Visible to the public Biblio

Filters: Keyword is transmitting antennas  [Clear All Filters]
2021-03-15
Wang, F., Zhang, X..  2020.  Secure Resource Allocation for Polarization-Based Non-Linear Energy Harvesting Over 5G Cooperative Cognitive Radio Networks. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
We address secure resource allocation for the energy harvesting (EH) based 5G cooperative cognitive radio networks (CRNs). To guarantee that the size-limited secondary users (SUs) can simultaneously send the primary user's and their own information, we assume that SUs are equipped with orthogonally dual-polarized antennas (ODPAs). In particular, we propose, develop, and analyze an efficient resource allocation scheme under a practical non-linear EH model, which can capture the nonlinear characteristics of the end-to-end wireless power transfer (WPT) for radio frequency (RF) based EH circuits. Our obtained numerical results validate that a substantial performance gain can be obtained by employing the non-linear EH model.
2020-12-15
Cribbs, M., Romero, R., Ha, T..  2020.  Orthogonal STBC Set Building and Physical Layer Security Application. 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). :1—5.
Given a selected complex orthogonal space-time block code (STBC), transformation algorithms are provided to build a set, S, of unique orthogonal STBCs with cardinality equal to \textbackslashtextbarS\textbackslashtextbar = 2r+c+k-1·r!·c!, where r, c, and k are the number of rows, columns, and data symbols in the STBC matrix, respectively. A communications link is discussed that encodes data symbols with a chosen STBC from the set known only to the transmitter and intended receiver as a means of providing physical layer security (PLS). Expected bit error rate (BER) and informationtheoretic results for an eavesdropper with a priori knowledge of the communications link parameters with the exception of the chosen STBC are presented. Monte Carlo simulations are provided to confirm the possible BER results expected when decoding the communications link with alternative STBCs from the set. Application of the transformation algorithms provided herein are shown to significantly increase the brute force decoding complexity of an eavesdropper compared to a related work in the literature.
2020-09-21
Xia, Huiyun, Han, Shuai, Li, Cheng, Meng, Weixiao.  2019.  Joint PHY/MAC Layer AN-Assisted Security Scheme in SVD-Based MIMO HARQ system. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :328–333.
With the explosive data growth arise from internet of things, how to ensure information security is facing unprecedented challenges. In this paper, a joint PHY/MAC layer security scheme with artificial noise design in singular value decomposition (SVD) based multiple input multiple output hybrid automatic retransmission request (MIMO HARQ) system is proposed to resolve the problem of low data rates in existing cross-layer security design and further adapt to the high data rate requirement of 5G. First, the SVD was applied to simplify MIMO systems into several parallel sub-channels employing HARQ protocol. Then, different from traditional null space based artificial noise design, the artificial noise design, which is dependent on the characteristics of channel states and transmission rounds, is detailed presented. Finally, the analytical and simulation results proved that with the help of the proposed artificial noise, both the information security and data rate performance can be significantly improved compared with that in single input single output (SISO) system.
2020-08-13
Jiang, Wei, Anton, Simon Duque, Dieter Schotten, Hans.  2019.  Intelligence Slicing: A Unified Framework to Integrate Artificial Intelligence into 5G Networks. 2019 12th IFIP Wireless and Mobile Networking Conference (WMNC). :227—232.
The fifth-generation and beyond mobile networks should support extremely high and diversified requirements from a wide variety of emerging applications. It is envisioned that more advanced radio transmission, resource allocation, and networking techniques are required to be developed. Fulfilling these tasks is challenging since network infrastructure becomes increasingly complicated and heterogeneous. One promising solution is to leverage the great potential of Artificial Intelligence (AI) technology, which has been explored to provide solutions ranging from channel prediction to autonomous network management, as well as network security. As of today, however, the state of the art of integrating AI into wireless networks is mainly limited to use a dedicated AI algorithm to tackle a specific problem. A unified framework that can make full use of AI capability to solve a wide variety of network problems is still an open issue. Hence, this paper will present the concept of intelligence slicing where an AI module is instantiated and deployed on demand. Intelligence slices are applied to conduct different intelligent tasks with the flexibility of accommodating arbitrary AI algorithms. Two example slices, i.e., neural network based channel prediction and anomaly detection based industrial network security, are illustrated to demonstrate this framework.
2020-07-03
Viegas, P., Borges, D., Montezuma, P., Dinis, R., Silva, M. M..  2019.  Multi-beam Physical Security Scheme: Security Assessment and Impact of Array Impairments on Security and Quality of Service. 2019 PhotonIcs Electromagnetics Research Symposium - Spring (PIERS-Spring). :2368—2375.

