the MWC, threshold based Orthogonal Matching Pursuit (OMP) and Sparse Bayesian Learning (SBL) algorithms are employed for support recovery. We develop a Graphical User Interface (GUI) that assists a beginner to simulate the RF front-end of a MWC and thereby enables the user to explore support recovery as a function of Signal to Noise Ratio (SNR), number of measurement vectors and threshold. The GUI enables the user to explore spectrum sensing in DVB-T, 3G and 4G bands and recovers the support using OMP or SBL approach. The results show that the performance of SBL is better than that of OMP at a lower SNR values.
HANJRI, Adnane EL, HAYAR, Aawatif, Haqiq, Abdelkrim.  2019.  Combined Compressive Sampling Techniques and Features Detection using Kullback Leibler Distance to Manage Handovers. 2019 IEEE International Smart Cities Conference (ISC2). :504–507.
In this paper, we present a new Handover technique which combines Distribution Analysis Detector and Compressive Sampling Techniques. The proposed approach consists of analysing Received Signal probability density function instead of demodulating and analysing Received Signal itself as in classical handover. In this method we will exploit some mathematical tools like Kullback Leibler Distance, Akaike Information Criterion (AIC) and Akaike weights, in order to decide blindly the best handover and the best Base Station (BS) for each user. The Compressive Sampling algorithm is designed to take advantage from the primary signals sparsity and to keep the linearity and properties of the original signal in order to be able to apply Distribution Analysis Detector on the compressed measurements.
Zhao, Xiaohang, Zhang, Ke, Chai, Yi.  2019.  A Multivariate Time Series Classification based Multiple Fault Diagnosis Method for Hydraulic Systems. 2019 Chinese Control Conference (CCC). :6819–6824.
Hydraulic systems is a class of nonlinear complex systems. There are many typical characteristics with the systems: multiple functional components, multiple operation modes, space-time coupling work, and monitoring signals for faults are multivariate time series data, etc. Because of the characteristics, fault diagnosis for Hydraulic systems is not easy. Traditional fault diagnosis methods mostly ignore the multivariable timing characteristics of monitoring signals, it has made many detection and diagnosis (especially for multiple fault) can not keep high accuracy, and some of the methods are not even be able to multiple fault diagnosis. Aim at the problem, a multivariate time series classification based diagnosis method is proposed. Firstly, extracting timing characteristics (transformed features) from the time series data collected via sensors by 1-NN method. Secondly, training the transformed features by multi-class OVO-SVM to classify multivariate time series. Simulation of the method contains single fault and multiple faults conditions, the results show that the method has high accuracy, it can complete multiple-faults classification.
Srinu, Sesham, Reddy, M. Kranthi Kumar, Temaneh-Nyah, Clement.  2019.  Physical layer security against cooperative anomaly attack using bivariate data in distributed CRNs. 2019 11th International Conference on Communication Systems Networks (COMSNETS). :410—413.
Wireless communication network (WCN) performance is primarily depends on physical layer security which is critical among all other layers of OSI network model. It is typically prone to anomaly/malicious user's attacks owing to openness of wireless channels. Cognitive radio networking (CRN) is a recently emerged wireless technology that is having numerous security challenges because of its unlicensed access of wireless channels. In CRNs, the security issues occur mainly during spectrum sensing and is more pronounced during distributed spectrum sensing. In recent past, various anomaly effects are modelled and developed detectors by applying advanced statistical techniques. Nevertheless, many of these detectors have been developed based on sensing data of one variable (energy measurement) and degrades their performance drastically when the data is contaminated with multiple anomaly nodes, that attack the network cooperatively. Hence, one has to develop an efficient multiple anomaly detection algorithm to eliminate all possible cooperative attacks. To achieve this, in this work, the impact of anomaly on detection probability is verified beforehand in developing an efficient algorithm using bivariate data to detect possible attacks with mahalanobis distance measure. Result discloses that detection error of cooperative attacks by anomaly has significant impact on eigenvalue-based sensing.
Tian, Yun, Xu, Wenbo, Qin, Jing, Zhao, Xiaofan.  2018.  Compressive Detection of Random Signals from Sparsely Corrupted Measurements. 2018 International Conference on Network Infrastructure and Digital Content (IC-NIDC). :389-393.

Compressed sensing (CS) integrates sampling and compression into a single step to reduce the processed data amount. However, the CS reconstruction generally suffers from high complexity. To solve this problem, compressive signal processing (CSP) is recently proposed to implement some signal processing tasks directly in the compressive domain without reconstruction. Among various CSP techniques, compressive detection achieves the signal detection based on the CS measurements. This paper investigates the compressive detection problem of random signals when the measurements are corrupted. Different from the current studies that only consider the dense noise, our study considers both the dense noise and sparse error. The theoretical performance is derived, and simulations are provided to verify the derived theoretical results.

Ngomane, I., Velempini, M., Dlamini, S. V..  2018.  The Detection of the Spectrum Sensing Data Falsification Attack in Cognitive Radio Ad Hoc Networks. 2018 Conference on Information Communications Technology and Society (ICTAS). :1-5.

