Visible to the public Biblio

Filters: Keyword is False Data Detection  [Clear All Filters]
2021-06-30
Biroon, Roghieh A., Pisu, Pierluigi, Abdollahi, Zoleikha.  2020.  Real-time False Data Injection Attack Detection in Connected Vehicle Systems with PDE modeling. 2020 American Control Conference (ACC). :3267—3272.
Connected vehicles as a promising concept of Intelligent Transportation System (ITS), are a potential solution to address some of the existing challenges of emission, traffic congestion as well as fuel consumption. To achieve these goals, connectivity among vehicles through the wireless communication network is essential. However, vehicular communication networks endure from reliability and security issues. Cyber-attacks with purposes of disrupting the performance of the connected vehicles, lead to catastrophic collision and traffic congestion. In this study, we consider a platoon of connected vehicles equipped with Cooperative Adaptive Cruise Control (CACC) which are subjected to a specific type of cyber-attack namely "False Data Injection" attack. We developed a novel method to model the attack with ghost vehicles injected into the connected vehicles network to disrupt the performance of the whole system. To aid the analysis, we use a Partial Differential Equation (PDE) model. Furthermore, we present a PDE model-based diagnostics scheme capable of detecting the false data injection attack and isolating the injection point of the attack in the platoon system. The proposed scheme is designed based on a PDE observer with measured velocity and acceleration feedback. Lyapunov stability theory has been utilized to verify the analytically convergence of the observer under no attack scenario. Eventually, the effectiveness of the proposed algorithm is evaluated with simulation study.
Liu, Ming, Chen, Shichao, Lu, Fugang, Xing, Mengdao, Wei, Jingbiao.  2020.  A Target Detection Method in SAR Images Based on Superpixel Segmentation. 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT). :528—530.
A synthetic aperture radar (SAR) target detection method based on the fusion of multiscale superpixel segmentations is proposed in this paper. SAR images are segmented between land and sea firstly by using superpixel technology in different scales. Secondly, image segmentation results together with the constant false alarm rate (CFAR) detection result are coalesced. Finally, target detection is realized by fusing different scale results. The effectiveness of the proposed algorithm is tested on Sentinel-1A data.
Wang, Chenguang, Pan, Kaikai, Tindemans, Simon, Palensky, Peter.  2020.  Training Strategies for Autoencoder-based Detection of False Data Injection Attacks. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1—5.
The security of energy supply in a power grid critically depends on the ability to accurately estimate the state of the system. However, manipulated power flow measurements can potentially hide overloads and bypass the bad data detection scheme to interfere the validity of estimated states. In this paper, we use an autoencoder neural network to detect anomalous system states and investigate the impact of hyperparameters on the detection performance for false data injection attacks that target power flows. Experimental results on the IEEE 118 bus system indicate that the proposed mechanism has the ability to achieve satisfactory learning efficiency and detection accuracy.
Gonçalves, Charles F., Menasche, Daniel S., Avritzer, Alberto, Antunes, Nuno, Vieira, Marco.  2020.  A Model-Based Approach to Anomaly Detection Trading Detection Time and False Alarm Rate. 2020 Mediterranean Communication and Computer Networking Conference (MedComNet). :1—8.
The complexity and ubiquity of modern computing systems is a fertile ground for anomalies, including security and privacy breaches. In this paper, we propose a new methodology that addresses the practical challenges to implement anomaly detection approaches. Specifically, it is challenging to define normal behavior comprehensively and to acquire data on anomalies in diverse cloud environments. To tackle those challenges, we focus on anomaly detection approaches based on system performance signatures. In particular, performance signatures have the potential of detecting zero-day attacks, as those approaches are based on detecting performance deviations and do not require detailed knowledge of attack history. The proposed methodology leverages an analytical performance model and experimentation, and allows to control the rate of false positives in a principled manner. The methodology is evaluated using the TPCx-V workload, which was profiled during a set of executions using resource exhaustion anomalies that emulate the effects of anomalies affecting system performance. The proposed approach was able to successfully detect the anomalies, with a low number of false positives (precision 90%-98%).
Wang, Chenguang, Tindemans, Simon, Pan, Kaikai, Palensky, Peter.  2020.  Detection of False Data Injection Attacks Using the Autoencoder Approach. 2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). :1—6.