Massive multiple-input multiple-output (mMIMO) with perfect channel state information (CSI) can lead array power gain increments proportional to the number of antennas. Despite this fact constrains on power amplification still exist due to envelope variations of high order constellation signals. These constrains can be overpassed by a transmitter with several amplification branches, with each one associated to a component signal that results from the decomposition of a multilevel constellation as a sum of several quasi constant envelope signals that are sent independently. When combined with antenna arrays at the end of each amplification branch the security improves due to the energy separation achieved by beamforming. However, to avoid distortion on the signal resulting from the combination of all components at channel level all the beams of signal components should be directed in same direction. In such conditions it is crucial to assess the impact of misalignments between beams associated to each user, which is the purpose of this work. The set of results presented here show the good tolerance against misalignments of these transmission structures.

2018-08-23
Mahmood, N. H., Pedersen, K. I., Mogensen, P..  2017.  A centralized inter-cell rank coordination mechanism for 5G systems. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). :1951–1956.
Multiple transmit and receive antennas can be used to increase the number of independent streams between a transmitter-receiver pair, or to improve the interference resilience property with the help of linear minimum mean squared error (MMSE) receivers. An interference aware inter-cell rank coordination framework for the future fifth generation wireless system is proposed in this article. The proposal utilizes results from random matrix theory to estimate the mean signal-to-interference-plus-noise ratio at the MMSE receiver. In addition, a game-theoretic interference pricing measure is introduced as an inter-cell interference management mechanism to balance the spatial multiplexing vs. interference resilience trade-off. Exhaustive Monte Carlo simulations results demonstrating the performance of the proposed algorithm indicate a gain of around 40% over conventional non interference-aware schemes; and within around 6% of the optimum performance obtained using a brute-force exhaustive search algorithm.
2018-01-10
Zhang, Z. G., Wen, H., Song, H. H., Jiang, Yixin, Zhang, J. L., Zhu, Xiping.  2016.  A MIMO cross-layer secure communication scheme based on spatial modulation. 2016 IEEE Conference on Communications and Network Security (CNS). :350–351.

A cross-layer secure communication scheme for multiple input multiple output (MIMO) system based on spatial modulation (SM) is proposed in this paper. The proposed scheme combined the upper layer stream cipher with the distorted signal design of the MIMO spatial modulation system in the physical layer to realize the security information transmission, which is called cross-layer secure communication system. Simulation results indicate that the novel scheme not only further ensure the legitimate user an ideal reception demodulation performance as the original system, but also make the eavesdropper' error rate stable at 0.5. The novel system do not suffer from a significant increasing complexity.

2017-12-20
Chen, G., Coon, J..  2017.  Enhancing secrecy by full-duplex antenna selection in cognitive networks. 2017 IEEE Symposium on Computers and Communications (ISCC). :540–545.

We consider an underlay cognitive network with secondary users that support full-duplex communication. In this context, we propose the application of antenna selection at the secondary destination node to improve the secondary user secrecy performance. Antenna selection rules for cases where exact and average knowledge of the eavesdropping channels are investigated. The secrecy outage probabilities for the secondary eavesdropping network are analyzed, and it is shown that the secrecy performance improvement due to antenna selection is due to coding gain rather than diversity gain. This is very different from classical antenna selection for data transmission, which usually leads to a higher diversity gain. Numerical simulations are included to verify the performance of the proposed scheme.