Cognitive radio technology addresses the spectrum scarcity challenges by allowing unlicensed cognitive devices to opportunistically utilize spectrum band allocated to licensed devices. However, the openness of the technology has introduced several attacks to cognitive radios, one which is the spectrum sensing data falsification attack. In spectrum sensing data falsification attack, malicious devices share incorrect spectrum observations to other cognitive radios. This paper investigates the spectrum sensing data falsification attack in cognitive radio networks. We use the modified Z-test to isolate extreme outliers in the network. The q-out-of-m rule scheme is implemented to mitigate the spectrum sensing data falsification attack, where a random number m is selected from the sensing results and q is the final decision from m. The scheme does not require the services of a fusion Centre for decision making. This paper presents the theoretical analysis of the proposed scheme.

Mapunya, Sekgoari, Velempini, Mthulisi.  2018.  The Design of Byzantine Attack Mitigation Scheme in Cognitive Radio Ad-Hoc Networks. 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC). :1-4.

The ever-increasing number of wireless network systems brought a problem of spectrum congestion leading to slow data communications. All of the radio spectrums are allocated to different users, services and applications. Hence studies have shown that some of those spectrum bands are underutilized while others are congested. Cognitive radio concept has evolved to solve the problem of spectrum congestion by allowing cognitive users to opportunistically utilize the underutilized spectrum while minimizing interference with other users. Byzantine attack is one of the security issues which threaten the successful deployment of this technology. Byzantine attack is compromised cognitive radios which relay falsified data about the availability of the spectrum to other legitimate cognitive radios in the network leading interference. In this paper we are proposing a security measure to thwart the effect caused by these attacks and compared it to Attack-Proof Cooperative Spectrum Sensing.

Sohu, Izhar Ahmed, Ahmed Rahimoon, Asif, Junejo, Amjad Ali, Ahmed Sohu, Arsalan, Junejo, Sadam Hussain.  2019.  Analogous Study of Security Threats in Cognitive Radio. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). :1-4.

Utilization of Wireless sensor network is growing with the development in modern technologies. On other side electromagnetic spectrum is limited resources. Application of wireless communication is expanding day by day which directly threaten electromagnetic spectrum band to become congested. Cognitive Radio solves this issue by implementation of unused frequency bands as "White Space". There is another important factor that gets attention in cognitive model i.e: Wireless Security. One of the famous causes of security threat is malicious node in cognitive radio wireless sensor networks (CRWSN). The goal of this paper is to focus on security issues which are related to CRWSN as Fusion techniques, Co-operative Spectrum sensing along with two dangerous attacks in CR: Primary User Emulation (PUE) and Spectrum Sensing Data Falsification (SSDF).

Umar, M., Sabo, A., Tata, A. A..  2018.  Modified Cooperative Bait Detection Scheme for Detecting and Preventing Cooperative Blackhole and Eavesdropping Attacks in MANET. 2018 International Conference on Networking and Network Applications (NaNA). :121–126.

Mobile ad-hoc network (MANET) is a system of wireless mobile nodes that are dynamically self-organized in arbitrary and temporary topologies, that have received increasing interest due to their potential applicability to numerous applications. The deployment of such networks however poses several security challenging issues, due to their lack of fixed communication infrastructure, centralized administration, nodes mobility and dynamic topological changes, which make it susceptible to passive and active attacks such as single and cooperative black hole, sinkhole and eavesdropping attacks. The mentioned attacks mainly disrupt data routing processes by giving false routing information or stealing secrete information by malicious nodes in MANET. Thus, finding safe routing path by avoiding malicious nodes is a genuine challenge. This paper aims at combining the existing cooperative bait detection scheme which uses the baiting procedure to bait malicious nodes into sending fake route reply and then using a reverse tracing operation to detect the malicious nodes, with an RSA encryption technique to encode data packet before transmitting it to the destination to prevent eavesdropper and other malicious nodes from unauthorized read and write on the data packet. The proposed work out performs the existing Cooperative Bait Detection Scheme (CBDS) in terms of packet delivery ratio, network throughput, end to end delay, and the routing overhead.

