Visible to the public Biblio

Filters: Keyword is Cognitive Radio Network  [Clear All Filters]
2021-03-15
Thanuja, T. C., Daman, K. A., Patil, A. S..  2020.  Optimized Spectrum sensing Techniques for Enhanced Throughput in Cognitive Radio Network. 2020 International Conference on Emerging Smart Computing and Informatics (ESCI). :137–141.
The wireless communication is a backbone for a development of a nation. But spectrum is finite resource and issues like spectrum scarcity, loss of signal quality, transmission delay, raised in wireless communication system due to growth of wireless applications and exponentially increased number of users. Secondary use of a spectrum using Software Defined Radio (SDR) is one of the solutions which is also supported by TRAI. The spectrum sensing is key process in communication based on secondary use of spectrum. But energy consumption, added delay, primary users security are some threats in this system. Here in this paper we mainly focused on throughput optimization in secondary use of spectrum based on optimal sensing time and number of Secondary users during cooperative spectrum sensing in Cognitive radio networks.
Salama, G. M., Taha, S. A..  2020.  Cooperative Spectrum Sensing and Hard Decision Rules for Cognitive Radio Network. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
Cognitive radio is development of wireless communication and mobile computing. Spectrum is a limited source. The licensed spectrum is proposed to be used only by the spectrum owners. Cognitive radio is a new view of the recycle licensed spectrum in an unlicensed manner. The main condition of the cognitive radio network is sensing the spectrum hole. Cognitive radio can be detect unused spectrum. It shares this with no interference to the licensed spectrum. It can be a sense signals. It makes viable communication in the middle of multiple users through co-operation in a self-organized manner. The energy detector method is unseen signal detector because it reject the data of the signal.In this paper, has implemented Simulink Energy Detection of spectrum sensing cognitive radio in a MATLAB Simulink to Exploit spectrum holes and avoid damaging interference to licensed spectrum and unlicensed spectrum. The hidden primary user problem will happened because fading or shadowing. Ithappens when cognitive radio could not be detected by primer users because of its location. Cooperative sensing spectrum sensing is the best-proposed method to solve the hidden problem.
2021-03-09
Venkataramana, B., Jadhav, A..  2020.  Performance Evaluation of Routing Protocols under Black Hole Attack in Cognitive Radio Mesh Network. 2020 International Conference on Emerging Smart Computing and Informatics (ESCI). :98–102.
Wireless technology is rapidly proliferating. Devices such as Laptops, PDAs and cell-phones gained a lot of importance due to the use of wireless technology. Nowadays there is also a huge demand for spectrum allocation and there is a need to utilize the maximum available spectrum in efficient manner. Cognitive Radio (CR) Network is one such intelligent radio network, designed to utilize the maximum licensed bandwidth to un-licensed users. Cognitive Radio has the capability to understand unused spectrum at a given time at a specific location. This capability helps to minimize the interference to the licensed users and improves the performance of the network. Routing protocol selection is one of the main strategies to design any wireless or wired networks. In Cognitive radio networks the selected routing protocol should be best in terms of establishing an efficient route, addressing challenges in network topology and should be able to reduce bandwidth consumption. Performance analysis of the protocols helps to select the best protocol in the network. Objective of this study is to evaluate performance of various cognitive radio network routing protocols like Spectrum Aware On Demand Routing Protocol (SORP), Spectrum Aware Mesh Routing in Cognitive Radio Networks (SAMER) and Dynamic Source Routing (DSR) with and without black hole attack using various performance parameters like Throughput, E2E delay and Packet delivery ratio with the help of NS2 simulator.
2020-09-18
Simpson, Oluyomi, Sun, Yichuang.  2019.  A Stochastic based Physical Layer Security in Cognitive Radio Networks: Cognitive Relay to Fusion Center. 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC). :1—7.
Cognitive radio networks (CRNs) are found to be, without difficulty wide-open to external malicious threats. Secure communication is an important prerequisite for forthcoming fifth-generation (5G) systems, and CRs are not exempt. A framework for developing the accomplishable benefits of physical layer security (PLS) in an amplify-and-forward cooperative spectrum sensing (AF-CSS) in a cognitive radio network (CRN) using a stochastic geometry is proposed. In the CRN the spectrum sensing data from secondary users (SU) are collected by a fusion center (FC) with the assistance of access points (AP) as cognitive relays, and when malicious eavesdropping SU are listening. In this paper we focus on the secure transmission of active APs relaying their spectrum sensing data to the FC. Closed expressions for the average secrecy rate are presented. Analytical formulations and results substantiate our analysis and demonstrate that multiple antennas at the APs is capable of improving the security of an AF-CSSCRN. The obtained numerical results also show that increasing the number of FCs, leads to an increase in the secrecy rate between the AP and its correlated FC.
Pham-Thi-Dan, Ngoc, Ho-Van, Khuong, Do-Dac, Thiem, Vo-Que, Son, Pham-Ngoc, Son.  2019.  Security Analysis for Cognitive Radio Network with Energy Scavenging Capable Relay over Nakagami-m Fading Channels. 2019 International Symposium on Electrical and Electronics Engineering (ISEE). :68—72.
In this paper, we propose an exact closed-form expression of secrecy outage probability (SOP) for underlay cognitive network with energy scavenging capable relay over Nakagami-m fading channels and under both (maximum transmit and interference) power constraints. Various results validated the proposed expression and shed insights into the security performance of this network in key specifications.
Torabi, Mohammad, Pouri, Alireza Baghaei.  2019.  Physical Layer Security of a Two-Hop Mixed RF-FSO System in a Cognitive Radio Network. 2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC). :167—170.
In this paper, the physical layer (PHY)security performance of a dual-hop cooperative relaying in a cognitive-radio system in the presence of an eavesdropper is investigated. The dual-hop transmission is composed of an asymmetric radio frequency (RF)link and a free space optical (FSO)link. In the considered system, an unlicensed secondary user (SU)uses the spectrum which is shared by a licensed primary user (PU)in a controlled manner to keep the interference at PU receiver, below a predefined value. Furthermore, among M available relays, one relay with the best end-to-end signal-to-noise-ratio (SNR)is selected for transmission. It is assumed that all of the RF links follow Rayleigh fading and all of the FSO links follow Gamma-Gamma distribution. Simulations results for some important security metrics, such as the average secrecy capacity (SC), and secrecy outage probability (SOP)are presented, where some practical issues of FSO links such as atmospheric turbulence, and pointing errors are taken into consideration.
2020-04-10
Simpson, Oluyomi, Sun, Yichuang.  2019.  A Stochastic Method to Physical Layer Security of an Amplify-and-Forward Spectrum Sensing in Cognitive Radio Networks: Secondary User to Relay. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :197—202.
In this paper, a framework for capitalizing on the potential benefits of physical layer security in an amplify-and-forward cooperative spectrum sensing (AF-CSS) in a cognitive radio network (CRN) using a stochastic geometry is proposed. In the CRN network the sensing data from secondary users (SUs) are collected by a fusion center (FC) with the help of access points (AP) as relays, and when malicious eavesdropping secondary users (SUs) are listening. We focus on the secure transmission of active SUs transmitting their sensing data to the AP. Closed expressions for the average secrecy rate are presented. Numerical results corroborate our analysis and show that multiple antennas at the APs can enhance the security of the AF-CSS-CRN. The obtained numerical results show that average secrecy rate between the AP and its correlated FC decreases when the number of AP is increased. Nevertheless, we find that an increase in the number of AP initially increases the overall average secrecy rate, with a perilous value at which the overall average secrecy rate then decreases. While increasing the number of active SUs, there is a decrease in the secrecy rate between the sensor and its correlated AP.
2019-12-05
Hussain, Muzzammil, Swami, Tulsi.  2018.  Primary User Authentication in Cognitive Radio Network Using Pre-Generated Hash Digest. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :903-908.