2017-11-20
Li, Guyue, Hu, Aiqun.  2016.  Virtual MIMO-based cooperative beamforming and jamming scheme for the clustered wireless sensor network security. 2016 2nd IEEE International Conference on Computer and Communications (ICCC). :2246–2250.

This paper considers the physical layer security for the cluster-based cooperative wireless sensor networks (WSNs), where each node is equipped with a single antenna and sensor nodes cooperate at each cluster of the network to form a virtual multi-input multi-output (MIMO) communication architecture. We propose a joint cooperative beamforming and jamming scheme to enhance the security of the WSNs where a part of sensor nodes in Alice's cluster are deployed to transmit beamforming signals to Bob while a part of sensor nodes in Bob's cluster are utilized to jam Eve with artificial noise. The optimization of beamforming and jamming vectors to minimize total energy consumption satisfying the quality-of-service (QoS) constraints is a NP-hard problem. Fortunately, through reformulation, the problem is proved to be a quadratically constrained quadratic problem (QCQP) which can be solved by solving constraint integer programs (SCIP) algorithm. Finally, we give the simulation results of our proposed scheme.

2017-02-14
K. S. Vishvaksenan, K. Mithra.  2015.  "Performance of coded Joint transmit scheme aided MIMO-IDMA system for secured medical image transmission". 2015 International Conference on Communications and Signal Processing (ICCSP). :0799-0803.

In this paper, we investigate the performance of multiple-input multiple-output aided coded interleave division multiple access (IDMA) system for secured medical image transmission through wireless communication. We realize the MIMO profile using four transmit antennas at the base station and three receive antennas at the mobile station. We achieve bandwidth efficiency using discrete wavelet transform (DWT). Further we implement Arnold's Cat Map (ACM) encryption algorithm for secured medical transmission. We consider celulas as medical image which is used to differentiate between normal cell and carcinogenic cell. In order to accommodate more users' image, we consider IDMA as accessing scheme. At the mobile station (MS), we employ non-linear minimum mean square error (MMSE) detection algorithm to alleviate the effects of unwanted multiple users image information and multi-stream interference (MSI) in the context of downlink transmission. In particular, we investigate the effects of three types of delay-spread distributions pertaining to Stanford university interim (SUI) channel models for encrypted image transmission of MIMO-IDMA system. From our computer simulation, we reveal that DWT based coded MIMO- IDMA system with ACM provides superior picture quality in the context of DL communication while offering higher spectral efficiency and security.

2015-04-30
Ta-Yuan Liu, Mukherjee, P., Ulukus, S., Shih-Chun Lin, Hong, Y.-W.P..  2014.  Secure DoF of MIMO Rayleigh block fading wiretap channels with No CSI anywhere. Communications (ICC), 2014 IEEE International Conference on. :1959-1964.

We consider the block Rayleigh fading multiple-input multiple-output (MIMO) wiretap channel with no prior channel state information (CSI) available at any of the terminals. The channel gains remain constant in a coherence time of T symbols, and then change to another independent realization. The transmitter, the legitimate receiver and the eavesdropper have nt, nr and ne antennas, respectively. We determine the exact secure degrees of freedom (s.d.o.f.) of this system when T ≥ 2 min(nt, nr). We show that, in this case, the s.d.o.f. is exactly (min(nt, nr) - ne)+(T - min(nt, nr))/T. The first term can be interpreted as the eavesdropper with ne antennas taking away ne antennas from both the transmitter and the legitimate receiver. The second term can be interpreted as a fraction of s.d.o.f. being lost due to the lack of CSI at the legitimate receiver. In particular, the fraction loss, min(nt, nr)/T, can be interpreted as the fraction of channel uses dedicated to training the legitimate receiver for it to learn its own CSI. We prove that this s.d.o.f. can be achieved by employing a constant norm channel input, which can be viewed as a generalization of discrete signalling to multiple dimensions.