State estimation is of considerable significance for the power system operation and control. However, well-designed false data injection attacks can utilize blind spots in conventional residual-based bad data detection methods to manipulate measurements in a coordinated manner and thus affect the secure operation and economic dispatch of grids. In this paper, we propose a detection approach based on an autoencoder neural network. By training the network on the dependencies intrinsic in `normal' operation data, it effectively overcomes the challenge of unbalanced training data that is inherent in power system attack detection. To evaluate the detection performance of the proposed mechanism, we conduct a series of experiments on the IEEE 118-bus power system. The experiments demonstrate that the proposed autoencoder detector displays robust detection performance under a variety of attack scenarios.
ur Rahman, Hafiz, Duan, Guihua, Wang, Guojun, Bhuiyan, Md Zakirul Alam, Chen, Jianer.  2020.  Trustworthy Data Acquisition and Faulty Sensor Detection using Gray Code in Cyber-Physical System. 2020 IEEE 23rd International Conference on Computational Science and Engineering (CSE). :58—65.
Due to environmental influence and technology limitation, a wireless sensor/sensors module can neither store or process all raw data locally nor reliably forward it to a destination in heterogeneous IoT environment. As a result, the data collected by the IoT's sensors are inherently noisy, unreliable, and may trigger many false alarms. These false or misleading data can lead to wrong decisions once the data reaches end entities. Therefore, it is highly recommended and desirable to acquire trustworthy data before data transmission, aggregation, and data storing at the end entities/cloud. In this paper, we propose an In-network Generalized Trustworthy Data Collection (IGTDC) framework for trustworthy data acquisition and faulty sensor detection in the IoT environment. The key idea of IGTDC is to allow a sensor's module to examine locally whether the raw data is trustworthy before transmitting towards upstream nodes. It further distinguishes whether the acquired data can be trusted or not before data aggregation at the sink/edge node. Besides, IGTDC helps to recognize a faulty or compromised sensor. For a reliable data collection, we use collaborative IoT technique, gate-level modeling, and programmable logic device (PLD) to ensure that the acquired data is reliable before transmitting towards upstream nodes/cloud. We use a hardware-based technique called “Gray Code” to detect a faulty sensor. Through simulations we reveal that the acquired data in IGTDC framework is reliable that can make a trustworthy data collection for event detection, and assist to distinguish a faulty sensor.
Xiong, Xiaoping, Sun, Di, Hao, Shaolei, Lin, Guangyang, Li, Hang.  2020.  Detection of False Data Injection Attack Based on Improved Distortion Index Method. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :1161—1168.
With the advancement of communication technology, the interoperability of the power grid operation has improved significantly, but due to its dependence on the communication system, it is extremely vulnerable to network attacks. Among them, the false data injection attack utilizes the loophole of bad data detection in the system and attacks the state estimation system, resulting in frequent occurrence of abnormal data in the system, which brings great harm to the power grid. In view of the fact that false data injection attacks are easy to avoid traditional bad data detection methods, this paper analyzes the different situations of false data injection attacks based on the characteristics of the power grid. Firstly, it proposes to apply the distortion index method to false data injection attack detection. Experiments prove that the detection results are good and can be complementary to traditional detection methods. Then, combined with the traditional normalized residual method, this paper proposes the improved distortion index method based on the distortion index, which is good at detecting abnormal data. The use of improved distortion index method to detect false data injection attacks can make up for the defect of the lack of universality of traditional detection methods, and meet the requirements of anomaly detection efficiency. Finally, based on the MATLAB power simulation test system, experimental simulation is carried out to verify the effectiveness and universality of the proposed method for false data injection attack detection.
Zhao, Yi, Jia, Xian, An, Dou, Yang, Qingyu.  2020.  LSTM-Based False Data Injection Attack Detection in Smart Grids. 2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC). :638—644.
As a typical cyber-physical system, smart grid has attracted growing attention due to the safe and efficient operation. The false data injection attack against energy management system is a new type of cyber-physical attack, which can bypass the bad data detector of the smart grid to influence the results of state estimation directly, causing the energy management system making wrong estimation and thus affects the stable operation of power grid. We transform the false data injection attack detection problem into binary classification problem in this paper, which use the long-term and short-term memory network (LSTM) to construct the detection model. After that, we use the BP algorithm to update neural network parameters and utilize the dropout method to alleviate the overfitting problem and to improve the detection accuracy. Simulation results prove that the LSTM-based detection method can achieve higher detection accuracy comparing with the BPNN-based approach.