The primary objective of Cognitive Radio Networks (CRN) is to opportunistically utilize the available spectrum for efficient and seamless communication. Like all other radio networks, Cognitive Radio Network also suffers from a number of security attacks and Primary User Emulation Attack (PUEA) is vital among them. Primary user Emulation Attack not only degrades the performance of the Cognitive Radio Networks but also dissolve the objective of Cognitive Radio Network. Efficient and secure authentication of Primary Users (PU) is an only solution to mitigate Primary User Emulation Attack but most of the mechanisms designed for this are either complex or make changes to the spectrum. Here, we proposed a mechanism to authenticate Primary Users in Cognitive Radio Network which is neither complex nor make any changes to spectrum. The proposed mechanism is secure and also has improved the performance of the Cognitive Radio Network substantially.

Yadav, Kuldeep, Roy, Sanjay Dhar, Kundu, Sumit.  2018.  Total Error Reduction in Presence of Malicious User in a Cognitive Radio Network. 2018 2nd International Conference on Electronics, Materials Engineering Nano-Technology (IEMENTech). :1-4.

Primary user emulation (PUE) attack causes security issues in a cognitive radio network (CRN) while sensing the unused spectrum. In PUE attack, malicious users transmit an emulated primary signal in spectrum sensing interval to secondary users (SUs) to forestall them from accessing the primary user (PU) spectrum bands. In the present paper, the defense against such attack by Neyman-Pearson criterion is shown in terms of total error probability. Impact of several parameters such as attacker strength, attacker's presence probability, and signal-to-noise ratio on SU is shown. Result shows proposed method protect the harmful effects of PUE attack in spectrum sensing.

2018-06-07
Zhaoye, X., Ruimin, L..  2017.  Physical layer security transmission in cognitive radio network composed of multi-downlinks SU network. 2017 IEEE 17th International Conference on Communication Technology (ICCT). :898–901.
In cognitive radio network, the primary user (PU) network and the secondary user (SU) network interfered with each other because of sharing the spectral resource. Also interference among multi-downlinks in SU network decreased the sum rate in SU network and the eavesdropper in PU network decreased the secrecy rate in PU network. Focusing on above problem, this paper raised two channel selection and beamforming methods based on singular value decomposition (SVD) and uplink-downlink duality respectively, and then analyzed the performance of them in physical layer security.
2017-09-19
LeAnh, Tuan, Ullah, Saeed, Tran, Nguyen H., Kim, Sung Soo, Moon, Seung Il, Hong, Choong Seon.  2016.  Coalitional Game Theoretic Approach for Cooperation in Heterogeneous Cognitive Wireless Networks. Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication. :86:1–86:6.

Heterogeneous cognitive wireless networks (HeCoNets)) are consisted of macrocells that are overlaid by small cells (e.g, femtocells, picocells). These small cells operate over the cognitive radio paradigm. In this paper, we consider a cooperative model in the uplink of HetCoNets, that includes picocell and famtocells networks that are using unlicensed channels from the macrocesll network. In our cooperative model, cognitive picocell users' equipments (CPUEs) and cognitive femtocell users (CFUEs) get incentives from cooperating with each other to improve the unlicensed channels usage and mitigate inter-tier and intra-tier interference while maximizing sum-rate of users in the HetCoNet. We apply a coalition game approach in which CPUEs and CFUEs are considered as players of the game. We have intensively simulated the proposed idea in matlab. Our simulation results show the effectiveness of our proposed compared with non-cooperative model.