Lu, X., Wan, X., Xiao, L., Tang, Y., Zhuang, W..  2018.  Learning-Based Rogue Edge Detection in VANETs with Ambient Radio Signals. 2018 IEEE International Conference on Communications (ICC). :1-6.
Edge computing for mobile devices in vehicular ad hoc networks (VANETs) has to address rogue edge attacks, in which a rogue edge node claims to be the serving edge in the vehicle to steal user secrets and help launch other attacks such as man-in-the-middle attacks. Rogue edge detection in VANETs is more challenging than the spoofing detection in indoor wireless networks due to the high mobility of onboard units (OBUs) and the large-scale network infrastructure with roadside units (RSUs). In this paper, we propose a physical (PHY)- layer rogue edge detection scheme for VANETs according to the shared ambient radio signals observed during the same moving trace of the mobile device and the serving edge in the same vehicle. In this scheme, the edge node under test has to send the physical properties of the ambient radio signals, including the received signal strength indicator (RSSI) of the ambient signals with the corresponding source media access control (MAC) address during a given time slot. The mobile device can choose to compare the received ambient signal properties and its own record or apply the RSSI of the received signals to detect rogue edge attacks, and determines test threshold in the detection. We adopt a reinforcement learning technique to enable the mobile device to achieve the optimal detection policy in the dynamic VANET without being aware of the VANET model and the attack model. Simulation results show that the Q-learning based detection scheme can significantly reduce the detection error rate and increase the utility compared with existing schemes.
Samanta, P., Kelly, E., Bashir, A., Debroy, S..  2018.  Collaborative Adversarial Modeling for Spectrum Aware IoT Communications. 2018 International Conference on Computing, Networking and Communications (ICNC). :447–451.
In order to cater the growing spectrum demands of large scale future 5G Internet of Things (IoT) applications, Dynamic Spectrum Access (DSA) based networks are being proposed as a high-throughput and cost-effective solution. However the lack of understanding of DSA paradigm's inherent security vulnerabilities on IoT networks might become a roadblock towards realizing such spectrum aware 5G vision. In this paper, we make an attempt to understand how such inherent DSA vulnerabilities in particular Spectrum Sensing Data Falsification (SSDF) attacks can be exploited by collaborative group of selfish adversaries and how that can impact the performance of spectrum aware IoT applications. We design a utility based selfish adversarial model mimicking collaborative SSDF attack in a cooperative spectrum sensing scenario where IoT networks use dedicated environmental sensing capability (ESC) for spectrum availability estimation. We model the interactions between the IoT system and collaborative selfish adversaries using a leader-follower game and investigate the existence of equilibrium. Using simulation results, we show the nature of adversarial and system utility components against system variables. We also explore Pareto-optimal adversarial strategy design that maximizes the attacker utility for varied system strategy spaces.
Lagunas, E., Rugini, L..  2017.  Performance of compressive sensing based energy detection. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). :1–5.

This paper investigates closed-form expressions to evaluate the performance of the Compressive Sensing (CS) based Energy Detector (ED). The conventional way to approximate the probability density function of the ED test statistic invokes the central limit theorem and considers the decision variable as Gaussian. This approach, however, provides good approximation only if the number of samples is large enough. This is not usually the case in CS framework, where the goal is to keep the sample size low. Moreover, working with a reduced number of measurements is of practical interest for general spectrum sensing in cognitive radio applications, where the sensing time should be sufficiently short since any time spent for sensing cannot be used for data transmission on the detected idle channels. In this paper, we make use of low-complexity approximations based on algebraic transformations of the one-dimensional Gaussian Q-function. More precisely, this paper provides new closed-form expressions for accurate evaluation of the CS-based ED performance as a function of the compressive ratio and the Signal-to-Noise Ratio (SNR). Simulation results demonstrate the increased accuracy of the proposed equations compared to existing works.

Xu, W., Yan, Z., Tian, Y., Cui, Y., Lin, J..  2017.  Detection with compressive measurements corrupted by sparse errors. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). :1–5.

Compressed sensing can represent the sparse signal with a small number of measurements compared to Nyquist-rate samples. Considering the high-complexity of reconstruction algorithms in CS, recently compressive detection is proposed, which performs detection directly in compressive domain without reconstruction. Different from existing work that generally considers the measurements corrupted by dense noises, this paper studies the compressive detection problem when the measurements are corrupted by both dense noises and sparse errors. The sparse errors exist in many practical systems, such as the ones affected by impulse noise or narrowband interference. We derive the theoretical performance of compressive detection when the sparse error is either deterministic or random. The theoretical results are further verified by simulations.

Huang, Kaiyu, Qu, Y., Zhang, Z., Chakravarthy, V., Zhang, Lin, Wu, Z..  2017.  Software Defined Radio Based Mixed Signal Detection in Spectrally Congested and Spectrally Contested Environment. 2017 Cognitive Communications for Aerospace Applications Workshop (CCAA). :1–6.

In a spectrally congested environment or a spectrally contested environment which often occurs in cyber security applications, multiple signals are often mixed together with significant overlap in spectrum. This makes the signal detection and parameter estimation task very challenging. In our previous work, we have demonstrated the feasibility of using a second order spectrum correlation function (SCF) cyclostationary feature to perform mixed signal detection and parameter estimation. In this paper, we present our recent work on software defined radio (SDR) based implementation and demonstration of such mixed signal detection algorithms. Specifically, we have developed a software defined radio based mixed RF signal generator to generate mixed RF signals in real time. A graphical user interface (GUI) has been developed to allow users to conveniently adjust the number of mixed RF signal components, the amplitude, initial time delay, initial phase offset, carrier frequency, symbol rate, modulation type, and pulse shaping filter of each RF signal component. This SDR based mixed RF signal generator is used to transmit desirable mixed RF signals to test the effectiveness of our developed algorithms. Next, we have developed a software defined radio based mixed RF signal detector to perform the mixed RF signal detection. Similarly, a GUI has been developed to allow users to easily adjust the center frequency and bandwidth of band of interest, perform time domain analysis, frequency domain analysis, and cyclostationary domain analysis.