Ding, Xinyao, Wang, Yan.  2020.  False Data Injection Attack Detection Before Decoding in DF Cooperative Relay Network. 2020 Asia Conference on Computers and Communications (ACCC). :57—61.
False data injection (FDI) attacks could happen in decode-and-forward (DF) wireless cooperative relay networks. Although physical integrity check (PIC) can combat that by applying physical layer detection, the detector depends on the decoding results and low signal-to-noise ratio (SNR) further deteriorates the detecting results. In this paper, a physical layer detect-before-decode (DbD) method is proposed, which has low computational complexity with no sacrifice of false alarm and miss detection rates. One significant advantage of this method is the detector does not depend on the decoding results. In order to implement the proposed DbD method, a unified error sufficient statistic (UESS) containing the full information of FDI attacks is constructed. The proposed UESS simplifies the detector because it is applicable to all link conditions, which means there is no need to deal each link condition with a specialized sufficient statistic. Moreover, the source to destination outage probability (S2Dop) of the DF cooperative relay network utilizing the proposed DbD method is studied. Finally, numerical simulations verify the good performance of this DbD method.
Lu, Xiao, Jing, Jiangping, Wu, Yi.  2020.  False Data Injection Attack Location Detection Based on Classification Method in Smart Grid. 2020 2nd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM). :133—136.
The state estimation technology is utilized to estimate the grid state based on the data of the meter and grid topology structure. The false data injection attack (FDIA) is an information attack method to disturb the security of the power system based on the meter measurement. Current FDIA detection researches pay attention on detecting its presence. The location information of FDIA is also important for power system security. In this paper, locating the FDIA of the meter is regarded as a multi-label classification problem. Each label represents the state of the corresponding meter. The ensemble model, the multi-label decision tree algorithm, is utilized as the classifier to detect the exact location of the FDIA. This method does not need the information of the power topology and statistical knowledge assumption. The numerical experiments based on the IEEE-14 bus system validates the performance of the proposed method.
2021-05-13
Chen, Ziyu, Zhu, Jizhong, Li, Shenglin, Luo, Tengyan.  2020.  Detection of False Data Injection Attack in Automatic Generation Control System with Wind Energy based on Fuzzy Support Vector Machine. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :3523—3528.
False data injection attack (FDIA) destroys the automatic generation control (AGC) system and leads to unstable operation of the power system. Fast and accurate detection can help prevent and disrupt malicious attacks. This paper proposes an improved detection method, which is combined with fuzzy theory and support vector machine (SVM) to identify various types of attacks. The impacts of different types of FDIAs on the AGC system are analyzed, and the reliability of the method is proved by a large number of experimental data. This experiment is simulated on a single-area LFC system and the effects of adding a wind storage system were compared in a dynamic model. Simulation studies also show a higher accuracy of fuzzy support vector machine (FSVM) than traditional SVM and fuzzy pattern trees (FPTs).
2020-12-14
Chen, X., Cao, C., Mai, J..  2020.  Network Anomaly Detection Based on Deep Support Vector Data Description. 2020 5th IEEE International Conference on Big Data Analytics (ICBDA). :251–255.
Intrusion detection system based on representation learning is the main research direction in the field of anomaly detection. Malicious traffic detection system can distinguish normal and malicious traffic by learning representations between normal and malicious traffic. However, under the context of big data, there are many types of malicious traffic, and the features are also changing constantly. It is still a urgent problem to design a detection model that can effectively learn and summarize the feature of normal traffic and accurately identify the features of new kinds of malicious traffic.in this paper, a malicious traffic detection method based on Deep Support Vector Data Description is proposed, which is called Deep - SVDD. We combine convolutional neural network (CNN) with support vector data description, and train the model with normal traffic. The normal traffic features are mapped to high-dimensional space through neural networks, and a compact hypersphere is trained by unsupervised learning, which includes the normal features of the highdimensional space. Malicious traffic fall outside the hypersphere, thus distinguishing between normal and malicious traffic. Experiments show that the model has a high detection rate and a low false alarm rate, and it can effectively identify new malicious traffic.
2020-10-14
Xie, Kun, Li, Xiaocan, Wang, Xin, Xie, Gaogang, Xie, Dongliang, Li, Zhenyu, Wen, Jigang, Diao, Zulong.  2019.  Quick and Accurate False Data Detection in Mobile Crowd Sensing. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :2215—2223.

With the proliferation of smartphones, a novel sensing paradigm called Mobile Crowd Sensing (MCS) has emerged very recently. However, the attacks and faults in MCS cause a serious false data problem. Observing the intrinsic low dimensionality of general monitoring data and the sparsity of false data, false data detection can be performed based on the separation of normal data and anomalies. Although the existing separation algorithm based on Direct Robust Matrix Factorization (DRMF) is proven to be effective, requiring iteratively performing Singular Value Decomposition (SVD) for low-rank matrix approximation would result in a prohibitively high accumulated computation cost when the data matrix is large. In this work, we observe the quick false data location feature from our empirical study of DRMF, based on which we propose an intelligent Light weight Low Rank and False Matrix Separation algorithm (LightLRFMS) that can reuse the previous result of the matrix decomposition to deduce the one for the current iteration step. Our algorithm can largely speed up the whole iteration process. From a theoretical perspective, we validate that LightLRFMS only requires one round of SVD computation and thus has very low computation cost. We have done extensive experiments using a PM 2.5 air condition trace and a road traffic trace. Our results demonstrate that LightLRFMS can achieve very good false data detection performance with the same highest detection accuracy as DRMF but with up to 10 times faster speed thanks to its lower computation cost.

Song, Yufei, Yu, Zongchao, Liu, Xuan, Tian, Jianwei, CHEN, Mu.  2019.  Isolation Forest based Detection for False Data Attacks in Power Systems. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :4170—4174.
Power systems become a primary target of cyber attacks because of the vulnerability of the integrated communication networks. An attacker is able to manipulate the integrity of real-time data by maliciously modifying the readings of meters transmitted to the control center. Moreover, it is demonstrated that such attack can escape the bad data detection in state estimation if the topology and network information of the entire power grid is known to the attacker. In this paper, we propose an isolation forest (IF) based detection algorithm as a countermeasure against false data attack (FDA). This method requires no tedious pre-training procedure to obtain the labels of outliers. In addition, comparing with other algorithms, the IF based detection method can find the outliers quickly. The performance of the proposed detection method is verified using the simulation results on the IEEE 118-bus system.
Khezrimotlagh, Darius, Khazaei, Javad, Asrari, Arash.  2019.  MILP Modeling of Targeted False Load Data Injection Cyberattacks to Overflow Transmission Lines in Smart Grids. 2019 North American Power Symposium (NAPS). :1—7.
Cyber attacks on transmission lines are one of the main challenges in security of smart grids. These targeted attacks, if not detected, might cause cascading problems in power systems. This paper proposes a bi-level mixed integer linear programming (MILP) optimization model for false data injection on targeted buses in a power system to overflow targeted transmission lines. The upper level optimization problem outputs the optimized false data injections on targeted load buses to overflow a targeted transmission line without violating bad data detection constraints. The lower level problem integrates the false data injections into the optimal power flow problem without violating the optimal power flow constraints. A few case studies are designed to validate the proposed attack model on IEEE 118-bus power system.
Ou, Yifan, Deng, Bin, Liu, Xuan, Zhou, Ke.  2019.  Local Outlier Factor Based False Data Detection in Power Systems. 2019 IEEE Sustainable Power and Energy Conference (iSPEC). :2003—2007.
The rapid developments of smart grids provide multiple benefits to the delivery of electric power, but at the same time makes the power grids under the threat of cyber attackers. The transmitted data could be deliberately modified without triggering the alarm of bad data detection procedure. In order to ensure the stable operation of the power systems, it is extremely significant to develop effective abnormal detection algorithms against injected false data. In this paper, we introduce the density-based LOF algorithm to detect the false data and dummy data. The simulation results show that the traditional density-clustering based LOF algorithm can effectively identify FDA, but the detection performance on DDA is not satisfactory. Therefore, we propose the improved LOF algorithm to detect DDA by setting reasonable density threshold.
Trevizan, Rodrigo D., Ruben, Cody, Nagaraj, Keerthiraj, Ibukun, Layiwola L., Starke, Allen C., Bretas, Arturo S., McNair, Janise, Zare, Alina.  2019.  Data-driven Physics-based Solution for False Data Injection Diagnosis in Smart Grids. 2019 IEEE Power Energy Society General Meeting (PESGM). :1—5.
This paper presents a data-driven and physics-based method for detection of false data injection (FDI) in Smart Grids (SG). As the power grid transitions to the use of SG technology, it becomes more vulnerable to cyber-attacks like FDI. Current strategies for the detection of bad data in the grid rely on the physics based State Estimation (SE) process and statistical tests. This strategy is naturally vulnerable to undetected bad data as well as false positive scenarios, which means it can be exploited by an intelligent FDI attack. In order to enhance the robustness of bad data detection, the paper proposes the use of data-driven Machine Intelligence (MI) working together with current bad data detection via a combined Chi-squared test. Since MI learns over time and uses past data, it provides a different perspective on the data than the SE, which analyzes only the current data and relies on the physics based model of the system. This combined bad data detection strategy is tested on the IEEE 118 bus system.
Wang, Yufeng, Shi, Wanjiao, Jin, Qun, Ma, Jianhua.  2019.  An Accurate False Data Detection in Smart Grid Based on Residual Recurrent Neural Network and Adaptive threshold. 2019 IEEE International Conference on Energy Internet (ICEI). :499—504.
Smart grids are vulnerable to cyber-attacks, which can cause significant damage and huge economic losses. Generally, state estimation (SE) is used to observe the operation of the grid. State estimation of the grid is vulnerable to false data injection attack (FDIA), so diagnosing this type of malicious attack has a major impact on ensuring reliable operation of the power system. In this paper, we present an effective FDIA detection method based on residual recurrent neural network (R2N2) prediction model and adaptive judgment threshold. Specifically, considering the data contains both linear and nonlinear components, the R2N2 model divides the prediction process into two parts: the first part uses the linear model to fit the state data; the second part predicts the nonlinearity of the residuals of the linear prediction model. The adaptive judgment threshold is inferred through fitting the Weibull distribution with the sum of squared errors between the predicted values and observed values. The thorough simulation results demonstrate that our scheme performs better than other prediction based FDIA detection schemes.
2020-10-12
Ifedayo, Oladeji R., Zamora, Ramon, Lie T., Tek.  2019.  Modelling an Adaptable Multi-Objective Fuzzy Expert System Based Transmission Network Transfer Capacity Enhancement. 2019 Australian New Zealand Control Conference (ANZCC). :237–242.

The need to enhance the performance of existing transmission network in line with economic and technical constraints is crucial in a competitive market environment. This paper models the total transfer capacity (TTC) improvement using optimally placed thyristor-controlled series capacitors (TCSC). The system states were evaluated using distributed slack bus (DSB) and continuous power flow (CPF) techniques. Adaptable logic relations was modelled based on security margin (SM), steady state and transient condition collapse voltages (Uss, Uts) and the steady state line power loss (Plss), through which line suitability index (LSI) were obtained. The fuzzy expert system (FES) membership functions (MF) with respective degrees of memberships are defined to obtain the best states. The LSI MF is defined high between 0.2-0.8 to provide enough protection under transient disturbances. The test results on IEEE 30 bus system show that the model is feasible for TTC enhancement under steady state and N-1 conditions.

Rudd-Orthner, Richard N M, Mihaylova, Lyudmilla.  2019.  An Algebraic Expert System with Neural Network Concepts for Cyber, Big Data and Data Migration. 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). :1–6.

This paper describes a machine assistance approach to grading decisions for values that might be missing or need validation, using a mathematical algebraic form of an Expert System, instead of the traditional textual or logic forms and builds a neural network computational graph structure. This Experts System approach is also structured into a neural network like format of: input, hidden and output layers that provide a structured approach to the knowledge-base organization, this provides a useful abstraction for reuse for data migration applications in big data, Cyber and relational databases. The approach is further enhanced with a Bayesian probability tree approach to grade the confidences of value probabilities, instead of the traditional grading of the rule probabilities, and estimates the most probable value in light of all evidence presented. This is ground work for a Machine Learning (ML) experts system approach in a form that is closer to a Neural Network node structure.

Kannan, Uma, Swamidurai, Rajendran.  2019.  Empirical Validation of System Dynamics Cyber Security Models. 2019 SoutheastCon. :1–6.

Model validation, though a process that's continuous and complex, establishes confidence in the soundness and usefulness of a model. Making sure that the model behaves similar to the modes of behavior seen in real systems, allows the builder of said model to assure accumulation of confidence in the model and thus validating the model. While doing this, the model builder is also required to build confidence from a target audience in the model through communicating to the bases. The basis of the system dynamics model validation, both in general and in the field of cyber security, relies on a casual loop diagram of the system being agreed upon by a group of experts. Model validation also uses formal quantitative and informal qualitative tools in addition to the validation techniques used by system dynamics. Amongst others, the usefulness of a model, in a user's eyes, is a valid standard by which we can evaluate them. To validate our system dynamics cyber security model, we used empirical structural and behavior tests. This paper describes tests of model structure and model behavior, which includes each test's purpose, the ways the tests were conducted, and empirical validation results using a proof-of-concept cyber security model.

Brenner, Bernhard, Weippl, Edgar, Ekelhart, Andreas.  2019.  Security Related Technical Debt in the Cyber-Physical Production Systems Engineering Process. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:3012–3017.

Technical debt is an analogy introduced in 1992 by Cunningham to help explain how intentional decisions not to follow a gold standard or best practice in order to save time or effort during creation of software can later on lead to a product of lower quality in terms of product quality itself, reliability, maintainability or extensibility. Little work has been done so far that applies this analogy to cyber physical (production) systems (CP(P)S). Also there is only little work that uses this analogy for security related issues. This work aims to fill this gap: We want to find out which security related symptoms within the field of cyber physical production systems can be traced back to TD items during all phases, from requirements and design down to maintenance and operation. This work shall support experts from the field by being a first step in exploring the relationship between not following security best practices and concrete increase of costs due to TD as consequence.

Eckhart, Matthias, Ekelhart, Andreas, Lüder, Arndt, Biffl, Stefan, Weippl, Edgar.  2019.  Security Development Lifecycle for Cyber-Physical Production Systems. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:3004–3011.

As the connectivity within manufacturing processes increases in light of Industry 4.0, information security becomes a pressing issue for product suppliers, systems integrators, and asset owners. Reaching new heights in digitizing the manufacturing industry also provides more targets for cyber attacks, hence, cyber-physical production systems (CPPSs) must be adequately secured to prevent malicious acts. To achieve a sufficient level of security, proper defense mechanisms must be integrated already early on in the systems' lifecycle and not just eventually in the operation phase. Although standardization efforts exist with the objective of guiding involved stakeholders toward the establishment of a holistic industrial security concept (e.g., IEC 62443), a dedicated security development lifecycle for systems integrators is missing. This represents a major challenge for engineers who lack sufficient information security knowledge, as they may not be able to identify security-related activities that can be performed along the production systems engineering (PSE) process. In this paper, we propose a novel methodology named Security Development Lifecycle for Cyber-Physical Production Systems (SDL-CPPS) that aims to foster security by design for CPPSs, i.e., the engineering of smart production systems with security in mind. More specifically, we derive security-related activities based on (i) security standards and guidelines, and (ii) relevant literature, leading to a security-improved PSE process that can be implemented by systems integrators. Furthermore, this paper informs domain experts on how they can conduct these security-enhancing activities and provides pointers to relevant works that may fill the potential knowledge gap. Finally, we review the proposed approach by means of discussions in a workshop setting with technical managers of an Austrian-based systems integrator to identify barriers to adopting the SDL-CPPS.

Jharko, Elena, Promyslov, Vitaly, Iskhakov, Andrey.  2019.  Extending Functionality of Early Fault Diagnostic System for Online Security Assessment of Nuclear Power Plant. 2019 International Russian Automation Conference (RusAutoCon). :1–6.

The new instrumentation and control (I&C) systems of the nuclear power plants (NPPs) improve the ability to operate the plant enhance the safety and performance of the NPP. However, they bring a new type of threat to the NPP's industry-cyber threat. The early fault diagnostic system (EDS) is one of the decision support systems that might be used online during the operation stage. The EDS aim is to prevent the incident/accident evolution by a timely troubleshooting process during any plant operational modes. It means that any significative deviation of plant parameters from normal values is pointed-out to plant operators well before reaching any undesired threshold potentially leading to a prohibited plant state, together with the cause that has generated the deviation. The paper lists the key benefits using the EDS to counter the cyber threat and proposes the framework for cybersecurity assessment using EDS during the operational stage.

Khosravi, Morteza, Fereidunian, Alireza.  2019.  Enhancing Smart Grid Cyber-Security Using A Fuzzy Adaptive Autonomy Expert System. 2019 Smart Grid Conference (SGC). :1–6.

Smart Grid cyber-security sounds to be a critical issue, because of widespread development of information technology. To achieve secure and reliable operation, the complexity of human automation interaction (HAI) necessitates more sophisticated and intelligent methodologies. In this paper, an adaptive autonomy fuzzy expert system is developed using gradient descent algorithm to determine the Level of Automation (LOA), based on the changing of Performance Shaping Factors (PSF). These PSFs indicate the effects of environmental conditions on the performance of HAI. The major advantage of this method is that the fuzzy rule or membership function can be learnt without changing the form of the fuzzy rule in conventional fuzzy control. Because of data shortage, Leave-One-Out Cross-Validation (LOOCV) technique is applied for assessing how the results of proposed system generalizes to the new contingency situations. The expert system database is extracted from superior experts' judgments. In order to regard the importance of each PSF, weighted rules are also considered. In addition, some new environmental conditions are introduced that has not been seen before. Nine scenarios are discussed to reveal the performance of the proposed system. Results confirm that the presented fuzzy expert system can effectively calculates the proper LOA even in the new contingency situations.